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Abstract

As recently proved by Burgarth et al. [Phys. Rev. A 79, 060305(R) (2009)], a Heisenberg
spin chain can be controlled completely by acting locally on one of the spins at its ends. This
is the starting point for the present thesis. We consider mainly an isotropic spin- 12 Heisenberg
chain of length three and apply a control �eld to the �rst spin. The control is chosen to
be an element of the set of piecewise constant functions. Controlling the �eld in x- and
y-direction is su�cient for universal quantum computation. We perform operator control,
i.e. we �nd control functions such that the time evolution operator of the system reaches
a speci�ed target unitary at some �xed �nal time, and analyse the time dependence of the
control �elds found for some concrete gates. The implementation is performed by maximizing
the �delity between the respective target gate and the dynamic time evolution of the system.
Throughout this work we use as standard gate a spin-�ip gate which �ips the last spin in the
chain and is achievable by control of the x-�eld only, but we implement as well entangling
gates like the controlled-NOT and square root of SWAP. We analyse the sensitivity of the
�delity to random noise and search for smooth optimal control �elds by applying �ltering
techniques in the Fourier space. Concretely, we make use of two di�erent �lters having a
smoothing e�ect, namely of an ideal low-pass and a Gaussian �lter. Furthermore, we extend
the three-spin system adding one more spin to the chain and estimate a minimal time for the
implementation of the spin-�ip and CNOT gate depending on the number of spins whereas
we include results stemming from a chain of two, three, and four spins. Finally, we describe
how a quantum error correction circuit consisting of �ve qubits may be implemented by local
control of a Heisenberg spin chain of length �ve.
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1 Introduction

The thesis is organized in the following way. We start by overviewing basics of quantum in-
formation, computation and control (Section 2). Doing this we focus on unitary operators and
quantum gates and give a de�nition for universal gates in the context of quantum circuits. In
Section 3 we introduce the concepts of control theory and answer the question of controllability
for a given quantum control system from a Lie algebra perspective. Furthermore, we collect a
few facts about Lie algebras and Lie groups and note the Lie Algebra Rank Condition which as-
sociates the set of reachable states for a control system with the system's dynamical Lie algebra.
This condition provides at the same time a criterion for complete controllability.

After having introduced the relevant theoretical background with regard to quantum control
systems, in Section 4 the actual work starts. We brie�y review the argument of [1] concerning
local controllability of quantum networks. The proof that a Heisenberg spin chain can be con-
trolled completely by applying a control �eld either to the �rst or last spin in the chain, is the
starting point for the further work. We set up a quantum control system by an isotropic Heisen-
berg spin-1

2 chain whereas we operate locally with a control �eld on the �rst spin. This system
is fully controllable which means here that the set of unitaries reachable from the identity is the
special unitary group su(n). Hence, any unitary contained in su(n) can be achieved by adjusting
the controls in an appropriate manner. We apply a control �eld to the �rst spin which points in
x- and y-direction and is su�cient for complete controllability. The shape of the control �eld is
chosen to be piecewise constant. Performing local operator control we implement spin-�ip gates
and the entangling gates CNOT and

√
SWAP. In order to �nd optimal control �elds which drive

the system's time evolution operator from the identity to the desired target gate, we numerically
maximize the �delity between the target and the dynamic time evolution of the system. Fields
which implement a respective gate to high accuracy are called optimal throughout this work. As
standard target unitary we consider the gate which �ips the last spin in the chain and can be
achieved by controlling only the x-�eld. Having reached optimal control �elds we disturb them
by random noise and analyse the sensitivity of the �delity to the noise. Furthermore, we tend
to reach optimal control �elds which are smoother than the piecewise constant ones and never-
theless correspond to high �delities. To this end we apply ideal-low pass and Gaussian �lters to
the Fourier transformed optimal piecewise constant controls. The �ltering e�ects a smoothing
of the control �elds. We analyse how the strength of the control �elds in�uences the smoothing
procedure.

In Section 5 we extend the Heisenberg three-spin chain to a chain of arbitrary length. Due
to the computational burden it is unfortunately not possible to go beyond four spins. However,
two, three, and four spins can be done and we compare the implementation of spin-�ip and
CNOT gates for varying number of spins. In particular, we are interested how the minimal time,
which is needed to achieve those gates, depends on the number of spins. The thesis is completed
by Section 6 where we describe one possible application of local operator control. We present
a quantum error correction circuit which can be realized by local operator control applied to a
Heisenberg �ve-spin chain. Finally, the results are summarized in Section 7.

2 Basics of quantum computation, information, and control

This section introduces the fundamentals of quantum computation, information, and control,
mainly based on [2], [3], and [4].

2.1 Quantum bits

While classical computation and information is based on the bit, the basic unit of classical com-
puter information, the quantum analogue is given by the quantum bit, or qubit for short. Qubits
are mathematical objects which can be realized as real physical systems. A classical bit has a
state which is either equal to 0 or equal to 1. Accordingly, a quantum bit also has a state. Each

3



qubit represents a two-level quantum system associated with a two-dimensional complex vector
space on which an inner product, denoted by 〈·, ·〉, is de�ned (Hilbert space). The state of the
qubit is described by a normalized vector contained in the Hilbert space. Since a qubit is a
two-level system, there exist two possible states for it denoted in the Dirac notation by |0〉 and
|1〉 which correspond to the states 0 and 1 for a classical bit. But in contrast to classical bits
a qubit can be additionally in a state other than |0〉 or |1〉, namely in a state resulting from a
linear combination of both. The special states |0〉 and |1〉, which represent the states in which
the qubit may be measured, form an orthonormal basis for the two-dimensional Hilbert space,
known as computational basis. A pure qubit state is a linear combination of the basis states.

Now we assume the existence of two qubits. In the corresponding classical case there are four
possible states: 00, 01, 10 and 11. The computational basis of a two-qubit system consists anal-
ogously of the four basis states |00〉, |01〉, |10〉, and |11〉. As in the case of a single qubit a
pair of qubits can exist in a superposition of these four states. Another important orthonormal
basis for the two-qubit state space (four-dimensional Hilbert space) is the Bell basis consisting

of the four maximally entangled states |00〉+|11〉√
2

, |00〉−|11〉√
2

, |10〉+|01〉√
2

, and |01〉−|10〉√
2

. The Bell basis

is maximally correlated while the computational basis is uncorrelated.

As mentioned before, qubits are not only mathematical objects but can also be realized in
di�erent physical systems, e.g. as the two di�erent polarizations of a photon, as the two states
(ground state and excited state) of an electron orbiting an atom or as the alignment of a nuclear
spin in a magnetic �eld. In particular, the spin of the electron or in general every system with
spin 1

2 is described very well by the qubit model since the Hilbert space of a system with spin
1
2 is two-dimensional. In this work we will consider a physical N -qubit system realized by an
isotropic Heisenberg spin-1

2 chain of length N .

2.2 Quantum entanglement

Entanglement of quantum systems may be produced by the interaction between two or more
systems. It refers to the situation where the state of the whole composite system cannot be
written as the tensor product of states of the single systems. Consider for instance a two-qubit
system which is composed of two single qubits. We write the corresponding four-dimensional
Hilbert space as the tensor space H = H1⊗H2 where H1 and H2 are the two-dimensional Hilbert
spaces each associated with one of the two single qubits. There exist two-qubit states which can
be decomposed into the tensor product of two single-qubit states, such as |ψ〉 = |01〉 = |0〉 ⊗ |1〉.
In this case we may conclude that one qubit is in the state |0〉 while the other is in the state |1〉.
But there are other states in the Hilbert space H which cannot be written as the tensor product
of two single-qubit states, for instance |ψ〉 = |00〉+|11〉√

2
. In such a case it is not possible to separate

the states of the two single qubits by writing |ψ〉 = |ψ1〉 ⊗ |ψ2〉 for two single-qubit states |ψ1〉
and |ψ2〉, and the two qubits are said to be entangled. This entanglement can be illustrated by
imaging that the two qubits are sent to two di�erent locations A and B. If we measure the qubit
at location A the result of this measurement will determine the outcome of a measurement of
the qubit at location B which means that the measurement outcomes are correlated.

Separable and entangled pure states:

We consider a quantum system composed of N subsystems. Its state is described by a vec-
tor |ψ〉 in the tensor space

H := H1 ⊗H2 ⊗ · · · ⊗ HN , (2.2.1)

where Hj , j ∈ {1, . . . N}, is the Hilbert state of the j-th subsystem.
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De�nition 2.1. [2] If a state |ψ〉 ∈ H can be written as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 , (2.2.2)

with |ψj〉 being a state in the space Hj of the j-th subsystem, it is called separable, otherwise
entangled.

2.3 Qubit state space

The state space of a single qubit is two-dimensional. In general, a N -qubit system has an
underlying state space of 2N dimensions. We assume that |0〉 and |1〉 form an orthonormal basis
for the state space of a single qubit. A pure single-qubit state can then be represented as a linear
combination of the normalized basis states |0〉 and |1〉:

|ψ〉 = α |0〉+ β |1〉 , (2.3.1)

with |α|2 + |β|2 = 1, since the probabilities |α|2 to measure a qubit in the state |0〉 and |β|2
to measure it in the state |1〉 must sum to one. This relation can geometrically be seen as the
condition that the qubit's state is normalized to length 1. Due to this we may write

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (2.3.2)

where θ, φ and γ are real numbers. The factor eiγ can be ignored since it has no observable
e�ects which means that the statistics of measurement (probabilities to measure certain out-
comes) are not a�ected by ignoring it. Or shortly, global phases are irrelevant in quantum
mechanics. The real numbers θ and φ represent geometrically a point on the unit sphere in the
three-dimensional space. This sphere is known as Bloch sphere and allows the visualization of
the state of a single qubit. The Bloch sphere can be considered as a two-dimensional space which
corresponds to the surface of a sphere. Each pure single-qubit state can therefore be represented
as a point on the unit sphere with spherical coordinates θ and φ. The corresponding vector
(sin θ cosφ, sin θ sinφ, cos θ) is called Bloch vector. The Bloch sphere description holds for the
states of any two-level quantum system. However, there is not known an easy generalization of
the Bloch sphere having the same simple geometrical representation for systems with more than
two, say d, levels, such as for multiple qubits (qudits). If we consider a system where the qubit
is represented by a single spin 1

2 , then |0〉 and |1〉 correspond to the two possible states of a spin
1
2 , namely to spin up and spin down, respectively.

The Bloch sphere picture can be generalized to mixed states. A mixed state is described by
a density matrix which is a Hermitian, positive-semide�nite matrix of unit trace. The state
space of a qubit which contains all possible density matrices is a subset of all Hermitian opera-
tors with a trace equal to one. The set of all Hermitian operators form a real vector space on
which a scalar product (Hilbert-Schmidt inner product) between two elements A and B of the
space is de�ned by 〈A,B〉 = tr(AB). A standard choice for a basis of this vector space is the set
of the Pauli matrices, i.e. {σ0, σx, σy, σz} = {1, ~σ}. This set represents an operator basis for a
single qubit. We state that except 1 all other basis operators are traceless. Hence, an arbitrary
density matrix, which has a unit trace as we know, describing a qubit in a mixed state may be
written in the Bloch sphere representation as

ρ =
1+ ~r · ~σ

2
, (2.3.3)

where ~r is the generalized Bloch vector for the state ρ, which is a real three-dimensional vector
with |~r| ≤ 1.
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2.4 Unitary operators and quantum gates

We brie�y review an important postulate of quantum mechanics:

Postulate 2.2. [3] The evolution of a closed quantum system is described by a unitary trans-
formation. That is, the state |ψ〉 of the system at time t0 is related to its state at time tf by a
unitary time evolution operator U which depends only on the times t0 and tf ,

|ψ(tf )〉 = U(tf , t0) |ψ(t0)〉 . (2.4.1)

Closed in this context means that the considered system is not interacting with other systems.
All real systems interact at least somewhat with the environment, but there are interesting
systems which can be approximated well by unitary evolution. The unitary property of the time
evolution operator ensures that the norm of the state |ψ〉 on which it acts is let invariant. The
norm is given by

√
〈ψ|ψ〉 and it is not a�ected by unitary transformations since unitary operators

preserve the inner product 〈·, ·〉 between states. To see this, we consider two states |ψ〉 and |φ〉.
The inner product of U |ψ〉 and U |φ〉 is the same as the inner product of |ψ〉 and |φ〉,

〈ψ|U †U |φ〉 = 〈ψ|φ〉 . (2.4.2)

Postulate 2.3. [3] The time evolution of the state of a closed quantum system is described by
the Schrödinger equation,

i~
d |ψ〉
dt

= H |ψ〉 . (2.4.3)

It is common in practice to absorb the Planck's constant ~ into the Hamiltonian of the system
H by e�ectively setting ~ = 1.

Considering a quantum control system, it is important to note that the quantum computer
interacts with some external control and is hence turned into an open quantum system which is
a�ected by noise. The dynamics of an open system, i.e. of the system of interest, called principal
system, interacting with an environment, is described by a general quantum operation ε. Suppose
the system is initially in state ρ, then its �nal state is ε(ρ) which is not necessarily related by a
unitary transformation to the initial state. If no measurement is included into the process, then
the quantum operation ε has to be trace-preserving, since it maps density operators to density
operators which all ful�ll tr(ε(ρ)) = 1. The principal system and the environment form together
a closed quantum system whose evolution is a unitary transformation.

Quantum computing: Gates

Quantum (logic) gates are part of a quantum computer circuit. They operate on a certain
number of qubits. That is, they manipulate the information which is contained in the states of
the qubits and convert it to other forms. As it follows from Postulate 2.2, quantum gates act
as unitary transformations on the states of the considered N -qubit system. The action is hence
linear which means that the transformation of an arbitrary state is entirely determined by the
transformations of the basis states for a given basis of the corresponding state space (Hilbert
space). Assume that we consider a two-dimensional single-qubit system for which the states |0〉
and |1〉 form an orthonormal basis and let act a certain quantum gate U on an arbitrary state
|ψ〉 = α |0〉+ β |1〉. Due to the linearity we obtain the transformed state as

U |ψ〉 = αU |0〉+ βU |1〉 . (2.4.4)

Since quantum gates are linear unitary operators, they can be represented by unitary matrices.
Gates which act on N qubits are described by 2N × 2N unitary matrices. In this work all ma-
trix representations of quantum gates are given in the computational basis even if not explicitly
mentioned. We note that the unitary property is the only constraint on quantum gates which
means that every unitary matrix speci�es a valid quantum gate. In contrast to classical gates
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quantum gates are always reversible (invertible) because they are unitary. Due to the unitarity,
the inverse of a matrix representing a quantum gate is its complex conjugate transpose (adjoint)
and hence also a unitary matrix. In particular, if a gate is Hermitian in addition, for instance
one described by a real symmetric matrix, then the gate is equal to its inverse.

We have seen that pure states |ψ〉 evolve under unitary transformations as |ψ〉 → U |ψ〉. In
order to generalize the case of pure states to mixed states, we have to use the density operator
formalism. An arbitrary density operator ρ which describes a system in a mixed state transforms
under unitary evolution as

ρ→ UρU †. (2.4.5)

An important task in quantum control is to achieve some given quantum gate, the target unitary,
by controlling the dynamic time evolution operator. For this purpose a time-dependent control
�eld is applied to the system. The goal is to �nd a control �eld which leads to a maximal
�delity between target unitary and the dynamic time evolution of the system. In the following
we consider a few interesting single- and multiple-qubit gates whereof some will be relevant in
this work.

2.4.1 Single-qubit operations

Operations on a single qubit are represented by 2× 2 unitary matrices. Among these, the most
important are the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.4.6)

The X matrix is often called the quantum NOT gate, analogously to the classical NOT gate,
and sometimes as well referred to as the bit-�ip matrix since it takes |0〉 to |1〉 and |1〉 to |0〉.
On the other hand, the Z matrix is sometimes called phase-�ip matrix. It leaves |0〉 invariant
and transforms |1〉 to − |1〉 where the added factor of −1 is known as a relative phase factor.

Other interesting single-qubit gates are the Hadamard gate (denoted H), phase gate (denoted
S) and π

8 gate (denoted T ):

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0

0 ei
π
4

)
. (2.4.7)

We will explain in Section 2.4.3 the universal property of these three gates. The following two
algebraic relations between them are worth to be kept in mind:

H = (X + Z)/
√

2 and S = T 2, (2.4.8)

as well as the observation that the π
8 gate is the square root of the phase gate which itself is the

square root of the Z gate due to the relation ei
π
4 =

√
i =

√√
−1. If we use the Bloch sphere

picture, we can visualize the single-qubit gates as compositions of rotations and re�ections of the
sphere. The Pauli matrices generate the rotation operators about the x, y and z axes:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
1− i sin

θ

2
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, (2.4.9)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
1− i sin

θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
, (2.4.10)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
1− i sin

θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
. (2.4.11)
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2.4.2 Multiple-qubit operations

Two and more qubit gates may provide entanglement of states. Therefore we �rst de�ne the
property of gates which are said to be entangling. The de�nition of a 2-qubit entangling gate is
given as follows:

De�nition 2.4. [4] A 2-qubit gate is said to be an entangling gate if for some input product
state |ψ〉 |φ〉 the output of the gate is not a product state (i.e. the output qubits are entangled).

One of the most useful type of multi-qubit quantum logic gates is the controlled operation which
corresponds to the logical statement 'if A is true, then do B'. The prototypical controlled op-
eration is the 2-qubit controlled-NOT or CNOT gate which is the most commonly encountered
2-qubit gate. This quantum gate has two input qubits which are called control and target qubit,
respectively. The action of the CNOT gate on a 2-qubit state |c〉 |t〉 may be summarized as
follows: If the control qubit |c〉 is set to |1〉, then the NOT gate acts on the target qubit |t〉 and
�ips it, otherwise the target qubit is left invariant. In the matrix representation the CNOT gate
is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.4.12)

The CNOT gate is an entangling gate, that is, this gate leads to a correlation between target
and control qubit. Its action may be expressed as |c〉 |t〉 → |c〉 |t⊕ c〉 where ⊕ stands for addition
modulo two. We can interpret the CNOT gate as a generalization of the classical XOR gate if
we consider the control and target qubit as the input of the XOR whose output is stored in the
target qubit.

There exist many possible controlled gates. Any 2-qubit controlled-unitary operation can be
constructed in the same manner as the controlled-NOT according to the following rule: If the
control qubit is set to |1〉 then the unitary operator U , being a single-qubit gate, is applied to the
target qubit otherwise the identity. In the case of the CNOT gate the unitary in question is the
NOT gate. In principle any single-qubit gate can be used to construct a controlled-unitary gate.
Beside the controlled-NOT gate one often encounters the controlled-Z (CZ) and the controlled-
phase (CS) gate. These two gates are like the CNOT gate entangling gates and represented for
their action on 2-qubit states |c〉 |t〉 by the unitary matrices

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (2.4.13)

and

CS =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 . (2.4.14)

So far we have treated controlled gates which perform conditioning on a single control qubit.
Extensions are controlled gates which condition on multiple, say n, control qubits and perform
a k-qubit unitary operation on the k target gates if all n control qubits are equal to 1. One
example of multiple-qubit conditioning is the To�oli gate which is a controlled operation with
three inputs; two control qubits |c1〉 and |c2〉 and one target qubit |t〉. If both control qubits
are set to 1, the target qubit is �ipped otherwise it is left alone: |c1〉 |c2〉 |t〉 → |c1〉 |c2〉 |t⊕ c1c2〉.
The To�oli gate in its matrix representation:
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Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (2.4.15)

The reversible quantum To�oli gate allows to simulate the irreversible classical gates NAND and
FANOUT. With these two gates any classical gate can be performed. Hence, quantum comput-
ers can perform any computation doable by a classical computer.

A further example of a multiple-qubit gate, not a controlled one, is the 2-qubit SWAP gate
which exchanges the state of the �rst qubit to the second qubit, and vice versa. It is described
by the matrix

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.4.16)

More useful than the ordinary SWAP gate is the 2-qubit quantum gate obtained by taken the
'square root' of SWAP which we will denote

√
SWAP. In contrast to the SWAP operation the√

SWAP acts as an entangling gate and it is represented by the matrix

√
SWAP =


1 0 0 0
0 1

2(1 + i) 1
2(1− i) 0

0 1
2(1− i) 1

2(1 + i) 0
0 0 0 1

 with
1

2
(1 + i) =

1√
2
ei
π
4 . (2.4.17)

Since the matrix representing the SWAP gate is diagonalizable, the matrix describing the 'square
root' of SWAP can be derived by calculating

√
SWAP = P−1D1/2P where D is a diagonal matrix

with the eigenvalues of the SWAP operator on its diagonal. We can choose P−1 to be the matrix
with the eigenstates of the SWAP gate as columns. The square root of D is formed by taking
the square root of all the entries on the diagonal. We can imagine the action of the

√
SWAP

gate as swapping the states of the two qubits but stopping midway, a classical impossibility.
The 'square root' of SWAP may hence be obtained by pulsing the SWAP operation for just half
the duration. Most commonly the

√
SWAP operation is realized by a Heisenberg interaction

like H = J(t)~S1 · ~S2 by switching the time-dependent coupling constant J(t) between the spins
~S1 = 1

2~σ1 and ~S2 = 1
2~σ2, where ~σi with i = 1, 2 denotes the spin Pauli vector and ~ is set equal

to 1. Then we may write

√
SWAP = ei

π
8 · e−i

π
2
~S1
~S2 = ei

π
8 · e−i

π
8
~σ1~σ2 . (2.4.18)

2.4.3 Universality of quantum gates

Here we point out an essential theorem concerning the universality of quantum gates which
reveals the importance of entangling gates. According to [4] a universal set of gates is de�ned as
follows:

De�nition 2.5. [4] A set of gates is said to be universal if for any integer n ≥ 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a quantum circuit using only gates
from that set.

De�nition 2.6. [4] A set of gates is said to be universal for 1-qubit gates if any 1-qubit unitary
gate can be approximated to arbitrary accuracy by a quantum circuit using only gates from that
set.
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The following theorem explains why the entangling gates such as the CNOT or
√

SWAP gates
are useful:

Theorem 2.7. [4] A set composed of an arbitrary entangling 2-qubit gate acting on any pair of
qubits, together with all 1-qubit gates operating on every qubit, is universal for n-qubit operations
for any integer n ≥ 1.

Using a set as described by Theorem 2.7, any n-qubit unitary can be implemented exactly which
means that such a set is universal in a stronger sense than required by De�nition 2.5. A set
composed of a 2-qubit entangling gate and all 1-qubit gates is in general in�nite. A �nite
universal set of quantum gates can be found by looking for a �nite set of 1-qubit gates which is
universal for 1-qubit operations. In Ref. [3] such a set is provided by the Hadamard, phase and
π
8 gates. Therefore we can conclude that any unitary operator can be approximated to arbitrary
accuracy using Hadamard, phase and π

8 gates as well as one 2-qubit entangling gate.

2.4.4 Average gate �delity

An important task in quantum computation and quantum information is to determine the quality
of quantum gates. A simple formula for the average �delity of a noisy quantum gate is developed
by Nielsen [5]. The �nal formula which he derives is given by

F̄ (ε, U) =

∑
j tr
(
UU †jU

†ε(Uj)
)

+ d2

d2(d+ 1)
, (2.4.19)

where ε represents a trace-preserving quantum operation. Nielsen assumes that ε acts on a qudit
which means on a d-dimensional quantum system, with d �nite. The average gate �delity F̄ (ε, U)
quanti�es how well ε approximates a certain quantum gate U . If ε implements U perfectly, we
obtain F̄ (ε, U) = 1, otherwise the value for F̄ (ε, U) is lower and the implementation noisy. The
set of unitary operators Uj/

√
d forms an orthonormal unitary operator basis for a qudit (i.e. for

the complex vector space Cd×d): tr(U †jUk) = δjkd.

Within the scope of quantum computation, quantum operations are commonly called quan-
tum channels. In the derivation of formula (2.4.19) Nielsen starts from the integral expression
for the average �delity of a quantum channel

F̄ (ε) =

∫
dψ 〈ψ|ε(ρ)|ψ〉 , (2.4.20)

which quanti�es how well ε preserves quantum information. The integral is over the uniform
Haar measure dψ on the space of pure states |ψ〉 and ρ denotes the density matrix |ψ〉 〈ψ|. The
Haar measure is normalized such that

∫
dψ = 1 which ensures that it can be interpreted as a

probability measure and it is invariant under arbitrary unitary transformations, i.e. dψ = dψ′ if
|ψ′〉 = U |ψ〉 for any unitary U . According to (2.4.20), the average gate �delity F̄ (ε, U) may be
written as

F̄ (ε, U) =

∫
dψ 〈ψ|U †ε(ρ)U |ψ〉 . (2.4.21)

The uniform Haar measure de�nes a measure for uniformly distributed random quantum states.
Since each (pure) quantum state may be produced by operating unitarily on a �xed reference
state, the Haar measure also provides a measure for uniformly generated random unitary opera-
tors. We point out that the application of Nielsen's formula (2.4.19) requires a uniform starting
distribution of states and operators, respectively.

Bagan et al. [6] have derived a general expression for F̄ in terms of the SU(d) group gener-
ators which is equivalent to Eq. (2.4.19). Due to the invariance of dψ the relation F̄ (ε, U) =
F̄ (ε′,1) = F̄ (ε′), where ε′(ρ) = ε(U †ρU), is ful�lled. Without any loss of generality it is hence
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su�cient to only consider the simpler form F̄ (ε) as done in [6]. We note that all (locally) com-
pact Lie groups, thus in particular SU(d) and as well U(d), carry a Haar measure. Hence, the
integral over the measure dψ (2.4.20) may be rewritten as an integral over dU which is the Haar
measure of SU(d) normalized such that

∫
dU = 1. Using the Haar measure of SU(d) Bagan et

al. obtain the following formula for the average gate �delity:

F̄ (ε) =
1

d
+

2

d(d+ 1)

d2−1∑
j=1

tr (Tjε(Tj)) , (2.4.22)

where {Tj} are the Hermitian and traceless generators of SU(d) with the normalization tr(TjTk) =
δjk/2. We give additionally the expression for the average gate �delity F̄ (ε, U) which is straight-
forward derived as

F̄ (ε, U) =
1

d
+

2

d(d+ 1)

d2−1∑
j=1

tr
(
UTjU

†ε(Tj)
)
, (2.4.23)

and which is equivalent to formula (2.4.19). We note that, if the quantum operation ε implements
the gate U perfectly, its mapping is given by

ε : ρ→ ε(ρ) = UρU † ∀ρ. (2.4.24)

Inserting this map into Eqs. (2.4.19) and (2.4.23), we obtain in both cases F̄ (ε, U) = 1 as
expected. If the implementation is noisy a value between 0 and 1 will be returned and the
quantum map ε may be interpreted as a characterization of the noise.

3 Controllability and Lie algebras

In this work we are concerned with �nite dimensional quantum control systems, say of dimension
n with an associated n-dimensional complex Hilbert space H. The dynamics of the system,
assumed to be closed, is described by the Schrödinger equation, given here both for the controlled
time evolution of the state and of the unitary by setting ~ = 1:

∂

∂t
|ψ(t)〉 = −iH(u(t)) |ψ(t)〉 , (3.0.25)

U̇(t) = −iH(u(t))U(t), U(0) = 1. (3.0.26)

We note that the Hamiltonian of the system H(u) depends on some time-dependent functions,
denoted u(t), which represent the controls of the system and are chosen in an appropriate set of
functions Ū . For every value of u the Hamiltonian is required to be Hermitian. The control of
the system may often be realized by a set of control functions uk(t) ∈ R which are coupled to
the system via time-independent Hermitian interaction Hamiltonians Hk (k = 1, 2, ...,m). The
Heisenberg spin-1

2 chain which will be considered in this work belongs to this class. The total
Hamiltonian associated with such a quantum control system has then the form

H(t) = H0 +

m∑
k=1

uk(t)Hk, (3.0.27)

where H0 describes the free evolution of the system. Using this Hamiltonian, the controlled
evolution of the state |ψ(t)〉 is determined by

∂

∂t
|ψ(t)〉 = −i[H0 +

m∑
k=1

uk(t)Hk] |ψ(t)〉 , (3.0.28)

and the time evolution of the unitary operator by
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U̇(t) = −i[H0 +
∑
k

uk(t)Hk]U(t), U(0) = 1. (3.0.29)

We note that −iH(u), −iH0, and −iHk are skew-Hermitian matrices. Since we will work with
unitaries rather than with states, we formulate the quantum control problem in terms of opera-
tors. The goal of a typical quantum control problem is to �nd a �nal time tf > 0 and controls
uk(t) ∈ R which drive the time evolution operator U(t) from U(0) = 1 at t0 = 0 into a desired
target unitary U(tf ) at tf .

The set of unitary matrices R that can be obtained by changing the control for the quan-
tum control system in consideration, i.e. the reachable set of states for this system, is always a
subset of the Lie group of unitary matrices of dimension n, U(n), with n being the dimension of
H [2]. The reachable set R is a Lie group as will be stated in Section 3.2. If the set of possible
matrices that can be reached is equal to U(n) or SU(n) (we remember that global phases are
irrelevant in quantum mechanics and that any element of U(n) may be expressed as the product
of an element of SU(n) and a phase), the system is said to be controllable. In order to describe
the reachable set of the system, we refer throughout this work to the case where the controls are
assumed to belong to the set of piecewise constant functions with values in a set U . It is even
su�cient to take U = {0, 1}. This choice allows to switch the control on and o� and leads to the
same reachable set as in any other case where U contains at least two or more di�erent elements.

Operator controllability, also called complete controllability, of a quantum control system guar-
antees the existence of controls to achieve any desired target unitary:

De�nition 3.1. [7] The quantum control system 3.0.26 and the special case 3.0.29 are operator
controllable if there exist control functions u(t) or uk(t) which drive the unitary operator U(t)
from 1 (at t0 = 0) to Utarget (at tf ), for any Utarget ∈ U(n) (or SU(n)).

3.1 Lie Algebras and Lie groups

Lie algebras and Lie groups give information about the controllability of quantum control sys-
tems. For this reason we present a brief survey of Lie algebra and Lie group theory borrowed
from [2]. We have collected facts which are relevant for this work. More detailed discussion is
found in [2].

Lie algebras:

We will work with Lie algebras of matrices which are called linear Lie algebras. The Lie bracket
of these Lie algebras is the standard matrix commutator. The Lie algebra of all the n×n matrices
with real (complex) entries is denoted by gl(n,R) (gl(n,C)) and called the general linear Lie
algebra over the real (complex) numbers.

Subalgebras:

All subalgebras of gl(n,R) (gl(n,C)) are called linear Lie algebras. A few examples of sub-
algebras of gl(n,R):

• sl(n,R) (or sl(n)): special linear Lie algebra
Lie algebra of n× n real matrices with trace equal to zero.

• o(n,R) (or o(n)): orthogonal Lie algebra
Lie algebra of n× n real skew-symmetric matrices A, i.e. AT = −A.

• so(n,R) (or so(n)): special orthogonal Lie algebra
Lie algebra of n× n real skew-symmetric matrices with trace equal to zero.
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• u(n) : unitary Lie algebra

Lie algebra of n×n complex skew-Hermitian matrices A, i.e. A† = −A. We note that this
Lie algebra is considered as a Lie algebra over the real �eld, not over the complex �eld. In
particular, all matrices −iH with H being Hermitian are contained in u(n).

• su(n) : special unitary Lie algebra

Lie algebra of n× n complex skew-Hermitian matrices with trace equal to zero. Again, we
point out that this is a Lie algebra over the real �eld. In particular, all matrices −iH with
H being Hermitian and traceless are contained in su(n).

The Lie algebras u(n) and su(n) are marked bold since they represent the relevant Lie algebras
in quantum control theory.

Lie algebra generated by a set of elements:

Let {x1, ..., xm} be a set of elements of a Lie algebra L. Then a subalgebra of L is spanned
by the set of all (repeated) commutators of {x1, ..., xm}. Such a subalgebra is called the Lie
algebra generated by {x1, ..., xm}. It is the smallest subalgebra of L containing {x1, ..., xm} and
we will denote it by {x1, ..., xm}L. In general, we de�ne as the generators of a Lie algebra the set
of elements which allows us to construct a basis for the considered Lie algebra containing only
the generators and some of its repeated commutators.

Bases for speci�c Lie algebras:

• su(2):
Spanned by skew-Hermitian traceless matrices. A basis is for instance provided by the set
{iX, iY, iZ} with X, Y and Z being the Pauli matrices. We state that su(2) is generated
by the set {iX, iY } since the commutator of iX and iY is linearly dependent on iZ.

• u(2):
Spanned by the above given basis for su(2), containing additionally the unit matrix which
is not traceless.

• su(3):
Spanned by skew-Hermitian traceless matrices. A basis is for instance provided by the set
{iλk}8k=1, where the λk's are the Gell-Mann matrices.

• u(3):
Spanned by the above given basis for su(3), containing additionally the unit matrix which
is not traceless.

Lie groups and their subgroups:

A real (complex) Lie group is a group which is additionally a real (complex) analytic di�er-
entiable manifold such that the group operations of multiplication (group composition) and
inversion are analytic maps, i.e. the mapping (x, y) 7→ x−1y has to be a smooth mapping of
the product manifold into the group. The dimension of the Lie group is the dimension of the
underlying manifold. If the dimension of the manifold is �nite, the manifold is automatically
analytic as well as the group operations of multiplication and inversion. Therefore Lie groups
are �nite-dimensional by de�nition.

Examples of Lie groups:

An example of a Lie group is the general linear group, Gl(n,C), which is the group of n × n
nonsingular (invertible) matrices having complex entries. The matrix multiplication is the group
composition. All subgroups of Gl(n,C), as for instance the unitary group U(n) or the special
unitary group SU(n) which are the relevant ones for quantum systems, are Lie groups as well.
We note that the matrix multiplication and inversion only require analytic operations.
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Correspondence between Lie groups and Lie algebras:

The Lie algebra associated to a Lie group of matrices is isomorphic (in the sense of vector
spaces) to the space of tangent vectors of the Lie group at the identity. The matrices obtained
by di�erentiating curves in the Lie group at the identity at time t = 0 generate the corresponding
Lie algebra. In particular, the dimension of the Lie algebra is equal to the one of the tangent
space which itself has the dimension of the Lie group seen as an analytic manifold.

Exponential map:

The unique connected Lie subgroup of Gl(n,R) (Gl(n,C)), which corresponds to a Lie alge-
bra of matrices L, is generated by the associated one-dimensional (one-parameter) subgroups:

eL := {eA1eA2 · · · eAm , A1, A2, ..., Am ∈ L}. (3.1.1)

The map from the Lie algebra L to the corresponding Lie group eL with A ∈ L, eA ∈ eL where
eA is de�ned by the usual power series is called exponential map. This de�nition does not hold
for Lie groups which are not matrix groups. In such cases a more abstract de�nition should be
used.

3.2 Controllability test: The dynamical Lie algebra

In this section we explain how Lie algebra and Lie group techniques provide information about
the controllability of quantum systems. At �rst we point to the theorem which states that the
reachable set R of a quantum control system can be identi�ed with a connected Lie group:

Theorem 3.2. [2] The set of reachable states R of a general quantum control system such as
described by Eq. (3.0.26) is the connected Lie group associated with the Lie algebra L0 generated by
spanu∈U{−iH(u)}. For the special system described by Eq. (3.0.29) R is the connected Lie group
associated with the Lie algebra L0 generated by {−iH0,−iH1, ...,−iHm}. In short: R = eL0.

We mention that Theorem 3.2, which tests the controllability of a quantum system, is known
as the Lie Algebra Rank Condition and proved in any detail in [2]. From Theorem 3.2 there
may directly be derived the following criterion for operator controllability, i.e. for complete
controllability:

Theorem 3.3. [7] The quantum systems (3.0.26) and (3.0.29) are operator controllable if and
only if L0 = u(n) (or L0 = su(n)), where L0 is the Lie algebra generated by spanu∈U{−iH(u)}
and {−iH0,−iH1, ...,−iHm}, respectively.

We call the Lie algebra L0 the dynamical Lie algebra associated with the considered quan-
tum system and note that it is always a subalgebra of u(n). Theorems 3.2 and 3.3 both state
that the system is operator controllable (complete controllable) if dim(L0) = n2 = dim(u(n)),
i.e L0 = u(n) and eL0 = U(n). The system is even called controllable in the case where
dim(L0) = n2 − 1 = dim(su(n)), i.e. L0 = su(n) and eL0 = SU(n), since global phases are
irrelevant in quantum mechanics. We conclude that every system whose dynamical Lie algebra
L0 is generated by matrices with trace equal to zero is controllable if L0 = su(n). The set of
elements which generate the Lie algebra is in the case of complete controllability called universal.
If the system is controllable, every unitary matrix can be obtained by choosing an appropriate
set of control functions.

Procedure to construct a basis of L0:

An algorithm to compute a basis in terms of iterated commutators for the dynamical Lie al-
gebra L0 associated with the system 3.0.29 is described in Table I of Ref. [8]. In order to
construct a basis all possible (repeated) commutators of the generators have to be computed.
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Uniform �nite generation of compact Lie groups:

We point out a corollary which has a signi�cant importance for our further work and is shown
within the proof of the controllability test (Theorem 3.2) presented in Ref. [2].

Corollary 3.4. [2] Consider a connected Lie group eL corresponding to a Lie algebra L. Then:
Every element U in eL can be written in the form

U = eAtr · · · eAt1 , (3.2.1)

with the indeterminates A in the set S := {A1, ..., As} of generators of L and t1, ..., tr ≥ 0. The
number r will depend on U .

Assume that L is the dynamical Lie algebra of a certain quantum control system, then we may
conclude that any element of the reachable set of unitaries for this system can be expressed in
the form (3.2.1).

Furthermore it can be shown (see e.g. Ref. [9] for a detailed proof) that if the connected
Lie group eL is compact then the number r is uniformly bounded and eL is said to be uniformly
�nitely generated. Uniform boundedness of the number r means that there exists an integer n > 0
such that each element of the group eL can be written as in (3.2.1) with r ≤ n. Every connected
compact Lie group is uniformly �nitely generated by any set of generators of the corresponding
Lie algebra. Connected and compact Lie groups are for instance U(n) or SU(n).

Switching controls and universality of quantum gates from a Lie algebra perspective:

In the following we point out a physical interpretation, which will turn out to be very important
for our purposes, resulting from the uniform �nite generation of connected compact Lie groups.
We consider a quantum control system and assume that the control allows to switch between the
two Hamiltonians H1 and H2 of dimension at least two associated with the skew-Hermitian ma-
trices −iH1 and −iH2. These two skew-Hermitian operators represent two possible evolutions,
e−iH1t and e−iH2t, of the considered quantum control system. In the language of quantum com-
putation such evolutions are called quantum logic gates. Allowing switching controls means that
the experimental set-up must be adjusted in a way so that di�erent evolutions may be induced.
Let L0 be the dynamical Lie algebra generated by −iH1 and −iH2 through commutation. Any
unitary U ∈ eL0 can be achieved by the described switching set-up and according to (3.2.1) be
expressed in the form

U = eL = · · · e−iH2t4e−iH1t3e−iH2t2e−iH1t1 , L ∈ L0. (3.2.2)

De�nition 3.5. [2] The set of gates {e−iH1t, e−iH2t} is said to be universal if all (special) unitary
evolutions can be achieved by switching between them.

Corollary 3.4 implies that the set {e−iH1t, e−iH2t} is universal if and only if the skew-Hermitian
operators {−iH1,−iH2} generate the whole Lie algebra u(n) or su(n). We note that in such a
case the number r of gates which is needed to generate any (special) unitary evolution is uni-
formly bounded due to the compactness of the Lie groups U(n) and SU(n). That is, any unitary
can be achieved by a �nite number of gates.

An approximate result restricted to �nite products is derived in Refs. [10] and [11] resulting
in the following theorem which modi�es the above corollary slightly:

Theorem 3.6. [11] Let H1 and H2 be n× n Hermitian matrices (n ≥ 2) and let L0 be the Lie
algebra generated by the set of skew-Hermitian operators {−iH1,−iH2} through commutation,
then for any L ∈ L0, the unitary matrix U = eiL can be approximated by �nite products of the
form (3.2.2), with each tj positive.
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Almost any quantum logic gate is universal:

We may interpret the Hamiltonian H1 as the intrinsic Hamiltonian of the quantum control
system, inducing the system's free evolution, and the Hamiltonian H2 as an interaction Hamil-
tonian due to some external force which is acting as a control and can be applied at will. By
turning the control on and o� for successive time intervals and various numbers of intervals, any
unitary of the form (3.2.2) can be reached. We note that almost every pair of skew-Hermitian
matrices (any two operators −iH1 and −iH2) generate the entire Lie algebra u(n). This result
is often referred to as the statement that 'almost every quantum logic gate is universal'. In the
following we give the theorem which states this universality and is proved and discussed in detail
in Ref. [11]:

Theorem 3.7. [11] For almost all Hermitian n× n matrices H1 and H2 (n ≥ 2), every unitary
n× n matrix can be exactly represented in the form 3.2.2 with each tj > 0.

In the whole discussion of this section we have assumed that the time intervals tj are positive
since negative values are from a practical point of view impossible. This restriction leads to an
interesting conclusion pointed out in [11]. We might expect that unitaries close to the identity
can be achieved or at least approximated in arbitrarily short times. However, Ref. [11] states
that this is not the case due to the restriction to positive tj and that in short times only unitaries
which are, roughly speaking, 'on one side' of the identity are reachable.

4 Local operator control of a Heisenberg three-spin chain

4.1 Motivation

In Ref. [1] Burgarth et al. give a su�cient criterion for complete controllability of a many-body
quantum system by manipulating the (local) Hamiltonian of one of its subsystems. Assume we
are considering a network of interacting qubits. Then the question arises how many qubits we
have to control for universal quantum computation. Burgarth et al. derive how the answer to
this question depends on the type of interaction and the connectedness of the network. They
state that if the interaction Hamiltonian is general enough, concretely algebraically propagating,
then it is su�cient to control the qubits on an infectious subgraph of the system. For more
details on algebraically propagating Hamiltonians and infectious subgraphs we refer to [1]. Here
we con�ne ourself to mentioning the main result relevant for our purposes:

Theorem 4.1. [1] Any Heisenberg spin chain of arbitrary length can be (algebraically) controlled
by operating on a single spin at one of its ends.

Theorem 4.1 holds since the subgraph consisting of a single spin at one end of the chain infects
the whole system and since the Heisenberg interaction is algebraically propagating. The latter
statement is proved in [1] explicitly for spin 1

2 , but it is true for arbitrary spin because the proof
only uses the commutation relations of the spin matrices. We conclude that controlling the �rst
or last spin of a Heisenberg spin chain is enough for complete controllability. This is, what we
intend to do in the following: Local control of a Heisenberg spin chain.

4.2 Sketch of the problem

We consider an isotropic Heisenberg spin-1
2 chain of length three and apply a control �eld to the

�rst spin. Operating on the �rst spin, we tend to implement various target unitaries. For this
purpose we control the dynamic time evolution operator U(t). That is, we want to �nd control
�elds such that U(t) is driven from the identity at t0 = 0 to respective gates at some �nal time
tf > 0. At �rst we derive the Hamiltonian of the quantum control system which we just have
set-up. The Hilbert space associated with the three-spin chain has 23 dimensions. We divide the
Hamiltonian of the system into two parts and write

H = H0 +Hc. (4.2.1)
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The Hamiltonian H0 describes the system's free evolution and contains the e�ective spin inter-
action given by the isotropic Heisenberg nearest-neighbour model

H0 = J(~S1 · ~S2 + ~S2 · ~S3)

= J(S1xS2x + S1yS2y + S1zS2z + S2xS3x + S2yS3y + S2zS3z), (4.2.2)

where J is the coupling constant between adjacent spins and positive for an antiferromagnetic
chain. We set J equal to 1 throughout this work. The spin matrices Sij with i = 1, 2, 3 and
j = x, y, z are expressed by Sij = ~

2σij , where σij denote the usual Pauli matrices. The Planck's
constant ~ will be set equal to 1 in all numerical calculations for which reason the units given to
the physical quantities have to be understood as natural units. In particular, all times are given
in units of 1/J . The control Hamiltonian Hc is obtained as

Hc = ~h(t) · ~S1. (4.2.3)

We assume that the control-�eld is pointing in x- and y-direction by setting the z-component
equal to zero:

~h(t) =

 hx(t)
hy(t)

0

 . (4.2.4)

Then we may write the control Hamiltonian as

Hc = hx(t)S1x + hy(t)S1y, (4.2.5)

and the total Hamiltonian as

H = H0 + hx(t)S1x + hy(t)S1y. (4.2.6)

In order to enable universal quantum computation, it is su�cient to control the �eld only in x-
and y-direction since Sx and Sy imply Sz in the Lie completion, i.e. [Sx, Sy] = iSz. Applying
the control �eld (4.2.4) to the �rst spin, the system is complete controllable. That is, any tar-
get unitary operator contained in the special unitary group SU(8) is achievable. To prove the
complete controllability, we have to show that the dimension of the dynamical Lie algebra L0

generated by the set of skew-Hermitian and traceless matrices {−iH0,−iS1x,−iS1y} is d2 − 1
with d = 8 being the dimension of the Hilbert space, i.e. L0 = su(8) (according to Theorems
3.2 and 3.3). To this end we use the algorithm described in Table I of [8] and state that the
dimension is indeed d2 − 1 = 63. Therefore the system is complete controllable and the set of
generators {−iH0,−iS1x,−iS1y} is called universal.

Using the standard basis |σ1zσ2zσ3z〉 = |σ1z〉 ⊗ |σ2z〉 ⊗ |σ3z〉 of the Hilbert space, the full Hamil-
tonian H is represented by the Hermitian matrix

H =



1
2 0 0 0 1

2h− 0 0 0
0 0 1

2 0 0 1
2h− 0 0

0 1
2 −1

2 0 1
2 0 1

2h− 0
0 0 0 0 0 1

2 0 1
2h−

1
2h+ 0 1

2 0 0 0 0 0
0 1

2h+ 0 1
2 0 −1

2
1
2 0

0 0 1
2h+ 0 0 1

2 0 0
0 0 0 1

2h+ 0 0 0 1
2


, (4.2.7)

where h+ and h− denote hx(t) + ihy(t) and hx(t)− ihy(t), respectively.
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In this work we will implement the target unitaries 11X, 1X1, 1CNOT, and 1
√

SWAP (recall
Sections 2.4.1 and 2.4.2 where we have presented the respective gates). We concentrate mainly
on the implementation of 11X which e�ects a �ip of the last spin by leaving the other two spins
invariant. In the following we list the matrix representations of the mentioned four gates (the
identity matrix 1 has to be considered as a 2× 2 matrix):

1.

11X ≡ 1⊗ 1⊗X =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(4.2.8)

2.

1X1 ≡ 1⊗X ⊗ 1 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


(4.2.9)

3.

1CNOT ≡ 1⊗ CNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(4.2.10)

4.

1
√

SWAP ≡ 1⊗
√

SWAP =



1 0 0 0 0 0 0 0
0 1

2(1 + i) 1
2(1− i) 0 0 0 0 0

0 1
2(1− i) 1

2(1 + i) 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1

2(1 + i) 1
2(1− i) 0

0 0 0 0 0 1
2(1− i) 1

2(1 + i) 0
0 0 0 0 0 0 0 1


(4.2.11)

We notice that the unitaries 11X and 1X1 have a zero trace while the trace of 1CNOT and
1
√

SWAP does not vanish. Furthermore, the gates 11X, 1X1, and 1CNOT are not only unitary
but as well Hermitian. They are moreover contained in the special unitary group SU(8) since
their determinant is equal to 1 whereas 1

√
SWAP has a determinant of −1 and is therefore not

included in the special unitary group. From a controllability perspective, the issue that the
group SU(8) does not contain the gate 1

√
SWAP is of no further relevance since any unitary of

the group U(8) may be achieved as the product of an element of SU(8) and an (irrelevant) phase.
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The gate �delity which quanti�es how well the dynamic unitary U(t) approximates the target
unitary Utarget can be calculated as

F =
1

d
|tr(U †(t)Utarget)|, (4.2.12)

where d indicates the dimension of the Hilbert space. We note that this gate �delity is trivially
related to the average gate �delity de�ned in Section 2.4.4 by Eqs. (2.4.19) and (2.4.23). This
may be seen directly if we assume for the calculation of the average gate �delity unitary trans-
formations, thus replacing the general quantum operation ε by a unitary operator U . Pedersen
et al. [12] derive an expression for the average �delity of the unitary transformation U as follows,

F̄ =
1

d(d+ 1)
[d+ |tr(U †Utarget)|2]. (4.2.13)

Hence, F̄ and F are related by

F̄ =
1

d+ 1
(1 + dF 2), (4.2.14)

and yield both the same physical information.

We are interested in achieving a �delity which is as high as possible which is why we have
to maximize the function for the �delity de�ned in Eq. (4.2.12). Before we can turn towards the
maximization of the �delity and its numerical implementation we have to discuss the calculation
of the dynamic time evolution U(t). In the next subsection we present two strategies in order
to compute the dynamic unitary, one of them can be applied to all targets, the other one can
be used only for a certain class of gates. To decide on the way of calculating U(t) means that
we simultaneously are determining the pulse shape of the control �eld. In order to simplify the
calculation of the dynamic unitary and to ensure that the theorem of controllability is applicable,
we choose the control �eld as a piecewise constant function varying in time. That is, we discretize
the action time of the control �eld by dividing it into a certain number of time intervals Nt, each
of them of length T , and assume that in each time interval the �eld is constant. In order to
maximize the �delity, we treat the number of time intervals and the length of the intervals as
parameters while we leave the amplitude of the �eld in each interval variable. The �eld ampli-
tudes are hence our free control parameters over which we will maximize. We will perform the
maximization for di�erent sets of parameters, i.e. for di�erent sets {Nt, T}.

4.3 Calculation of the �delity

We present two di�erent methods in order to calculate the dynamic unitary U(t). Both of them
assume that the pulse shape of the control �eld is represented by a piecewise constant function.

Procedure A: Switch between control �elds in x- and y-direction

Assume that we want to achieve a certain target unitary at a �nal time tf . At t0 = 0 we
apply a control �eld to the �rst spin of the Heisenberg chain and let the system evolve during
the time tf . The control sequence is hence limited by the beginning time t0 and the �nal time
tf . We note that the time tf corresponds to the total evolution time of the system as well as to
the action time of the control �eld. In order to calculate U(tf ), the full dynamic time evolution
operator of our quantum control system at tf , we divide the action time of the control �eld into
a certain number of time intervals Nt of �xed length T . We may interpret Nt as the number
of control pulses and T as the duration of each pulse or as the switching time. Furthermore
we assume that the control �eld is applied alternately in x- and y-direction for successive time
intervals whereas in each time interval either hx shall be constant and hy equal to zero or hy
constant and hx zero. The evolution time of the system, tf , is thus equal to the product NtT .
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The matrix representation of the Hamiltonians Hx = H0 + hxS1x (hx constant, hy zero) and
Hy = H0 + hyS1y (hy constant, hx zero) follows directly from Eq. (4.2.7):

Hx =



1
2 0 0 0 hx(t)

2 0 0 0

0 0 1
2 0 0 hx(t)

2 0 0

0 1
2 −1

2 0 1
2 0 hx(t)

2 0

0 0 0 0 0 1
2 0 hx(t)

2
hx(t)

2 0 1
2 0 0 0 0 0

0 hx(t)
2 0 1

2 0 −1
2

1
2 0

0 0 hx(t)
2 0 0 1

2 0 0

0 0 0 hx(t)
2 0 0 0 1

2


(4.3.1)

Hy =



1
2 0 0 0 − ihy(t)

2 0 0 0

0 0 1
2 0 0 − ihy(t)

2 0 0

0 1
2 −1

2 0 1
2 0 − ihy(t)

2 0

0 0 0 0 0 1
2 0 − ihy(t)

2
ihy(t)

2 0 1
2 0 0 0 0 0

0
ihy(t)

2 0 1
2 0 −1

2
1
2 0

0 0
ihy(t)

2 0 0 1
2 0 0

0 0 0
ihy(t)

2 0 0 0 1
2


(4.3.2)

The full time evolution operator U(tf ) is then found as the product of alternately applied matrices
Ux = e−iHxT and Uy = e−iHyT :

U(tf ) =
1∏

j=Nt/2

Uy,jUx,j = Uy,Nt/2 · Ux,Nt/2 · . . . · Uy,1 · Ux,1. (4.3.3)

The complex conjugate transpose of U(tf ) is given by

U †(tf ) = (

1∏
j=Nt/2

Uy,jUx,j)
† =

Nt/2∏
j=1

Ux,jUy,j = U †x,1 · U
†
y,1 · . . . · U

†
x,Nt/2

· U †y,Nt/2. (4.3.4)

If we use this method for computing the dynamic unitary, the �delity depends on Nt variable
�eld amplitudes hx,1,...,hx,Nt/2, hy,1,...,hy,Nt/2. These �eld amplitudes play here the role of the
free control parameters over which we will maximize. In order to obtain optimal �delities, we
perform several maximizations with varying number of time intervals and length of these and
hence di�erent evolution times. Instead of �xing the pulse duration and maximizing over the �eld
amplitudes we could equivalently �x the amplitudes and treat the pulse timings as free control
parameters [13]. We prefer maximizing over the �eld amplitudes since this method allows to �x
the total evolution time and estimate the minimal time which is needed to implement the desired
gate.

We note that the controllability test theorems (recall Theorems 3.2 and 3.3) can be applied
to the above chosen method for the calculation of the dynamic time evolution operator. This
may be veri�ed by recalling the discussion about switching controls in Section 3.2. There we have
pointed out that if the set of skew-Hermitian matrices {−iH1,−iH2} generates the whole Lie
algebra u(n) (or su(n)), then it is possible to implement all (special) unitary matrices by switch-
ing between the two quantum logic gates e−iH1t and e−iH2t. In our particular case we switch
between the evolutions Ux and Uy for which reason we have to look at the set {−iHx,−iHy} with
Hx = H0 + hxS1x and Hy = H0 + hyS1y. Since we are allowed to perform scalar multiplications
in Lie algebras we may instead consider the set {−i(H0 +S1x),−i(H0 +S1y)}. A straightforward

20



calculation of the dynamical Lie algebra generated by this set using the algorithm provided in
Ref. [8] (see Table I) shows that the algebra is equal to su(n). We conclude that switching
between e−iHxT and e−iHyT is indeed enough to generate any special unitary time evolution.

Procedure B: Control of the �eld in x-direction only

For the achievement of a certain class of target unitary operators it is su�cient to control only
the �eld in x-direction. To this class belongs the gate 11X as can be shown using Lie algebra
techniques. The Hamiltonian of the system simpli�es in this case to

H = H0 + hx(t)S1x. (4.3.5)

In order to prove that the unitary 11X may be reached by controlling only the x-�eld, we have
to calculate a basis for the dynamical Lie algebra LX associated with the system (4.3.5). This
Lie algebra is generated by the set {−iH0,−iS1x} and it is a subalgebra of su(8). We compute
its dimension using the algorithm provided in Table I of [8] and obtain a dimension of 18. If and
only if there exists a matrix A contained in this subalgebra such that Utarget = eA, the desired
gate Utarget belongs to the Lie group associated with LX and can therefore be reached. If we add
−i(11X) to LX , the dimension of the algebra does not increase which means that −i(11X) is
contained in the algebra. Furthermore, since 11X is not only unitary but as well Hermitian, i.e.
(11X)2 = 1, we �nd a matrix A, namely A = −iπ2 (11X) which is an element of the considered

algebra and ful�lls e−i
π
2

(11X) = −i(11X). Hence, we conclude that up to an irrelevant global
phase −i(11X) ∈ LX implies 11X ∈ eLX with eLX being the Lie group whose elements build
the reachable set for the system. Thus, controlling the x-�eld is indeed su�cient to implement
11X. We state that in general any unitary U , which is additionally Hermitian and where −iU is
contained in the dynamical Lie algebra L0 of the quantum control system, is up to an irrelevant
phase an element of the reachable set eL0 of the system.

Proof. −iU ∈ L0 ⇒ e−i
π
2
U ∈ eL0 ,

e−i
π
2
U = cos (−π

2U) + i sin (−π
2U) =

∑∞
k=0(−1)k

(−π
2
U)2k

(2k)! + i
∑∞

k=0(−1)k
(−π

2
U)2k+1

(2k+1)! .

Due to U2 = 1 it follows e−i
π
2
U = 1 cos (−π

2 ) + iU sin (−π
2 ) = −iU ⇒ U ∈ eL0 .

In the Appendix A.1 we calculate explicitly a basis for LX . The calculation reveals that together
with 11X as well 1X1 is contained in LX . Since 1X1 is unitary and Hermitian, it can be achieved
by control of the x-�eld for the same reasons as 11X. Using the derived basis, it can furthermore
be shown that also the gate 1

√
SWAP is generated by an element of LX and hence achievable

(see A.1). For all gates contained in eLX the above described procedure A may be modi�ed by
applying a �eld in x-direction only. We calculate the time evolution operator at the �nal time tf
at which we desire to achieve the target unitary in an analogous way as for procedure A, however
taking into account only the x-�eld which means that in all time intervals the x-�eld is acting:

U(tf ) =
1∏

j=Nt

Ux,j = Ux,Nt · . . . · Ux,2 · Ux,1. (4.3.6)

The �delity depends hence on the Nt variables hx,1,...,hx,Nt .

Since the Lie algebra generated by {−iHx,1,−iHx,2} with Hx,1 = H0 + hx,1S1x and Hx,2 =
H0 + hx,2S1x is equal to LX for any values of hx,1 and hx,2 provided they are di�erent, the
calculation of the unitary evolution given by Eq. (4.3.6) where we switch between evolutions
e−iHx,j is su�cient to achieve any unitary in the Lie group eLX .
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A few remarks

a) Numerical computation of U(tf ): Spectral representation

We calculate Ux = e−iHxt and Uy = e−iHyt numerically by using the spectral representation
of Hx and Hy. For this purpose we brie�y review the spectral theorem:

An arbitrary normal operator A on a m-dimensional complex Hilbert space, i.e. any contin-
uous linear operator for which the relation [A,A†] = 0 is ful�lled, can be written in the spectral
form A =

∑m
n=1 λnPn, where the λn's denote the - not necessarily distinct - eigenvalues of A. The

eigenprojectors Pn are given by |n〉 〈n| with |n〉 being the normalized eigenstates of the operator
A. This statement holds since every normal operator is diagonalizable over the complex numbers
by a unitary transformation. That is, the eigenvectors of the operator A build a basis for the
associated m-dimensional Hilbert space. Using the orthogonal property of the eigenprojectors,
i.e. PnPn′ = δnn′Pn, an analytic function f depending on A can be calculated as

f(A) =
m∑
n=1

f(λn)Pn. (4.3.7)

Accordingly, the exponential of the operator A is given by eA =
∑m

n=1 e
λnPn. We note that

every function of a normal operator is normal as well.

Applying this result to the unitary time evolution operators Ux and Uy, which are analytic
functions depending on the Hermitian (and hence normal) matrices Hx and Hy, we obtain

Ux = e−iHxt =

m∑
nx=1

e−iλnx tPnx , (4.3.8)

Uy = e−iHyt =
m∑

ny=1

e−iλny tPny , (4.3.9)

with λnx and λny being the eigenvalues as well as |nx〉 and |ny〉 being the eigenvectors of Hx and
Hy, respectively. Equations (4.3.8) and (4.3.9) are spectral decompositions of the unitaries Ux
and Uy. We note that their eigenvalues are given by e−iλnx t and e−iλny t, respectively.

We write a Fortran 90 program which calculates the �delity (4.2.12) numerically by making
use of the spectral decompositions (4.3.8) and (4.3.9). The program calls suitable routines from
the Fortran libraries EISPACK or LAPACK in order to compute the eigenvalues and eigenvectors
of Hx and Hy.

b) Properties of Hx and Hy:

Independent of the choice of hx and hy, the trace of Hx and Hy is always equal to 0. Since
Hx (real symmetric) and Hy (complex) are Hermitian matrices (only real eigenvalues) and thus
diagonalizable, there exist complex m × m matrices Qx and Qy which are unitary (so-called

unitary transformations) such that H ′x = QxHxQ
†
x and H ′y = QyHyQ

†
y are Hermitian diagonal

matrices. If we set hx equal to hy, then Hx and Hy are similar matrices, i.e. they are related by a
(unitary) similarity transformation Q of the form Hx = QHyQ

†. Due to the Hermitian property
of the Hamiltonians, Hx and Hy being similar implies H ′x = H ′y. Hence, Q can be found as the

product Q†xQy. If Hx and Hy are similar, they have the same eigenvalues and same determinant.

We give the eigenvalues of Hx calculated by Mathematica. Two of them have the form

1− hx
2

and
1 + hx

2
. (4.3.10)
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The other six eigenvalues are the roots of the following two cubic equations in λ:

−h2
x + h3

x + (−4− 2h2
x)λ+ (4− 4hx)λ2 + 8λ3 = 0, (4.3.11)

−h2
x − h3

x + (−4− 2h2
x)λ+ (4 + 4hx)λ2 + 8λ3 = 0. (4.3.12)

We state that all eigenvalues of Hx are algebraic functions in hx. The eigenvalues of Hy are
obtained by replacing hx with hy in the expressions for the eigenvalues of Hx.

c) Properties of Ux and Uy:

At �rst we mention that the matrices Ux = e−iHxt and Uy = e−iHyt are unitary which en-
sures that the whole time evolution operator U(tf ) has the required unitary property. Because
of the relation det(eA) = etr(A) which is valid for arbitrary matrices A with entries in the com-
plex �eld, the determinant of Ux and Uy is always equal to 1. The unitaries Ux and Uy are
diagonalizable making use of the same unitary transformation as used for the diagonalization of
Hx and Hy. The diagonalized matrices are thus given by

U ′x = QxUxQ
†
x = Qxe

−iHxtQ†x = e−iQxHxQ
†
xt = e−iH

′
xt, (4.3.13)

U ′y = QyUyQ
†
y = Qye

−iHytQ†y = e−iQyHyQ
†
yt = e−iH

′
yt. (4.3.14)

As in the case of Hx and Hy, the time evolution operators Ux and Uy are similar if hx is equal

to hy, related by the same similarity transformation Q = Q†xQy. The eigenvalues and the trace
of Ux and Uy correspond to each other in this case. Due to the unitary property of Ux and Uy
their eigenvalues are lying on the unit circle which means that they are complex numbers with
norm one. Looking at the eigenvalues of Ux and Uy, which are given by e−iλnx t and e−iλny t with
λnx and λny being the eigenvalues of Hx and Hy, this becomes obvious.

Since Hx is a real symmetric and Hy a complex Hermitian matrix, U †x and U †y are found as

U †x = (e−iHxt)† = eiH
†
xt = eiHxt =

m∑
nx=1

eiλnx tPnx , (4.3.15)

U †y = (e−iHyt)† = eiH
†
yt = eiHyt =

m∑
ny=1

eiλny tPny . (4.3.16)

The eigenvalues of U †x and U †y are the complex conjugated eigenvalues of Ux and Uy. Further-

more, since Hx is a symmetric matrix, Ux and U †x are symmetric as well.

d) Periodicity:

The components of the matrices Ux and Uy show a quasi-periodic behaviour with wave char-
acter which can be attributed to the factors e−iλnx t = cos(λnxt) − i sin(λnxt) and e−iλny t =
cos(λny t) − i sin(λny t), respectively (see Fig. 1 where the real part of the �rst matrix element
of Ux is plotted). Increasing t decreases the length of the period along the hx- and hy-axis. We
expect that the function for the �delity has many local maxima which occur in an approximate
periodic manner.
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Figure 1: Real part of the �rst matrix element of the time evolution operator Ux plotted for a
sequence of values of the control �eld hx/J in the interval [−20, 20]. The time interval length T
is set to 1.0.

e) Properties of the �delity:

As derived before the �delity F between the target unitary Utarget and the dynamic unitary
U(t) is determined by the formula F = 1

d |tr(U
†(t) · Utarget)| with d being the dimension of the

Hilbert space. We may write U(t) in the general form U(t) = Un · Un−1 · . . . · U2 · U1 which is
valid for procedure A and B. The �delity depends in both cases on n variables.

We collect a few properties of the �delity F for the implementation of the gate 11X:

1. The �delity between 11X and U(tf ) is equal to zero at any �nal time tf if the system is
evolving freely. Free evolution means here that no control �eld is applied and the dynamic
time evolution U(tf ) governed only by the free Heisenberg Hamiltonian (4.2.2).

2. The �delity remains invariant if U(t) is replaced by U(t)inverse = U1 · U2 · . . . · Un−1 · Un.
We state the direction of time in which a sequence of control amplitudes is applied does
not change the �delity.

3. The �delity remains invariant under parity transformation. That is under the transfor-
mation hx → −hx and/or hy → −hy. We state that the �delity is point symmetric with
respect to zero in the space of all variables hx and in the space of all variables hy and hence
in the whole n-dimensional space.

We emphasize that these observations are valid for the gate 11X without claim of generality.

4.4 Maximization of the �delity

The �delity is a function of Nt variables which are represented by a point x in a Nt-dimensional
space. The number of variables correspond to the number of time intervals. We maximize the
�delity F (x) by minimizing −F (x). In order to minimize this function numerically, we use a
multidimensional variable metric method (quasi-Newton method) which performs successive line
minimizations. This method requires in addition to the calculation of the function itself the
computation of the function's gradient. We implement the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, a variant of Davidon-Fletcher-Powell minimization [14]. Since this minimiza-
tion routine requires the gradient of the function which shall be maximized, we have to imple-
ment the partial derivatives of the �delity with respect to the Nt variables. For this purpose
we choose a method of polynomial extrapolation developed by Ridders [14]. We implement the
whole minimization program - calculation of the �delity and its gradient included - in Fortran 90.

The BFGS-algorithm works in the following way: First we have to choose randomly an ini-
tial guess for the variables of the �delity. We denote this initial point by x0 which is a vector
consisting of Nt components. A possible guess could be for instance a constant one like x0 = 1.0
(all components set equal to 1.0). Such a guess would in the case of procedure B (only x-�eld)
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correspond to a control �eld which is constant in time both in its amplitude and direction while
using procedure A the �eld would be constant in its amplitude but not in its direction due to
the switching between x- and y-�eld. Performing line minimizations, the algorithm generates
iteratively xk+1 starting from xk such that −F (xk+1) < −F (xk) which means that the �delity
increases at each iteration point. This procedure ensures the convergence to a local minimum.
The algorithm terminates if xk+1 is too close to xk or if the gradient of the �delity is su�ciently
close to zero. In the �rst case the algorithm is not able to �nd a line direction along which the
�delity can be increased further. The tolerance for convergence on x is given by the minimization
routine as tolx = 4.0ε where ε denotes the machine epsilon (machine precision). The machine ep-
silon gives the smallest number such that 1 + ε > 1. According to the IEEE standard for �oating
point arithmetic, ε is in the case of double precision of the order of 2.2 · 10−16. The convergence
criterion tolg for zeroing the gradient is an input parameter of the minimization routine. We
point out that the accuracy of the results is dependent on the choice of tolg. We set tolg = 10−5.
The found local maxima of the �delity are only to a certain accuracy the highest ones which can
be reached. Decreasing tolg would allow to obtain slightly higher �delities. It is not possible to
calculate an upper bound for the di�erence between the obtained optimal �delities and the ones
which could be obtained using a slower tolg since we do not know the explicit dependence of the
�delity on the variables, but we estimate it to be of the order of the chosen tolg and smaller by
comparing for a given function F (x) the results for varied tolg. We conclude that setting tolg
equal to 10−5 is certainly su�cient to determine optimal �delities.

In all numerical calculations the Planck's constant ~ is set equal to 1. Therefore the values
of the physical quantities are given in natural units. For the control �eld amplitudes hx and
hy we de�ne the dimensionless quantities hx/J and hy/J where J is the Heisenberg coupling
constant.

4.4.1 Implementation of the gate 11X: Procedure A

We implement the target unitary 11X by maximizing the function for the �delity (recall Eq.
(4.2.12)). The dynamic unitary U(tf ) is calculated by applying procedure A. At �rst we analyse
the shape of the �delity for T = 1.0 and U(tf ) = Uy,1Ux,1 by looking at the contour plot in
Fig. 2 where the �delity versus the plane (hx,1, hy,1) is plotted. The plot reveals that there exist
many local maxima which occur periodically. Replacing the target unitary operator 11X by 11Y
exchanges the axes hx,1 and hy,1 in the plot of Fig. 2.

Figure 2: Contour plot of the �delity versus (hx,1, hy,1) for U(tf ) = Uy,1Ux,1 and T = 1.0. The
horizontal axis is the hx,1-axis, the vertical one the hy,1-axis.
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Numerical maximization:

We start our search for optimal �delities by varying the number of time intervals Nt and the
length T of these, i.e. the total time tf = NtT is variable. At �rst we observe that the returned
maximal values for the �delity are dependent on the initial guess and perform therefore for a
given set of parameters {Nt, T} runs over several randomly chosen initial guesses. We proceed
by increasing the number of time steps Nt and varying for any value of Nt the interval length T .

a) Computational burden: Iterations and matrix multiplications

An increase of Nt and hence of the number of variables on which the �delity depends forces
the minimization routine to perform more iterations in order to reach a local maximum. This
can be attributed to the increasing number of degrees of freedom which is equal to the num-
ber of variables. Hence, the minimization program becomes more and more time-consuming
with increasing Nt. For the length of the time intervals T the contrary holds. For increasing
T tendentially less iterations have to be done due to the reduced length of the period between
successive local maxima. We state that the closer the initial guess is to a local maxima the less
iterations should be needed to reach it. Another reason, why an increase of Nt leads to the fact
that the program takes more time, is the number of matrix multiplications which increases for
more Nt. Due to the computational burden in performing matrix multiplications and iterations,
the number of initial guesses which can be run is limited. For this reason we concentrate on
varying the parameters Nt and T and not on covering the whole Nt-dimensional space by trying
a lot of guesses for �xed parameters.

b) Optimal �delities:

At �rst we realize the following: Independent of the value given to the time interval length
T we observe that the higher �delities can be achieved the higher the number of time intervals
Nt is. For any T we are able to achieve optimal �delities if the number of time steps is high
enough. However, the contrary does not hold. Fixing Nt it is not possible to produce higher
and higher �delities only by increasing T . The explanation is intuitive: The control �eld am-
plitude is �xed during the duration T . An increase of Nt, on the other hand, allows to adjust
the amplitudes more times. It seems that a su�cient high number of time intervals is the most
important condition if we want to reach �delities as high as possible. Nevertheless, it cannot
be ruled out that even for only a few time steps there exist very high �delities at certain values
for T somewhere in the Nt-dimensional space of variables. The dependence of the maximization
procedure on the initial guess, however, prevents us from covering the whole space of variables.

We notice that for increasing Nt and increasing �delities the values of the reached local maxima
seem to be less dependent on the initial guess than for smaller Nt. In order to show this reduced
dependence, we calculate for �xed T and increasing Nt the average of all �delities which are
reached for di�erent guesses. We observe that the standard deviation of the single samples is
decreasing with increasing number of time intervals (see Table 1).

In Fig. 3 we show one example of an optimal control �eld which is achieved for Nt = 70
and T = 0.5. The amplitudes hx and hy are indicated as green and blue bars, respectively. The
values of the variables hx and hy which are returned from the numerical maximization procedure
are dependent on the initial guess. If there exist local maxima close to the initial guess the
returned values for the �eld variables will be close to the initial values. In Fig. 3 almost all
variables are positive which can be attributed to the fact that all variables hx and hy are chosen
positive in the corresponding initial guess.
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Nt Nguess average maximum sd of the single samples

10 33 0.63 0.82 0.114
20 33 0.78 0.90 0.058
30 33 0.89 0.94 0.025
40 17 0.96 0.99 0.014
50 17 0.99 1− 10−4 0.006
60 9 1− 10−4 1− 10−6 10−4

70 9 1− 10−8 1− 10−9 10−8

Table 1: Average reached �delities for T = 1.0 and varying Nt. The number of initial guesses is
denoted by Nguess. The third column contains the average of all achieved �delities, the fourth
the highest produced �delity and the last the standard deviation (sd) of the single samples.

Figure 3: This optimal control �eld is reached for Nt = 70 and T = 0.5 and corresponds to a
�delity of 1− 10−10.

c) Dependence on the total evolution time tf :

Furthermore, we consider di�erent total times tf and search for the highest possible �delity
which is reachable for a given tf . We expect that there exists a minimal total time below which
no optimal �delities can be achieved no matter how many time intervals or iterations are used
[15]. In order to estimate such a minimal time, we perform runs over di�erent total evolution
times tf whereas for every �xed tf we start with Nt = 2 and increase the number of time intervals
in steps of 2 until optimal �delities are reached or the found maxima are not increasing anymore.
Since the above considerations have shown that the initial guess becomes less and less important
for increasing Nt we use here for every given set of parameters {tf , Nt} only one guess, namely
a constant one where we set all initial �eld components equal to 1.

Firstly, we state that for larger total times higher �delities are achievable. For every �xed
tf the higher �delities can be reached the more Nt is increased. We observe that for very short
evolution times the returned �delities are far away from optimal and cannot be increased even
not if we use many time steps. For instance, we obtain for the total times tf = 5.0 and tf = 8.0
�delities of maximal 0.59 and 0.85, respectively. It cannot be excluded that for other guesses
than the one which we have chosen higher �delities can be achieved but in the case of tf = 5.0 it
seems very improbable that there exist higher �delities than the one we found. Starting from an
evolution time of at least 10.0, we �nd optimal �delities with values of 0.9 and above. Increasing
tf and Nt we can achieve �delities which are arbitrarily close to 1.0. We remark that not only an
increase of Nt but also of tf reduces the dependence on the initial guess of the maximal reached
�delity values.
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In Section 5.2.1 we give an estimate of the minimal time required to implement respective gates
to high accuracy by comparing Heisenberg chains of two, three, and four spins.

4.4.2 Implementation of the gate 11X: Procedure B

Now we intend to implement the same gate as before but using procedure B for the calculation
of the dynamic unitary evolution U(tf ). In order to obtain maximal values for the �delity we
proceed analogously to the previous section. At �rst we observe that in contrast to procedure
A the maximal reachable �delities cannot be increased further and further just by increasing
Nt and/or tf . It seems that if we go beyond a certain number of time intervals Nt or a certain
total time tf no further increase is possible. We achieve optimal �delities in the range 0.9 to
0.999. Furthermore, we see that for equal total times tf and assumed that Nt is high enough
most guesses lead to the same �delity. As in procedure A optimal �delities are only reachable
for evolution times which are larger than a minimal time. For tf = 5.0, tf = 10.0, and tf = 15.0
we obtain no optimal �delities. The values 0.55, 0.80, and 0.88, respectively, are the highest
�delities we found for these three cases (see Table 2).

tf maximal F

5.0 0.55
10.0 0.80
15.0 0.88
20.0 0.95
25.0 0.999
30.0 0.92

Table 2: Highest �delities which are reached for di�erent total times tf .

Optimal �elds:

Three optimal �elds which all correspond to a total evolution time of 25.0 and a �delity of
0.999 are shown in Fig. 4. The �eld plotted in (a) is achieved for the parameters Nt = 25 and
T = 1.0 while the �elds plotted in (b) and (c) are reached for two di�erent initial guesses at
Nt = 50 and T = 0.5.

We brie�y mention some observations concerning the correlation between initial guess and the
�eld values returned by the optimization program.

If we choose a Nt-dimensional guess x = (x1, x2, ..., xNt−1, xNt) for which the condition

xk = xNt−k+1 ∀k with k ∈ {1, ..., Nt} (4.4.1)

is ful�lled, in most of the considered cases the values of the �eld associated with the returned
maximal �delity obey as well the above condition, at least approximately. Figure 4(c) shows
such an example. The property of such �elds can be described as a left-right symmetry in time.

Furthermore, we look at two di�erent initial guesses x1 and x2 which are related by x1
k = x2

Nt−k+1

∀k. In all considered cases both guesses lead to the same �delity with �elds which are related by
the same condition as the two initial guesses. This means that one �eld is the inverse (with re-
spect to time) of the other. That such two �elds lead to the same �delity was already mentioned
in the discussion of Section 4.3 (see Paragraph Properties of the �delity).
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(a) (b)

(c)

Figure 4: These three optimal �elds correspond all to a total time of 25.0 and a �delity of 0.999
which is the highest one reached for the given total time. The �eld plotted in (a) belongs to
the parameters Nt = 25 and T = 1.0 while the �elds plotted in (b) and (c) are reached for two
di�erent initial guesses at Nt = 50 and T = 0.5.

Since it turned out that using procedure B it is not as intuitive as with procedure A to achieve
optimal �delities, we will in the following use procedure A in order to implement other target
unitaries even if they could be reached by controlling the �eld in x-direction only.

4.4.3 Implementation of other gates: Procedure A

In addition to 11X, we implement the target unitaries 1X1, 1CNOT and 1
√

SWAP and are
able to show that they can be approximated to a very high accuracy, i.e. with optimal �delities
arbitrarily close to 1. The reason for implementing the gate 1X1 is the expectation that this gate
may be easier to achieve than 11X. Easier in the sense that it is reachable within a smaller total
evolution time of the system because the second spin which shall be �ipped is 'closer' to the �rst
spin where the control �eld is applied than the third spin. But we have to take into account that
the gate 1X1 not only causes a �ip of the second spin but as well lets the third spin invariant
which may not be 'easier' to achieve. The unitaries CNOT and

√
SWAP are entangling gates

and therefore of interest. The dependence of the optimal achieved �delities on the parameters
Nt and T as well as on the total time tf = NtT is for these three gates very similar to the gate
11X whose implementation we already discussed. For this reason we will not go into the results
in detail here. However, we emphasize that every considered target unitary can be achieved to
a high accuracy by increasing the number of time steps Nt and/or the total evolution time tf .
The minimal total time and the number of time intervals needed to achieve optimal �delities
may di�er from gate to gate but since we are limited in the number of guesses and since the
di�erence may be quite small, no signi�cant di�erences could be observed.

We measure the distance between the implemented target gates and the d×d unit matrix in order
to obtain a quantity which may specify how 'easy/di�cult' the achievement of the target is. For
this purpose we use the Hilbert-Schmidt inner product de�ned for two operators A and B, which
act on states of the d-dimensional Hilbert space of the considered system, as 〈A,B〉 = tr(A†B).
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This inner product induces a norm, known as the unitarily invariant Hilbert-Schmidt (Frobenius)
norm, as follows

||A|| =
√

1

d
〈A,A〉 =

√
1

d
tr(A†A). (4.4.2)

Then the distance between an arbitrary target Utarget and the d× d unit matrix 1 is derived as

||Utarget − 1|| =
√

1

d
tr[(Utarget − 1)†(Utarget − 1)]. (4.4.3)

Another quantity, which may describe the overlap between a certain target gate and the unit
matrix, is of course our well-known �delity, given by

F =
1

d
|tr(U †target1)|. (4.4.4)

gate distance �delity

11X ≈ 1.4 0
1X1 ≈ 1.4 0
1CNOT 1 0.5

1
√

SWAP ≈ 0.7 ≈ 0.79

Table 3: Distance and �delity between the implemented gates and the unit matrix.

Table 3 summarizes the distance and �delity between the implemented gates and the unit matrix.
Considering the calculated values, we note that there exist certainly gates which are much closer
in terms of the �delity or the Hilbert-Schmidt measure to the unit matrix and should hence be
'easier' to achieve. We may construct gates which are very close to the unit matrix but not equal
to it using the rotation operators de�ned in Eqs. (2.4.9), (2.4.10), and (2.4.11) and choosing the
rotation angle θ very small. In order to �nd gates which are very close to the unit matrix, we
examine the �delity and distance between the unit matrix and the gates 11Rx, 11Ry, and 11Rz
depending on θ (see Table 4). We note that the following relations hold

||11Rx − 1|| = ||11Ry − 1|| = ||11Rz − 1||, (4.4.5)

and

1

d
|tr[(11Rx)†1]| = 1

d
|tr[(11Ry)

†
1]| = 1

d
|tr[(11Rz)

†
1]|. (4.4.6)

θ distance (approximate) �delity (approximate)

π/2 0.765 0.707
π/3 0.518 0.866
π/4 0.390 0.924
π/8 0.196 0.980
π/16 0.098 0.995

Table 4: Distance and �delity between the unit matrix and the gates 11Rx, 11Ry, and 11Rz
depending on θ.

In order to examine if a gate whose initial �delity is very high, may be achieved in signi�cant
shorter evolution time, we implement the rotation operator 11Ry for θ = π

16 . Having already a
�delity of 0.995 at time t = 0, we expect that there will be produced even higher �delities after
short evolution time. Of course, if we reduce the number of time steps and let the length of
these converge to zero, we obtain the initial �delity. As soon as we let the system evolve over a
longer time, the �delity decays �rst continuously before increasing again. Hence, it could not be
observed that the gate 11Ry is achievable in signi�cant shorter time than the other implemented
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gates. One possible explanation for this behaviour is already given in Section 3.2 at the very
end, where we point out that the restriction to positive time intervals T may e�ect that unitaries
close to the identity cannot be achieved in arbitrarily short times.

4.5 Sensitivity of the �delity

We analyse the sensitivity of the �delity to optimal control �elds which are disturbed by random
noise of varying strength. For this purpose we add uniformly generated random numbers to
the optimal �eld values and recalculate the �delity for the disturbed values. The strength of the
random noise is determined by the extent of the interval in which the random numbers are gener-
ated, hence by the width of the uniform distribution. In order to quantify the noise strength, we
introduce the parameter δ which limits the range of the random numbers. For �xed strength we
generate random numbers in the open interval (−δ,+δ). The generation of the random numbers
is performed by using the routine ran which is recommended for the use on purely serial machines
by the authors of [14]. This routine is completely portable to all Fortran 90 environments and
implements the 'minimal' random number generator developed by Park and Miller combined
with a Marsaglia shift sequence. It returns a uniform random deviate between 0.0 and 1.0 (end-
points excluded). The period of this generator is about 3.1 · 1018. For each δ we generate a few
hundred sequences of random numbers and disturb the optimal control �eld by adding the ran-
dom numbers to the �eld values. In so doing, we obtain a few hundred disturbed �elds for which
we recalculate the �delity. Then we compute the average �delity F̄ of the collected samples.
This average �delity gives us a reliable value for the �delity between a gate and its implemen-
tation which is a�ected by random noise. We examine the dependence of the average �delity
on the strength of the random noise by varying the strength parameter δ and plotting F̄ versus δ.

Standard deviation of the average �delity:

The standard deviation of the calculated average �delity σF̄ for a certain δ is given by σF√
N

where N indicates the number of collected samples and σF the standard deviation of the single
samples which can be calculated using the formula

σF =

√√√√ 1

N − 1

N∑
i=1

(Fi − F̄ )2, (4.5.1)

where the Fi's denote the single samples.

We remark that σF is dependent on the value of δ. For δ = 0.01 the standard deviation of
the single samples can be calculated to be of the order of 10−5. Increasing δ increases σF such
that we obtain for δ = 1.0 a σF of the order of 0.1. The standard deviation of the average is
increasing until δ reaches values which are large enough to enable a saturation of the average
�delity which results in a slight decrease of the standard deviations with values of the order of
10−2. Since the standard deviation of the average is very small, we will not include it as error
bars in the plots of the average �delity versus δ. Such plots are presented and discussed in the
subsequent Sections 4.5.1 and 4.5.2 for various optimal �elds which are di�ering in Nt and T .

4.5.1 Procedure A

In this chapter we analyse data obtained for implementing gates by applying a control �eld in
x- and y-direction to the �rst spin in the chain. That is, we refer throughout this chapter to the
case where we compute the dynamic time evolution operator U(tf ) by means of the in Section 4.3
presented procedure A. We discuss the sensitivity of optimal �delities to random noise applied
to the optimal control �elds. The average �delity F̄ is calculated as the average of 1600 collected
samples. We look at various optimal control �elds which are essentially di�ering in their total
action time, i.e. in the number of time steps Nt and the length T of these. In cases where we
have more than one optimal �eld available for the same parameters we take one with high �delity.
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At �rst we consider the implementation of the spin-�ip gate 11X and perform a sensitivity
analysis of the �delity for various optimal control �elds. Figure 5 contains plots of F̄ versus δ
for random noise a�ected optimal �elds which are di�ering in Nt and T . While in plot 5(a) the
number of time steps is �xed (Nt = 70) and the length of the steps varied, in 5(b) the contrary
holds; T is set to 0.5 and Nt is varied. Table 5 collects how well these optimal �elds approximate
the gate 11X if no random noise is present:

T Fidelity

0.5 1− 10−10

1.0 1− 10−9

1.5 1− 10−10

2.5 1− 10−10

(a)

Nt Fidelity

30 0.99
40 0.99
50 0.999
60 1− 10−6

70 1− 10−10

(b)

Table 5: Optimal �elds and corresponding �delity: (a) Nt = 70 and (b) T = 0.5. If random
noise is applied to these �elds, the �delity is decaying as it is shown below by Fig. 5.

(a) (b)

Figure 5: Average �delity F̄ versus δ for random noise a�ected optimal �elds which are achieved
for di�erent parameter sets {Nt, T}. (a) Nt = 70 and (b) T = 0.5.

As we expect and as it is clearly visible in Fig. 5 the average �delity is decreasing more and more
the stronger the e�ect of the random noise becomes. Analysing the plots in 5(a), we observe
furthermore that for �xed Nt the �delity becomes more sensitive to random noise if the time
length T and hence the total action time of the control �eld is increased. A similar observation
is revealed by the plots in 5(b). If we �x T and increase Nt, then the �delity is decaying more
rapidly. We may state that the more time the random noise has to act and disturb the optimal
�eld the stronger is its e�ect on the sensitivity of the �delity. However, even for equally acting
time of the random noise there is a di�erence in the decay of the �delity depending on how the
parameters Nt and T are chosen. This phenomenon will be shown later.

Looking at Fig. 5, we notice that the average �delity saturates if δ, the parameter which de-
termines the strength of the random noise, is su�ciently large. We see that for every optimal
control �eld analysed in Figs. 5(a) and 5(b) the average �delity converges to the same saturation
value for large δ. In order to examine this universal property of the saturation value further,
we consider two additional �gures (see Fig. 6). In 6(a) we plot the decay of the �delity for
�ve random noise a�ected optimal control �elds all achieved for the parameters Nt = 60 and
T = 1.5. The �delity between the gate 11X and the evolution induced by those �elds lies above
0.999 for all �ve cases. We see immediately that the decay curve of the average �delity does not
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di�er in all cases. Figure 6(b) is equivalent to Fig. 6(a) in the sense that all �elds analysed there
are reached for the same set of parameters. But in comparison to the �elds of 6(a) the control
�elds in 6(b) act during a much shorter time which is determined by the parameters Nt = 40
and T = 0.4. For this evolution time not all initial guesses given to the minimization routine as
input produce control �elds with optimal �delities. The �elds analysed in 6(b) belong to �delities
between 0.699 and 0.992. However, although not all �elds are optimal, all curves saturate to the
same value.

(a) (b)

Figure 6: Average �delity F̄ versus δ for random noise a�ected �elds. In (a) all �ve �elds are
optimal if no random noise is present with �delities above 0.999 and correspond to the parameters
Nt = 60 and T = 1.5. The �ve �elds analysed in (b) are achieved for Nt = 40 and T = 0.4 and
only the �eld corresponding to the black curve induces a �delity of above 0.99.

We state that, if we start from optimal �elds, the shape of the decay curve is dependent on the
parameters Nt and T , but not on the values of the �eld components. That is, the behaviour of
the �delity under randomness in the control �eld is in particular not dependent on the strength
of the �eld. The saturation occurs for values of δ which are such large that the random noise
has driven the control �eld far away from optimal. We hence conclude that the saturation
of the average �delity is an intrinsic property of the considered quantum control system and
completely independent of the shape of the control �eld. Furthermore, the value of the saturation
may be computed using Eqs. (2.4.19) or (2.4.23) which give an expression for the average gate
�delity F̄ (ε, U). The quantum control system, which is considered here, is determined by the
Hamiltonian (4.2.6) and thus allows to generate any unitary contained in the Lie group SU(d)
with d = 8. Hence, it seems intuitive to use formula (2.4.23), which is derived explicitly in terms
of the SU(d) group generators, in order to evaluate the saturation value. We assume that the
action of the quantum operation ε is given by

ε : ρ→ ε(ρ) =
1

d
∀ρ. (4.5.2)

This choice provides that the image of any (pure) state is a maximally mixed state. If the density
matrix is proportional to the identity matrix, the pure states, which form an orthonormal basis
of the d-dimensional Hilbert space of the system, are equal-weighted. That is, the probability
for each basis state to be prepared is equal to 1/d. The density matrix expresses in this case
a complete and hence maximal ignorance ('mixedness') about which pure state has been pre-
pared. Such states are referred to as maximally mixed states and may be interpreted as the
quantum analogue of the uniform probability distribution. Assuming that the quantum map ε is
acting as de�ned in (4.5.2), we assume simultaneously that the quantum system undergoes full
randomization. We note that every density matrix may be written as

ρ =
1

d
+

d2−1∑
j=1

kjTj , kj ∈ R, (4.5.3)
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where the sum is a linear combination of the Hermitian and traceless generators {Tj} of SU(d).
Due to ε(ρ) = 1

d it follows by linearity and trace-preserving that all Tj are mapped by ε to 0.
Hence, we see immediately that the sum in (2.4.23) evaluates to 0 which means that the average
gate �delity F̄ (ε, U) is given by

F̄ (ε, U) =
1

d
. (4.5.4)

For d = 8 we expect thus a saturation value of 0.125. Figures 5 and 6 seem to con�rm this
expectation. In Section 5.2.2 we will brie�y come back to this issue and discuss it in the context
of spin chains of varying length whereas we will determine the value of the saturation by linear
�tting the numerical data. We note that Eq. (4.5.4) is only applicable in cases where any unitary
contained in SU(d) may be generated by adding random noise to the control �eld and where the
generation is uniform. The �rst condition means that the random noise must be strong enough,
as already pointed out, and that the number of time steps Nt as well as the total evolution time
tf = NtT must be large enough. In all cases shown in Figs. 5 and 6 the parameter sets {Nt, T}
seem to allow full randomization since the saturation converges to a value close to 1/d.

Next, we compare the sensitivity of the �delity for implementations of the gates 11X, 1X1,
1CNOT and 1

√
SWAP. For this purpose we plot in Fig. 7 the average �delity F̄ versus the

strength of the random noise for control �elds corresponding all to an evolution time of tf = 30.0,
but di�ering in the parameters Nt and T . Figure 7(a) belongs to the gate 11X, 7(b) to 1X1,
7(c) to 1CNOT, and 7(d) to 1

√
SWAP.

(a) (b)

(c) (d)

Figure 7: Average �delity F̄ versus δ for random noise a�ected optimal �elds (optimal refers
here to a �delity above 0.9) which are all achieved for a total evolution time tf = 30.0 but are
di�ering in the parameters Nt and T . Figures (a)-(d) correspond to di�erent gates: (a) 11X, (b)
1X1, (c) 1CNOT, and (d) 1

√
SWAP.
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We observe that the decay curve is not dependent on the gate. A deviation is only visible if
the undisturbed gate �delity is di�ering from gate to gate for given Nt and T . Furthermore, we
state that even for equally total time, there is a di�erence in the decay of the average �delity
depending on the parameters set {Nt, T}. The behaviour illustrated in Fig. 7 bears resemblance
to the motional narrowing [16] occurring in nuclear magnetic resonance (NMR) experiments in
that for shorter time intervals ('pulse timings') T (or equivalently larger 'switching rate' 1/T )
the system is less a�ected by the randomness in the control �eld.

4.5.2 Procedure B

After having discussed the sensitivity of the �delity for gates achieved by applying a control
�eld in x- and y-direction, we now address ourself to the case where we are controlling only the
x-�eld. We review that control of the x-�eld is enough for implementing our standard spin-�ip
gate 11X. The sensitivity of the �delity to random noise for implementations of the spin-�ip
gate is analysed analogously to the proceeding in the previous section. Figure 8 contains plots
of F̄ versus δ for random noise a�ected optimal �elds. The data plotted in 8(a) correspond to
optimal control �elds which are achieved by taking 70 time steps and di�er in T . In 8(b) T is
�xed to 0.5 while Nt is varied and in 8(c), �nally, the total evolution time is equal to 25.0 for all
�elds while Nt and T are variable.

(a) (b)

(c)

Figure 8: Average �delity F̄ versus δ for random noise a�ected optimal �elds (optimal refers here
to a �delity above 0.9). Fixed parameters are: (a) Nt = 70, (b) T = 0.5, and (c) tf = 25.0. The
small �gures show the behaviour of the average �delity for large δ.
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We observe the same dependence on the parameters Nt, T and tf as seen before for the case
where we control the x- and y-�eld. But while for controlling the x- and y-�eld the average �-
delity saturates to a universal value, there exists no universal saturation in the case of procedure
B as becomes obvious by considering the plots of the average �delity versus large δ (see the small
�gures contained in Figs. 8(a), 8(b), and 8(c). We dare the following explanation:

In contrast to procedure A controlling only the x-�eld does not enable universal quantum com-
putation which means that we only may implement the unitaries contained in a Lie subgroup
of SU(d). The Lie algebra of this subgroup is generated by the set {−iH0,−iS1x} (see Section
4.3). While SU(d) is a compact Lie group with a �nite Haar measure de�ned on it, an arbitrary
Lie-subgroup of SU(d) is locally compact but not necessarily compact. That is, we cannot act on
the assumption that the reachable set of unitary operators for control of the x-�eld forms a com-
pact group. Hence, the uniform Haar measure, which measures uniformly distributed random
unitaries, may be in�nite. Furthermore, the reachable set of unitaries for a system at time tf is
dependent on the value of tf . The control �elds of Figs. 8(a) and 8(b) di�er in their acting time,
i.e. in the product tf = NtT . Therefore the reachable set may di�er in these cases and explain
the di�erent saturation values. The fact that F̄ of the cases plotted in 8(c), which all correspond
to the same tf , saturates for all �elds to the same value, seems to con�rm this explanation.

4.6 Search for smoothened optimal control �elds

For mathematical and computational convenience we have chosen the controls to be piecewise
constant functions. However, practical implementations require the imposition of constraints on
the control �elds, for instance on the frequency spectrum, to generate smoother controls. In
practice a jump in the control leads to very high frequency components in the power spectrum
of the Fourier transformed control �elds. In order to produce optimal control �elds which are
smoother than the piecewise constant controls, we Fourier transform the piecewise constant
optimal �elds, apply spectral �ltering techniques to the Fourier transformed �elds and after that
transform back to the time domain. To begin with we calculate in the subsequent chapter the
Fourier transform of the piecewise constant control �elds and point out its properties.

4.6.1 Fourier transform

We derive in the following an expression for the Fourier transform of the piecewise constant
control �elds. At this we focus on the case where we switch between controls pointing in the x-
and y-direction (procedure A). The control �eld in this case is described by the vector

~h(t) =

 hx(t)
hy(t)

0

 . (4.6.1)

In order to derive a concise expression for the control �eld, we write it in terms of the Heaviside
function

θ(x) =

{
1, x ≥ 0

0, x < 0
. (4.6.2)

Using the Heaviside function, we de�ne box functions θnx(t) and θny (t) as follows:

θnx(t) := θ[t− 2(n− 1)T ]− θ[t− (2n− 1)T ] =

{
1, 2(n− 1)T ≤ t < (2n− 1)T

0, otherwise
, (4.6.3)

θny (t) := θ[t− (2n− 1)T ]− θ[t− 2nT ] =

{
1, (2n− 1)T ≤ t < 2nT

0, otherwise
. (4.6.4)

36



In terms of θnx(t) and θny (t) the control �elds hx(t) and hy(t) may be written as

hx(t) =

Nt/2∑
n=1

hx,nθ
n
x(t), (4.6.5)

hy(t) =

Nt/2∑
n=1

hy,nθ
n
y (t). (4.6.6)

The Fourier transform of the �elds hx(t) and hy(t) corresponds to the Fourier transform of a
sum of box functions which is equal to the sum of the Fourier transformed box functions. At
this point we note that for the case, where we control only the x-�eld (procedure B) and hence
apply in each time interval T a �eld in x-direction, we have to replace the factor 2(n − 1) by
(n−1) and the factor (2n−1) by n in (4.6.3) and in (4.6.5) we have to sum from 1 to Nt instead
of summing from 1 to Nt/2. Up to these modi�cations the calculation of the Fourier transform
of the �eld hx(t) which follows here for procedure A is valid as well for procedure B.

Next, we look at the Fourier transform of the box functions θa(t) for some real positive pa-
rameter a de�ned as

θa(t) =

{
1, −a ≤ t < a

0, otherwise
, (4.6.7)

and θb(t) with b1, b2 being real and b1 < b2,

θb(t) =

{
1, b1 ≤ t < b2

0, otherwise
. (4.6.8)

The Fourier transform of these two single box functions can be derived as:

θ̂a(ω) =
1√
2π

∫ +∞

−∞
θa(t)e

iωtdt =
1√
2π

∫ a

−a
eiωtdt =

√
2

π

∫ a

0
cos (ωt)dt

=

√
2

π

sin (ωa)

ω
=

√
2

π
asinc(ωa), (4.6.9)

θ̂b(ω) =
1√
2π

∫ +∞

−∞
θb(t)e

iωtdt =
1√
2π

∫ b2

b1

eiωtdt

=
1√

2πiω

(
eiωb2 − eiωb1

)
. (4.6.10)

We state that the Fourier transform of the even box function θa(t) is real and determined by the
sinc (sinus cardinalis) function, sinc(x) := sinx

x , which is a non-periodic damped sine function
and also known as sampling function (see Fig. 9).

The peak of θ̂a(ω) at ω = 0 is equal to
√

2
πa and occurs due to the convergence of sinc(x)

to 1 in the limit x → 0. The other peaks are occurring with a period of 2π/a relative to each
other, caused by the period of sin (ωa), and their amplitudes are decaying with 1/ω.
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Figure 9: The Fourier transform of the even box function θa(t), here plotted for a = 2.0, is
determined by the sinc function.

The Fourier transform of a box function which is not even, as the function θb(t) for b1 6= −b2,
however, is not real but complex, given by a superposition of two complex exponential functions.
Our control �elds hx(t) and hy(t) are described by box functions which are obviously not even

wherefore their Fourier transforms, ĥx(ω) and ĥy(ω), become complex as we see in the following:

ĥx(ω) =
1√
2π

∫ ∞
−∞

hx(t)eiωtdt

=
1√
2π

∫ ∞
−∞

Nt/2∑
n=1

hx,nθ
n
x(t)eiωtdt

=
1√
2π

Nt/2∑
n=1

hx,n

∫ ∞
−∞

θnx(t)eiωtdt

=
1√
2π

Nt/2∑
n=1

hx,n

∫ (2n−1)T

2(n−1)T
eiωtdt

=
1√

2πiω

Nt/2∑
n=1

hx,n

(
e(2n−1)iωT − e2(n−1)iωT

)
. (4.6.11)

We note that the Fourier transform of the n-th box function θnx(t) is given by

1√
2πiω

hx,n

(
e(2n−1)iωT − e2(n−1)iωT

)
. (4.6.12)

Analogously we derive the Fourier transformed y-�eld as

ĥy(ω) =
1√

2πiω

Nt/2∑
n=1

hy,n

(
e2niωT − e(2n−1)iωT

)
. (4.6.13)

We intend to calculate the real and imaginary part of ĥx(ω) and ĥy(ω) and de�ne for this purpose

fxRe(ω) := sin [(2n− 1)ωT ]− sin [2(n− 1)ωT ], (4.6.14a)

fyRe(ω) := sin [2nωT ]− sin [(2n− 1)ωT ], (4.6.14b)

fxIm(ω) := cos [(2n− 1)ωT ]− cos [2(n− 1)ωT ], (4.6.14c)

fyIm(ω) := cos [2nωT ]− cos [(2n− 1)ωT ]. (4.6.14d)
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These four functions are combinations of two sine and cosine functions, respectively, and they are
periodic for the following reason. At �rst we note that the fundamental period of the trigonomet-
ric functions f1(x) = sin (kx) and f2(x) = cos (kx) is equal to 2π/k. Now assume, we consider
two periodic functions f(x) = f(x + a) and g(x) = g(x + b) with periods a and b, respectively,
and the combination of these; h(x) = f(x) + g(x). The periods a and b are assumed to be given
by a = r1s and b = r2s with r1 and r2 being rational numbers and s being some arbitrary real
number. Under this assumption the combined function h(x) is periodic as well having a period
of rs where r is obtained as the least common multiple of the rational numbers r1 and r2. The
least common multiple of two rational numbers may be found as the least common multiple of
the numerators divided by the highest common fraction of the denominators. Thus, the period
of the functions de�ned in Eqs. (4.6.14a) to (4.6.14d) is equal to 2π/T for any positive integer
n since the least common multiple of 1/n1 and 1/n2 for two positive integers n1 and n2 with
n1 = n2 + 1 is equal to 1.

In terms of (4.6.14a) to (4.6.14d) the real part of the Fourier transformed �elds is given by

Re[ĥx(ω)] =
1√
2πω

Nt/2∑
n=1

hx,nf
x
Re(ω), (4.6.15)

Re[ĥy(ω)] =
1√
2πω

Nt/2∑
n=1

hy,nf
y
Re(ω), (4.6.16)

and the imaginary part by

Im[ĥx(ω)] = − 1√
2πω

Nt/2∑
n=1

hx,nf
x
Im(ω), (4.6.17)

Im[ĥy(ω)] = − 1√
2πω

Nt/2∑
n=1

hy,nf
y
Im(ω). (4.6.18)

We point out that the real part of the Fourier transforms is even while the imaginary part is
odd. The power spectrum (absolute square) of the Fourier transformed �elds may be calculated
as follows:

|ĥj(ω)|2 = Re[ĥj(ω)]2 + Im[ĥj(ω)]2, j = x, y. (4.6.19)

For the sake of completeness we note the Parseval's theorem which reveals the unitarity of the
Fourier transform: ∫ +∞

−∞
|hj(t)|2dt =

∫ +∞

−∞
|ĥj(ω)|2dω, j = x, y. (4.6.20)

In order to analyse the shape of the Fourier transforms, we consider at �rst constant �elds hx(t)
and hy(t), i.e. we set all components equal to 1. The real and imaginary part of the Fourier
transform simpli�es then to

Re[ĥj(ω)] =
1√
2πω

Nt/2∑
n=1

f jRe(ω), (4.6.21)

Im[ĥj(ω)] = − 1√
2πω

Nt/2∑
n=1

f jIm(ω), (4.6.22)

with j = x, y. In Fig. 10 the real, imaginary part and the power spectrum of the Fourier
transform are plotted for such constant �elds using the parameters Nt = 70 and T = 0.5. The
calculation of the Fourier transform and its real, imaginary part and power spectrum is done
analytically using Mathematica.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Real, imaginary part and power spectrum of a Fourier transformed constant �eld (all
components set to 1) which is far from optimal, forNt = 70 and T = 0.5. The left column contains
the plots corresponding to the Fourier transformed x-�eld, the right column the equivalent plots
for the y-�eld. (a)/(b) Re[ĥj(ω)], (c)/(d) Im[ĥj(ω)], and (e)/(f) |ĥj(ω)|2, j = x, y.

We analyse the peak occurrence in the plots of Fig. 10. If we do not take into account the
positive peak at ω = 0 of the real part and the two peaks (one positive, one negative) of the
imaginary part which are converging to the point ω = 0 for Nt → ∞, we notice that the other
peaks and pair of peaks (real part), respectively, occur with a period of 2π/T . This period
corresponds to the one of the functions f jRe(ω) and f jIm(ω). The peaks are located either exactly
at π/T +k ·2π/T for integers k as in the case of the imaginary part or are converging for Nt →∞
to these locations from the left and from the right as in the case of the real part, resulting in two
peaks, one in the negative, one in the positive. The appearance of the additional peak at ω = 0
of the real part is caused by the factor 1/ω as may be seen calculating the limit of the real part

for ω → 0. In order to do this, we expand the function sin (ωa)
ω , with a being an arbitrary real

multiplication factor, into Taylor series:

sin (ωa) =

∞∑
k=0

(−1)k
(ωa)2k+1

(2k + 1)!
, (4.6.23)
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and hence,

sin (ωa)

ω
=
∞∑
k=0

(−1)k
ω2ka2k+1

(2k + 1)!
. (4.6.24)

The limit for ω → 0 evaluates to

lim
ω±→0

sin (ωa)

ω
= a, (4.6.25)

where ω+ → 0 and ω− → 0 denote the two possible directions from which we may converge
to zero, namely starting in the positive (+) or starting in the negative (−). We note that the

singularity of sin (ωa)
ω at ω = 0 is removable since the limit (4.6.25) exists and is �nite. Using

Eqs. (4.6.14a), (4.6.14b), and (4.6.25), the limit of the real part for ω → 0 may be calculated
straightforward:

lim
ω±→0

Re[ĥx(ω)] = lim
ω±→0

1√
2πω

Nt/2∑
n=1

fxRe(ω)

=
1√
2π

Nt/2∑
n=1

lim
ω±→0

1

ω
fxRe(ω)

=
1√
2π

Nt/2∑
n=1

[(2n− 1)T − 2(n− 1)T ]

=
1√
2π

Nt/2∑
n=1

T

=
1√
2π
· Nt

2
· T, (4.6.26)

and analogously

lim
ω±→0

Re[ĥy(ω)] =
1√
2π
· Nt

2
· T. (4.6.27)

On the other hand, in order to calculate the imaginary part in the limit ω → 0, we make use of
the series expansion for cos (ωa)

ω :

cos (ωa) =

∞∑
k=0

(−1)k
(ωa)2k

(2k)!
, (4.6.28)

and hence,

cos (ωa)

ω
=
∞∑
k=0

(−1)k
ω2k−1a2k

(2k)!
. (4.6.29)

The limit for ω → 0 is therefore derived as

lim
ω±→0

cos (ωa)

ω
= lim

ω±→0

1

ω
= ±∞, (4.6.30)

and we note

lim
ω±→0

(
cos (ωa)

ω
− cos (ωb)

ω
) = 0, for arbitrary real numbers a and b. (4.6.31)

The singularity of cos (ωa)
ω at ω = 0 is a pole since the limit (4.6.31) is in�nite. Using Eqs.

(4.6.14c), (4.6.14d), and (4.6.31), the limit of the imaginary part for ω → 0 evaluates to
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lim
ω±→0

Im[ĥj(ω)] =
1√
2π

Nt/2∑
n=1

lim
ω±→0

1

ω
f jIm(ω) = 0, j = x, y. (4.6.32)

The two peaks, one in the positive, one in the negative, which are located close to ω = 0 for
Nt = 70, are converging to the point ω = 0 for Nt → ∞. We note that the height of the
other peaks is equal to ± 1√

2π
· 1
ω ·Nt in the case of the imaginary part since fxIm(ω) = −2 and

fyIm(ω) = 2 for ω = π/T + k · 2π/T and any integer k. In the case of the real part the height
of the peaks are as well proportional to Nt/ω. Up to now we have considered a constant �eld
where all components are set to 1. The height of the peaks will of course be dependent on this
constant value and be the higher (in the negative or the positive) the larger this value is which
means the stronger the �eld is. If the values of the �eld components are di�erent, the sharp
peaks may disappear and split instead into several peaks which form kind of wave packets or say
distributions of a certain width. Negative values of the �eld components may shift the occurrence
of the peaks and lead to additional and/or missing peaks depending on whether constructive or
destructive interference is dominating. We note that the underlying fundamental period of 2π/T
may be visible in the majority of cases.

(a) (b)

(c) (d)

(e) (f)

Figure 11: The same plots as in Fig. 10, but done here for a Fourier transformed optimal control
�eld reached for Nt = 70 and T = 0.5. This optimal �eld is the same as the one of Fig. 3.
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Figure 11 shows the real, imaginary part and power spectrum of a Fourier transformed optimal
control �eld. The used optimal �eld corresponds to the one plotted in Fig. 3. We notice that the
shape of the Fourier transformed optimal �eld is determined by the shape of the underlying sum
over the Fourier transforms of box functions. There is no information contained in the Fourier
transform which would allow to distinguish between optimal and not optimal �elds.

4.6.2 Smoothing �lters

We search for optimal control �elds which are smoother than our implemented piecewise constant
controls and nevertheless approximate the considered target gates well with high corresponding
�delities. For this purpose we put constraints on the frequency spectrum which is generated
by the Fourier transforms of the optimal piecewise constant control �elds hj(t) (j = x, y). We
formulate the spectral constraint by means of a so-called frequency �lter function fj(ω) [17]
which is applied to the Fourier transformed �elds. After operating with the �lter function on the
Fourier transforms of the optimal �elds, we return to the time domain and recalculate the time
dependent control �elds by doing inverse Fourier transforms. The thus obtained �ltered �elds
are denoted h̃j(t). In order to derive a concise expression for h̃j(t), we use here the shorthand
F for the Fourier transform and F−1 for its inverse:

h̃j(t) = F−1[fj(ω)F [hj(t)]], j = x, y, (4.6.33)

where F [hj(t)] is equivalent to the above introduced notation ĥj(ω). We note that any real �lter

function fj(ω) has to be an even function in ω, i.e. fj(ω) = fj(−ω), since h̃j(t) is real valued.

Proof. hj(t) real, i.e. h
∗
j (t) = hj(t) ⇒ ĥj

∗
(ω) =

∫ +∞
−∞ hj(t)e

−iωtdt = ĥj(−ω), together with h̃j(t)

real, i.e h̃∗j (t) = h̃j(t) whereas h̃j(t) and h̃
∗
j (t) are given by h̃j(t) =

∫ +∞
−∞ fj(ω)ĥj(ω)e−iωtdω and

h̃∗j (t) =
∫ +∞
−∞ f∗j (ω)ĥj(−ω)e+iωtdω, it follows directly that fj(ω) must ful�ll f∗j (ω) = fj(−ω),

fj(ω) real ⇒ fj(ω) = fj(−ω)

In principle, all frequency �lters may as well be implemented in the time domain provided that a
time-dependent �lter function which e�ects the desired �ltering is known. Multiplication in the
Fourier space is equivalent to convolution in the inverse Fourier space. Therefore any frequency
�lter can be realized in the time domain or at least approximated by convolution with the Fourier
transform of the frequency �lter. Since we desire to �nd smoother �elds, we have to use �lter
functions which attenuate high frequencies. Attenuating low frequencies on the other hand would
enhance the edges in the time domain. In the frequency domain there exist straightforward �lters
which attenuate high frequencies as low-pass or Gaussian �lters wherefore we will perform the
�ltering in the frequency space.

As in the previous chapter we perform the following calculations of smoothened control �elds
only for procedure A since an expression for the �eld h̃x(t) by using procedure B can be derived
straightforward, just by replacing 2(n− 1) by (n− 1) and (2n− 1) by n as well as the sum from
1 to Nt/2 by a sum from 1 to Nt in the corresponding formula.

Low-pass �lter:

At �rst we consider low-pass �ltering. We will implement the simplest low-pass �lter which
is the ideal low-pass. That is, we apply in the frequency domain a �lter function to the Fourier
transformed �elds which removes all frequency components above a certain cut-o� frequency
ω0 and below −ω0, only passing low-frequency signals. An ideal low-pass �lter perfectly passes
low frequencies while high-frequency signals are cut perfectly, not only attenuated. The �lter
function e�ecting the desired �ltering corresponds then to a combination of Heaviside functions,
namely to the box function

fj(ω) = θ(ω + ω0)− θ(ω − ω0), j = x, y, (4.6.34)
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which is even as can be seen by inspection. We note that the rectangular function is the frequency
response of the low-pass �lter while the sinc function is the impulse response in the time domain,
i.e. the Fourier transform of the even box function is given by a sinc function as we already have
seen. After applying the �lter functions fx(ω) and fy(ω) to the Fourier transformed optimal

control �elds, we calculate the 'smoothened' �elds h̃x(t) and h̃y(t) via inverse Fourier transform:

h̃x(t) =
1√
2π

∫ +∞

−∞
fx(ω)ĥx(ω)e−iωtdω

=
1√
2π

∫ +∞

−∞
[θ(ω + ω0)− θ(ω − ω0)]ĥx(ω)e−iωtdω

=
1√
2π

∫ ω0

−ω0

ĥx(ω)e−iωtdω

=
1√
2π

∫ ω0

−ω0

1√
2πiω

Nt/2∑
n=1

hx,n

(
e(2n−1)iωT − e2(n−1)iωT

)
e−iωtdω

=
1

2πi

Nt/2∑
n=1

hx,n

∫ ω0

−ω0

1

ω

(
eiω[(2n−1)T−t] − eiω[2(n−1)T−t]

)
dω

=
1

2πi

Nt/2∑
n=1

hx,n

(∫ ω0

−ω0

1

ω
eiω[(2n−1)T−t]dω −

∫ ω0

−ω0

1

ω
eiω[2(n−1)T−t]dω

)
. (4.6.35)

The integral I(ω0a) :=
∫ ω0

−ω0

1
ωe

iωadω which we regard as a function of ω0a for some real variable
a can be decomposed into two parts:

I(ω0a) =

∫ ω0

−ω0

1

ω
[cos (ωa) + i sin (ωa)]dω

=

∫ ω0

−ω0

cos (ωa)

ω
dω + i

∫ ω0

−ω0

sin (ωa)

ω
dω. (4.6.36)

In order to assign a value to the �rst integral in (4.6.36) we have to make use of the Cauchy
principal value since we intend to integrate over a pole (ω = 0) of the integrand. By means of
the Cauchy principal value P we may write

P
∫ ω0

−ω0

cos (ωa)

ω
dω = lim

ε→0

(∫ −ε
−ω0

cos (ωa)

ω
dω +

∫ ω0

+ε

cos (ωa)

ω
dω

)
. (4.6.37)

Since cos (ωa) is an even function while ω is odd which means that cos (ωa)
ω is an odd function

in ω, the Cauchy principal value de�ned in (4.6.37) is equal to zero. On the other hand, sin (ωa)
ω

is an even function in ω since sin (ωa) is odd. The singularity of sin (ωa)
ω at ω = 0 is removable

for which reason we do not need the Cauchy principal value for evaluating the second integral in
(4.6.36). After these considerations I(ω0a) simpli�es to

I(ω0a) = 2i

∫ ω0

0

sin (ωa)

ω
dω, (4.6.38)

and the expression for h̃x(t) to

h̃x(t) =
1

2πi

Nt/2∑
n=1

hx,n

(
2i

∫ ω0

0

sin {ω[(2n− 1)T − t]}
ω

dω − 2i

∫ ω0

0

sin {ω[2(n− 1)T − t]}
ω

dω

)

=
1

π

Nt/2∑
n=1

hx,n

(∫ ω0

0

sin {ω[(2n− 1)T − t]}
ω

dω −
∫ ω0

0

sin {ω[2(n− 1)T − t]}
ω

dω

)
.

(4.6.39)
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Analogously we obtain

h̃y(t) =
1

π

Nt/2∑
n=1

hy,n

(∫ ω0

0

sin {ω[2nT − t]}
ω

dω −
∫ ω0

0

sin {ω[(2n− 1)T − t]}
ω

dω

)
. (4.6.40)

The integral Si(ω0a) :=
∫ ω0

0
sin (ωa)

ω dω, regarded as a function of ω0a, can be rewritten using the
series expansion for sin (ωa) (see Eq. (4.6.24)) as

Si(ω0a) =

∫ ω0

0

∞∑
k=0

(−1)k
ω2ka2k+1

(2k + 1)!
dω

=

∞∑
k=0

(−1)k
(ωa)2k+1

(2k + 1)(2k + 1)!

∣∣∣∣∣
ω0

0

=

∞∑
k=0

(−1)k
(ω0a)2k+1

(2k + 1)(2k + 1)!
. (4.6.41)

At �rst we remark that Si(ω0a) =
∫ ω0

0
sin (ωa)

ω dω is given by an in�nite series which converges for
all ω0a. Considering the series or by applying substitution rules on the integral (u = −ωa and
v = −u, respectively), we see that the following relations hold:

Si(ω0a) =

∫ ω0

0

sin (ωa)

ω
dω =

∫ ω0a

0

sinω

ω
dω and Si(−ω0a) = −Si(ω0a). (4.6.42)

We point out that the integral Si(ω0a) is known as the sine integral with ω0a being the upper limit
of the integral and the integrand being the sinc function, sinc(ω) = sinω

ω , which has the normal-

ization
∫ +∞
−∞ sinc(ω)dω = 2

∫∞
0 sinc(ω)dω = π. Hence, Si(ω0a) converges in the limit ω0a→ ±∞

to ±π/2. The integral Si(∞) =
∫∞

0
sinω
ω dω is known as the Dirichlet integral. The sinc function

possesses a removable singularity at ω = 0. Removable, since the limit limω→0 sinc(ω) exists and
is �nite, namely equal to 1. Moreover, this function is equivalent to the 0-th order spherical Bessel
function of the �rst kind, j0(ω). At last, we note that the inde�nite integral (or antiderivative)
of sinc(ω) cannot be expressed in terms of elementary analytical functions, such as polynomials,
ratios of polynomials, exponential and trigonometric functions and their inverses, as the above
derived expression for Si(ω0a) reveals. After these considerations the control �eld h̃x(t) can be
written as follows:

h̃x(t) =
1

π

Nt/2∑
n=1

hx,n

(∫ ω0[(2n−1)T−t]

0

sinω

ω
dω −

∫ ω0[2(n−1)T−t]

0

sinω

ω
dω

)

=
1

π

Nt/2∑
n=1

hx,n

( ∞∑
k=0

(−1)k
{ω0[(2n− 1)T − t]}2k+1

(2k + 1)(2k + 1)!
−
∞∑
k=0

(−1)k
{ω0[2(n− 1)T − t]}2k+1

(2k + 1)(2k + 1)!

)

=
1

π

Nt/2∑
n=1

hx,n

∞∑
k=0

(−1)k

(2k + 1)(2k + 1)!

(
{ω0[(2n− 1)T − t]}2k+1 − {ω0[2(n− 1)T − t]}2k+1

)
.

(4.6.43)
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The �eld h̃y(t) is given entirely equivalent by

h̃y(t) =
1

π

Nt/2∑
n=1

hy,n

(∫ ω0[2nT−t]

0

sinω

ω
dω −

∫ ω0[(2n−1)T−t]

0

sinω

ω
dω

)

=
1

π

Nt/2∑
n=1

hy,n

∞∑
k=0

(−1)k

(2k + 1)(2k + 1)!

(
{ω0[2nT − t]}2k+1 − {ω0[(2n− 1)T − t]}2k+1

)
.

(4.6.44)

We conclude that the calculation of the control �elds h̃x(t) and h̃y(t) requires in each case the
computation of two sine integrals, inde�nite series which cannot be expressed in terms of ele-
mentary functions. We compute the sine integrals numerically using the routine cisi provided by
the authors of [14]. The cut-o� frequency ω0 is treated as a parameter.

Gaussian �lter:

Instead of removing all frequencies above a given cut-o� frequency, we now consider so-called
Gaussian �lters which only retain the Fourier components around a certain centre frequency ±ωc.
We de�ne the Gaussian �lter function in the frequency domain for some real positive parameter
γ according to [17] as

fj(ω) = e−γ(ω−ωc)2 + e−γ(ω+ωc)2 , j = x, y and γ > 0. (4.6.45)

This �lter function is chosen to be even as required of any real �lter function and e�ects that
only the frequency components around ±ωc are allowed in the resulting pulse. We note that both
the frequency and the impulse response of the Gaussian �lter are Gaussian functions since the
Fourier transform of a Gaussian is a Gaussian again. Gaussian �lters act as low-pass �lters and
have a similar e�ect depending on the width of the Gaussian function as ideal low-pass �lters
depending on the cut-o� frequency.

If we like to allow the frequencies around several centre frequencies ±ωk, say around m dif-
ferent frequencies, the total �lter function f totj (ω) is obtained by just summing over single �lter

functions fkj (ω), each of them corresponding to one of the di�erent centre frequencies:

f totj (ω) =

m∑
k=1

fkj (ω) =

m∑
k=1

(
e−γ(ω−ωk)2 + e−γ(ω+ωk)2

)
, j = x, y. (4.6.46)

In order to ensure that the total �lter function f totj (ω) is restricted to values in the interval
(0, 1] we use an ascending order for the frequencies ωk, i.e. ωk < ωk+1, and assume that each of
the functions e−γ(ω−ωk)2 is operating only on the interval [Ck, Ck+1] where Ck < Ck+1 with Ck,
Ck+1 being positive real numbers and Ck < ωk, Ck+1 > ωk. On the other hand, the functions
e−γ(ω+ωk)2 are assumed to operate only on the intervals [−Ck+1,−Ck].

We summarize brie�y several important properties of the Gaussian functions g±(ω) = e−γ(ω±ωc)2 .
The position of the centre of the peak is equal to ∓ωc for the curves g±(ω) and the peak's height
equal to 1. The area under the curves g±(ω) evaluates to∫ +∞

−∞
g±(ω)dω =

∫ +∞

−∞
e−γ(ω±ωc)2dω =

√
π

γ
. (4.6.47)

The full width at half maximum of the Gaussian functions g±(ω) is independent of the value
of ωc for which reason we can set ωc equal to zero and look at the curve e−γω

2
. We search for

values of ω where e−γω
2
is equal to 1

2 . Hence, we have to set γω2 = ln 2. From this equation it

follows directly that e−γω
2
reaches its half maximum at the points ω = ±

√
ln 2
γ and e−γ(ω±ωc)2

46



at the points ω = ∓ωc ±
√

ln 2
γ , respectively. Thus, we derive the full width at half maximum as

FWHM = 2
√

ln 2
γ .

We apply the general Gaussian �lter function (4.6.46) to the Fourier transformed control �elds
and recalculate the 'smoothened' �elds h̃x(t) and h̃y(t) doing inverse Fourier transform:

h̃x(t) =
1√
2π

∫ +∞

−∞
fx(ω)ĥx(ω)e−iωtdω

=
1

2πi

Nt/2∑
n=1

hx,n

∫ +∞

−∞

m∑
k=1

(
e−γ(ω−ωk)2 + e−γ(ω+ωk)2

) 1

ω

(
eiω[(2n−1)T−t] − eiω[2(n−1)T−t]

)
dω

=
1

π

Nt/2∑
n=1

hx,n

∫ ∞
0

m∑
k=1

(
e−γ(ω−ωk)2 + e−γ(ω+ωk)2

) 1

ω
(sin {ω[(2n− 1)T − t]} − sin {ω[2(n− 1)T − t]})dω

=
1

π

m∑
k=1

Nt/2∑
n=1

hx,n

∫ Ck+1

Ck

1

ω
e−γ(ω−ωk)2(sin {ω[(2n− 1)T − t]} − sin {ω[2(n− 1)T − t]})dω,

(4.6.48)

and the �eld h̃y(t) is analogously given by

h̃y(t) =
1

π

m∑
k=1

Nt/2∑
n=1

hy,n

∫ Ck+1

Ck

1

ω
e−γ(ω−ωk)2(sin {ω[2nT − t]} − sin {ω[(2n− 1)T − t]})dω.

(4.6.49)
Equations (4.6.48) and (4.6.48) give an expression for control �elds �ltered by a general Gaussian
�lter function of the form (4.6.46). Considering Fourier transforms of optimal control �elds (see
Fig. 11 as an example), we state that the dominating frequencies of the spectra are located close
to ω = 0 which is why it seems reasonable to choose as �lter function just the single function
de�ned in Eq. (4.6.45) with ωc = 0 and analyse the shape of the smoothened control �elds as
well as the corresponding �delity by varying the parameter γ of the Gaussian. For ωc = 0 the
�lter function simpli�es to

fj(ω) = e−γω
2
, j = x, y. (4.6.50)

In order to calculate the smoothened x-�elds by applying the �lter function in Eq. (4.6.50), we
have to evaluate integrals of the form∫ ∞

0

1

ω
e−γω

2
(sin {ω[(2n− 1)T − t]} − sin {ω[2(n− 1)T − t]})dω. (4.6.51)

In general, an integral of the form
∫∞

0
1
xe
−p2x2 sin (ax)dx evaluates to the in�nite sum (see [18])

√
π
∞∑
k=0

(−1)k

k!(2k + 1)

(
a

2p

)2k+1

=
π

2
erf

(
a

2p

)
, (4.6.52)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt =

2√
π

∞∑
k=0

(−1)k
x2k+1

k!(2k + 1)
. (4.6.53)

Thus, the integral in Eq. (4.6.51) is given by

π

2

{
erf

[
(2n− 1)T − t

2
√
γ

]
− erf

[
2(n− 1)T − t

2
√
γ

]}
. (4.6.54)
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Finally, we obtain for the smoothened �eld h̃x(t)

h̃x(t) =
1

2

Nt/2∑
n=1

hx,n

{
erf

[
(2n− 1)T − t

2
√
γ

]
− erf

[
2(n− 1)T − t

2
√
γ

]}
, (4.6.55)

and for h̃y(t)

h̃y(t) =
1

2

Nt/2∑
n=1

hy,n

{
erf

[
2nT − t

2
√
γ

]
− erf

[
(2n− 1)T − t

2
√
γ

]}
. (4.6.56)

We compute the error functions contained in the expressions for the �ltered �elds numerically
using an intrinsic Fortran function.

4.6.3 Unitary evolution

In order to determine the �delity corresponding to the 'smoothened' control �elds, we have to
calculate the time evolution operator U(t) which is governed by the Hamiltonian H(t). For this
purpose we have to solve the equation of motion for U(t), that is, the di�erential equation

i
d

dt
U(t) = H(t)U(t), (4.6.57)

with H(t) = H0 +
~̃
h(t) · ~S1 = H0 + h̃x(t)S1x + h̃yS1y and

~̃
h(t) = (h̃x(t), h̃y(t), 0) being the

smoothened controlled �eld. If we write the d× d matrices U(t) and H(t)U(t) as d2-dimensional
vectors (d: dimension of the Hilbert space), then Eq. (4.6.57) de�nes a set of d2 coupled �rst-
order ordinary di�erential equations (ODEs), having the form

i
d

dt
Ukl(t) =

d∑
j=1

Hkj(t)Ujl(t), k, l = 1, ..., d. (4.6.58)

We are considering here a so-called initial value problem. At the starting value t0 = 0 the time
evolution operator is given by U(0) = 1 and we desire to �nd it at some �nal time tf = NtT .
For our purposes it is essential that the unitarity of the time evolution operator is preserved.
Instead of solving the described set of �rst-order ODEs by using standard Runge-Kutta methods
which are, however, not preserving the unitarity, we calculate the evolution operator U(t) in the
following way:

We discretize the evolution time of the system during the action of the control into su�ciently
small time steps of length τ . The total action time of the control �eld is given by tf = NtT .
We divide each time interval T into a certain number of time steps mT . The time length τ
between two steps is equal to T/mT and the total number of steps seen over the whole evolution
time tf of the system is equal to mf = NtmT . We assume that during the evolution time τ
between two steps the total Hamiltonian is constant, i.e. H(t) = H(k) for kτ ≤ t < (k+1)τ with
k ∈ {0, ...,mf−1}. Hence, the unitary U (k)(τ) describing the time evolution during the (k+1)-th

time interval with length τ is given exactly by U (k)(τ) = e−iH
(k)τ , exactly under the assumption

of constant Hamiltonians H(k). The total time evolution operator U(tf ) of the system at the
�nal time tf can accordingly be derived as the product

U(tf ) =
0∏

k=mf−1

e−iH
(k)τ = e−iH

(mf−1)
τ · ... · e−iH(1)τ · e−iH(0)τ . (4.6.59)

The constant Hamiltonians H(k) are given by

H(k) = H0 +
~̃
h(kτ) · ~S1 = H0 + h̃x(kτ)S1x + h̃y(kτ)S1y. (4.6.60)
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This kind of product-formula approximation becomes more and more accurate with increasing
number of time steps and the simultaneous decrease of the distance τ between two steps. We
mention that for our purpose it is not di�cult to choose τ so small that the time evolution
operator can be computed to requisite accuracy. Considering Eq. (4.6.59) we state that the
unitary property of the time evolution operator is preserved for any number of time steps mT ,
and hence the method is unconditionally stable (see Refs. [19, 20]). In the case of a piecewise
constant control �eld the results for the unitary obtained with this procedure can be considered
as being exact. Moreover, for the piecewise constant controlled �elds de�ned by procedures A
and B (recall Section 4.3), the obtained results for the unitary are entirely exact for any number
of steps mT . If we set mT = 1 the approach, which we have described here, is equivalent to
procedures A and B. This is an important condition for calculating U(tf ) as accurate as possible,
since we are starting from optimal piecewise constant control �elds which we 'smoothen' by doing
Fourier and inverse Fourier transforms.

4.6.4 Results

We apply two di�erent �ltering techniques, on the one hand ideal low-pass �ltering (recall Eq.
(4.6.34) where the corresponding �lter function is de�ned) and on the other hand Gaussian
�ltering whereas we use the �lter function (4.6.50). In order to analyse the results stemming
from low-pass �ltering, we introduce the dimensionless cut-o� frequency ω0/J . Hence, any value
given to the cut-o� has to be understood as being dimensionless. The results of �ltered and
smoothened optimal �elds shown below correspond to the implementation of the gates 11X and
1CNOT using procedure A. For the sake of completeness we will show at the very end of this
chapter one smoothened �eld which implements the gate 11X and is achieved using procedure B.

As we will show in the following discussion, the e�ect of the �ltering procedure is strongly
dependent on the shape of the optimal control �elds. For this reason we introduce two quantities
which allow to characterize the optimal control �eld in consideration. At �rst we quantify the
strength of the control �eld. In order to derive a reasonable quantity for the magnitude, we con-
sider the absolute values (amplitudes) of the �eld components and de�ne an average amplitude
for the x- and y-�eld, respectively, as follows

Āx :=
1

Nt/2

Nt/2∑
i=1

|hx,i| and Āy :=
1

Nt/2

Nt/2∑
i=1

|hy,i|, (4.6.61)

whereas we have assumed procedure A and Nt time steps. The average amplitude of the x-�eld
is denoted Āx, the one of the y-�eld Āy. Using procedure B we have to replace Nt/2 by Nt

in the expression for Āx. While for procedure B we have obtained one value which describes
the strength of the control �eld, in the case of procedure A we have two averages, for each �eld
direction one. Average amplitudes for the x- and y-�eld at hand, we now de�ne a total average
amplitude Ā for procedure A, re�ecting the strength of the whole control �eld, as

Ā :=
Āx + Āy

2
. (4.6.62)

This total average may be understood in the following way: Per unit time there is acting a
control �eld of average strength Ā either in x- or in y-direction.

We continue focussing on the variance in the absolute �eld values since the optimal control
�elds considered are not constant seen over the whole evolution time of the system but consist of
Nt switches between di�erent values. The variance in the absolute values of the x- and y-�eld,
respectively, which we denote by varx and vary, may be calculated for procedure A and Nt time
intervals as

varx =
1

Nt/2− 1

Nt/2∑
i=1

(|hx,i| − Āx)2 and vary =
1

Nt/2− 1

Nt/2∑
i=1

(|hy,i| − Āy)2. (4.6.63)
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Again, using procedure B we must substitute Nt for Nt/2 in the formula for varx. For procedure
A we de�ne additionally an average variance of all absolute �eld values, denoted var, as

var :=
varx + vary

2
, (4.6.64)

which is simply the mean of varx and vary and quanti�es the variance in the absolute values of
the whole �eld. To assign a value to the average amplitude and the variance of an optimal control
�eld, we always use the dimensionless quantities Ā/J and var/J2 even if not explicitly mentioned.

Now we have the instruments at hand in order to discuss the �ltering of optimal control �elds.
To begin with we consider Figs. 12 and 13 which each illustrate the smoothing of an optimal
control �eld if an ideal low-pass �lter is applied. Together with the optimal piecewise constant
�eld there are shown �ltered �elds for di�erent cut-o� frequencies ω0. The control �eld of Fig.
12 implements the spin-�ip gate 11X to a very high accuracy, the one of Fig. 13 the controlled
gate 1CNOT. Both �elds are achieved for 70 time steps of length 0.5. In each case Fig. (a)
shows the x-�eld and (b) the y-�eld.

(a) (b)

Figure 12: Gate 11X: Filtered optimal control �eld plotted for di�erent cut-o� frequencies ω0.
(a) x-�eld and (b) y-�eld. The optimal piecewise constant �eld is plotted for comparison (black
curve) and corresponds to the one of Figs. 3 and 11, achieved for the parameters Nt = 70 and
T = 0.5. Its Magnitude and variance are: Ā/J = 3.4 and var/J2 = 7.8.

(a) (b)

Figure 13: Gate 1CNOT: Filtered optimal control �eld plotted for di�erent cut-o� frequencies
ω0. (a) x-�eld and (b) y-�eld. The optimal piecewise constant �eld is plotted for comparison
(black curve) and speci�ed by Nt = 70, T = 0.5, Ā/J = 2.4, and var/J2 = 2.6.
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We see that for smaller cut-o�s the �elds become smoother, while simultaneously the �delity is
decreasing. Furthermore we notice that in Fig. 12 the �delity has dropped down to 0.5 at a cut-
o� frequency of 3π/2 whereas in Fig. 13 the �delity is still 0.8 at the same cut-o�. This behaviour
is related to the average amplitude of the �elds. The optimal piecewise constant �elds of Figs. 12
and 13 have an average amplitude of 3.4 and 2.4, respectively. We will observe later in this chap-
ter that the �delity of weaker �ltered �elds decays less rapidly depending on the cut-o� frequency.

In Fig. 14(a) we compare the behaviour of the �delity for ideal low-pass and Gaussian �l-
tering depending on the cut-o� frequency ω0 and on the full width at half maximum FWHM,
respectively. To this end we use the control �eld shown before in Fig. 12 which approximates
the spin-�ip gate 11X with very high �delity.

(a)

(b) (c)

Figure 14: Gate 11X, implemented by the same control �eld as the one of Fig. 12. The �delity
F depending on ω0 (ideal low-pass �ltering) and on FWHM (Gaussian �ltering), respectively, is
plotted in Fig. (a). The �ltered and smoothened control �eld corresponding to a �delity of 0.9
is shown for both, low-pass and Gaussian �ltering, in Figs. (b) (x-�eld) and (c) (y-�eld).

We observe that in the case of Gaussian �ltering the decay of the �delity with decreasing FWHM

(green curve) is smooth due to the Gaussian �lter function e−γω
2
(where FWHM = 2

√
ln 2
γ ) which

e�ects a monotone continuous attenuation of high frequencies. In contrast, the �delity curve ver-
sus ω0 corresponding to the ideal low-pass �lter (blue curve) shows a rapid decay with decreasing
ω0 in the range where ω0/J reaches values around 2π. The decay curve is characterized by small
peaks and appears much less smooth compared to the case of Gaussian �ltering. This feature
may be explained having in mind that the low-pass �lter function is a non-continuous box func-
tion. Considering the power spectrum of the Fourier transformed optimal control �eld (see Fig.
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11), we see that around 2π there are distributed frequencies with high peaks e�ecting the rapid
decay of the �delity visible in 14(a). Figures 14(b) (x-�eld) and 14(c) (y-�eld) present the �ltered
control �elds corresponding to a �delity of 0.9 in Fig. 14(a), both for low-pass (blue �eld) and
Gaussian (green �eld) �ltering. The smoothened control �elds look similar in both cases. The
Gaussian �ltered �eld appears slightly smoother.

In the following we concentrate fully on ideal low-pass �ltering and examine the behaviour of
the �delity depending on the cut-o� frequency in more detail. In particular, we are interested
how the magnitude and variance of the optimal control �elds in�uence this behaviour. In order
to generate optimal control �elds which are di�ering in their average amplitude and variance,
we start from initial guesses taking 70 time steps of length 1.5. Since for this choice the total
evolution time tf = NtT is su�ciently large, the optimization program returns optimal control
�elds with values close to the initial guess. Therefore we are able to control the amplitude and
variance of the optimal control �elds by varying the initial guess in an appropriate way.

In Fig. 15 we analyse the �delity versus ω0 for six optimal control �elds which induce the
implementation of the spin-�ip gate 11X (a) and of the controlled gate 1CNOT (b), respectively.
The �elds di�er clearly in their average amplitude and are achieved for positive constant initial
guesses which is why they all have an almost vanishing variance. We observe that the �delity is
less a�ected by the smoothing if the corresponding optimal control �eld is weak. The rapid decay
of the �delity at certain values of ω0 may be explained by considering the power spectrum of the
Fourier transformed �elds (collected in the Appendix A.2: Figures 24 and 25 contain the power
spectra of the Fourier transformed �elds corresponding to Figs. 15(a) and 15(b), respectively).
We note that at the cut-o�s where the �delity is decaying rapidly, there are occurring sharp
peaks in the corresponding power spectra. Those sharp peaks are characteristic for control �elds
which are almost 'constant'. Constant in this context means for the use of procedure A that the
amplitude of the �eld is constant in time while its direction is continuously switching from x- to
y-direction.

(a) (b)

Figure 15: Gates 11X (a) and 1CNOT (b): Fidelity F versus ω0 corresponding to six di�erent
low-pass �ltered optimal control �elds. All optimal �elds are achieved for Nt = 70 and T =
1.5 and have a variance (var/J2) between 0.1 and 0.4, but they di�er clearly in their average
amplitude (see legend where the values of the dimensionless quantity Ā/J are given).

We continue focussing on the implementation of 11X and analyse how the behaviour of F versus
ω0 changes, when the �eld values are far away from being constant, by increasing the variance
and including negative �eld values. While the optimal control �elds of Fig. 15(a) are character-
ized by �eld amplitudes which are all positive and by a small variance between 0.1 and 0.4, the
optimal �elds of Fig. 16(a) have a larger variance in the range 1.1 to 1.3 and the �eld values are
arbitrarily distributed around the average amplitude including as well negative values. Curves
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of the same colour in Figs. 15(a) and 16(a) have a similar average amplitude. Comparing the
curves corresponding to �elds of similar magnitude, we notice that in Fig. 16(a) the drop in F
with decreasing cut-o� frequency starts already at larger ω0 in comparison to Fig. 15(a) and
occurs less rapid over a larger ω0-range. This feature is related in particular to the including of
negative �eld values. Negative �eld amplitudes e�ect that the sharp peaks in the power spectra
of the Fourier transformed �elds (see Appendix A.2: Figure 26) disappear splitting into a wider
distribution of peaks. The larger variance contributes as well to the broadening of the peak
distributions in the power spectra.

The dependence of the �delity curve versus ω0 on the variance is examined in Fig. 16(b) for
optimal control �elds of similar magnitude whose �eld values are chosen arbitrary including again
negative values. We observe that the �delity is more a�ected by low-pass �ltering if the variance
of the �elds is increased. A larger variance leads to higher peaks in the power spectra of the
Fourier transformed �elds (see Fig. 27 in Appendix A.2).

(a) (b)

Figure 16: Gate 11X: Fidelity F versus ω0 corresponding to di�erent low-pass �ltered optimal
control �elds which are characterized by: (a) The optimal control �elds are achieved for the same
parameters as the �elds of Fig. 15 and have a similar average amplitude for equal colour. But
their variance is larger, ranging between 1.1 and 1.3 for all �elds. (b) The optimal control �elds
all have an average amplitude between 1.9 and 2.1 but di�er clearly in their variance which is
speci�ed in the legend.

After having discussed the behaviour of F versus ω0 for optimal control �elds of �xed parameters
Nt and T which were di�ering in their average amplitude, variance and the occurrence of negative
�eld amplitudes, we now analyse how the �delity is a�ected by varying the length T of the time
steps in the optimal piecewise constant control. For this purpose we plot the �delity versus ω0T .
Plotting versus ω0T eliminates the e�ect of the oscillation period in the Fourier transform which
is dependent on T . Figure 17 contains plots for optimal control �elds which di�er in T . The �elds
have a similar magnitude, small variance and include only positive �eld amplitudes. Although
the plotting versus ω0T eliminates the in�uence of the di�erent period of the oscillating part in
the Fourier transform, there can be observed a clear di�erence depending on T . For smaller T
the �delity is less a�ected by the smoothing. This feature is reminiscent of the behaviour which
shows the �delity for random noise a�ected optimal control �elds (recall Fig. 5(a) in Section
4.5.1 where the sensitivity of the �delity is analysed for optimal control �elds which di�er in T ).
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Figure 17: Gate 11X: Fidelity F plotted versus ω0T for �ve di�erent low-pass �ltered optimal
control �elds which all have an average amplitude between 1.0 and 1.1 as well as a small variance
between 0.1 and 0.6. They are achieved for 70 time intervals but di�er in the parameter T .

In order to complete this chapter, we show three further low-pass �ltered and hence smoothened
optimal control �elds corresponding to a �delity of 0.9 (see Figs. 18, 19, and 20). We recall that
smooth �elds with high �delities may be achieved if the control �eld is small and the switching
time T short. The smoothened control �elds of Figs. 18 and 19, which implement the gates 11X
and 1CNOT, respectively, are obtained using procedure A, while the smoothened �eld shown in
Fig. 20 results from procedure B.

(a) (b)

Figure 18: Gate 11X: Smoothing by low-pass �ltering of an optimal control �eld which is
achieved for the parameters Nt = 70 and T = 0.5 and has an average amplitude and a variance
of 1.1 and 0.6, respectively. The optimal piecewise constant �eld is low-pass �ltered and plotted
for a cut-o� frequency of π/2. The smoothened �eld corresponds to a �delity of still 0.9. The
optimal �eld is plotted for comparison. (a) x-�eld and (b) y-�eld. The behaviour of the �delity
versus ω0 is shown for this �eld in Fig. 17 (black curve).

54



(a) (b)

Figure 19: The equivalence of Fig. 18 for the gate 1CNOT. The �ltered optimal control �eld is
reached for Nt = 70 and T = 1.0 and its average magnitude and variance are: Ā/J = 0.6 and
var/J2 = 0.1.

Figure 20: Gate 11X: One and only example of a weak low-pass �ltered and smoothened optimal
�eld which is achieved using procedure B. The optimal piecewise constant �eld consists of 25
time intervals of length 1 and is plotted for comparison. Its average magnitude and variance are:
Āx/J = 0.7 and varx/J

2 = 0.5.

5 Generalization to Heisenberg spin chains of arbitrary length

In this section we generalize the isotropic Heisenberg spin-1
2 chain of length three, which we have

considered up to now, to a chain of arbitrary length and control this system analogously to the
three-spin case by locally operating on the �rst spin in the chain. We recall that a Heisenberg
chain of arbitrary length can be controlled by operating on one of the spins at its ends [1]. From
a controllability perspective we can treat the N -spin chain completely analogously to the three-
spin chain since the algebraic properties of the system's Hamiltonian are preserved. At �rst we
describe the calculation of the generalized Hamiltonian and compare in the following the results
stemming from the implementation of a generalized spin-�ip and CNOT gate for two-, three-
and four-spin chains. We note that the dimension of the Hilbert space is doubled with every
additional spin. Hence, the optimization program works slowlier for every added spin due to the
time-consuming matrix multiplication and the well-known feature that controlling a system in a
larger Hilbert space requires a longer total evolution time. Applied to our case this means that
we need more time steps in the computation of the time evolution operator. For these reasons
it was not possible to control a chain consisting of more than four spins, simply because the
optimization routine in use was too slow.
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5.1 Calculation of the Hamiltonian

We study an isotropic Heisenberg spin-1
2 chain of length N . The Hilbert space of such a system

has a dimension of 2N . We write the total Hamiltonian of the spin chain analogously to the
three-spin system as

H = H0 +Hc, (5.1.1)

with H being a 2N × 2N Hermitian matrix. The Hamiltonian H0 describes the free evolution
of the system containing the Heisenberg nearest-neighbour interaction and may be written for a
chain of length N as

H0 = J
N−1∑
k=1

(Xk,k+1 + Yk,k+1 + Zk,k+1), (5.1.2)

where J denotes the coupling constant which we set equal to one. The interaction parts Xk,k+1,
Yk,k+1 and Zk,k+1 are de�ned as

Xk,k+1 := Skx · Sk+1,x, (5.1.3)

Yk,k+1 := Sky · Sk+1,y, (5.1.4)

Zk,k+1 := Skz · Sk+1,z. (5.1.5)

The control Hamiltonian Hc is given as in the three-spin case by

Hc = hx(t)S1x + hy(t)S1y. (5.1.6)

The generalized spin matrices Skx can be calculated as the tensor product

Skx = 1⊗ . . .⊗ 1⊗ Sx ⊗ 1⊗ . . .⊗ 1, (5.1.7)

which consists of N factors with Sx being located at the k-th place (k ∈ {1, .., N}). The identity
1 is a 2 × 2 matrix as in all subsequent formula. The matrices Sky and Skz may be derived
analogously. We note that S1x and S1y imply S1z in the Lie completion for arbitrary N since
[S1x, S1y] = i~S1z holds for any number of spins. Therefore, the control Hamiltonian (5.1.6)
enables complete controllability of the system.

Using the relation

(A⊗B ⊗ . . .) · (C ⊗D ⊗ . . .) = AC ⊗BD ⊗ . . . , (5.1.8)

which is valid for complex matrices A, B, C, and D of dimensions m×n, p× q, n× r and q× s,
respectively, we derive Xk,k+1 as the tensor product

Xk,k+1 = 1⊗ . . .⊗ 1⊗ Sx ⊗ Sx ⊗ 1⊗ . . .⊗ 1, (5.1.9)

where the k-th and k + 1-th factor are equal to Sx while the other N − 2 factors are given by
the identity matrix 1. The y- and z-part of the Heisenberg interaction Yk,k+1 and Zk,k+1 are
obtained analogously.

The gate 11X which �ips the last spin in the three-spin chain is generalized to the gate XN

which �ips the last spin in a N -spin chain

XN = 1⊗ 1⊗ . . .⊗ 1⊗X, (5.1.10)

where all factors are equal to the identity beside the N -th which is equal to the Pauli matrix X
and e�ects the spin-�ip of the last qubit. Additionally, we de�ne a generalized controlled-NOT
gate as follows
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CNOTN = 1⊗ 1⊗ . . .⊗ 1⊗ CNOT, (5.1.11)

which operates on all spins by the identity beside on the last two on which the CNOT gate is
acting. We remark that in the case of three spins we have X3 = 11X and CNOT3 = 1CNOT
which are our well-known three-qubit gates whose implementation we already discussed. In the
following chapter we compare the implementation of XN and CNOTN by controlling the x- and
y-�eld (procedure A) for spin chains consisting of two, three, and four spins. The dynamic time
evolution operator can be calculated for any number of spins as in Eq. (4.3.3) by inserting the
generalized Hamiltonian.

5.2 Comparison between two, three, and four spins

The proceeding in the implementation of gates for a Heisenberg spin chain of arbitrary length is
completely analogous to the three-spin case and will therefore not be repeated here. Again, we
use natural units and set ~ = 1 in all numerical calculations.

5.2.1 Minimal time

We are interested in �nding a minimal time which is at least required to achieve respective
gates to high accuracy. When having discussed the implementation of gates for the three-spin
chain, we already mentioned that the evolution time of the system has to be su�ciently high
in order to generate high �delities. For evolution times below a certain minimal time it was
not possible to approximate the gate in consideration with high �delity. This feature could be
observed for all implemented gates. At this point we intend to estimate this minimal time for the
implementation of the gates XN and CNOTN (de�ned by Eqs. (5.1.10) and (5.1.11)) whereas
we let them operate on a two-, three- and four-spin chain and compare the results for varying
spin. In the case of two and three spins we proceed as follows: Starting from an evolution time
tf which is certainly too short to enable the implementation of the gate, we increase tf taking
discrete time steps. For any value of tf we perform runs over increasing Nt. As minimal time
we �x the shortest evolution time for which we achieved at any number of time intervals Nt

control �elds with gate errors below 10−5. While for two spins we are able to increase tf in steps
of 0.1 due to the fast working optimization program, we take in the case of three spins steps of 1.0.

In contrast, for four spins the computational burden becomes such high that only a very limited
number of runs can be done by starting from a �xed T and varying Nt or reversely. We there-
fore decide to �x the minimal time as soon as the evolution time is large enough to enable an
implementation of the gate with error in the range 10−2. Due to the limited number of collected
samples we are not able to distinguish between the gates XN and CNOTN and estimate that
the minimal time is of the same order for both gates in the case of four spins. In Table 6 the
results are listed.

XN CNOTN

2 spins 6.4 7.4
3 spins 18 25
4 spins 80 80

Table 6: Minimal time in [1/J ] depending on the number of spins

5.2.2 Sensitivity of the �delity

In this chapter we brie�y compare the sensitivity of the �delity to random noise for the imple-
mentation of the gate XN with respect to a varying number N of spins in the Heisenberg chain.
In order to eliminate the in�uence of the parameters Nt and T , we generate control �elds of
�xed parameters Nt and T which e�ect the implementation of XN for N = 2, 3, 4. We choose
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Figure 21: Average �delity F̄ versus δ for three random noise a�ected optimal �elds which
implement the gate XN in the case of two, three, and four spins. The optimal �elds are speci�ed
by the parameters Nt = 300 and T = 1.0. The small �gure shows the behaviour of F̄ for large δ.

Nt = 300 and T = 1.0, a choice corresponding to a su�ciently large evolution time so that for
all three cases it is ensured that the gate XN can be approximated to high accuracy. In Fig.
21 we show the decay of the average �delity F̄ versus δ for three random noise a�ected optimal
�elds which implement the gate XN in the case of two, three, and four spins, respectively. We
observe that the �delity is dropping similarly independent of the number of spins since the op-
timal control �elds are achieved all for the same parameters. However, the saturation value is
higher for smaller number of spins. We recall Section 4.5.1 where we derived that the value of
the saturation is dependent on the dimension d of the Hilbert space (see Eq. (4.5.4)), namely
1/d. Thus, we expect for two, three, and four spins a saturation of 1/4 = 0.25, 1/8 = 0.125, and
1/16 = 0.0625, respectively. The small �gure in 21 contains a linear �t of the average �delity
curve in the range of large δ in order to obtain a value for the saturation. The linear �tting
produces saturation values of 0.2176 (N = 2), 0.1117 (N = 3), and 0.0553 (N = 4) which �t to
order 10−2 with what we expected.

We point out that the �delity corresponding to optimal control �elds which are achieved in
minimal time is more sensitive to random noise for more spins since the minimal time and num-
ber of time steps needed increases with increasing number of spins (recall Figs. 5 and 7 which
illustrate the behaviour of F̄ depending on the parameters Nt, T , and tf in the three-spin case).

6 An application: Error correction circuit

In this chapter we sketch one possible application of an operator controlled Heisenberg spin-1
2

chain. To this end we consider �rstly the error correction circuit in Fig. 22. This circuit gives an
example how quantum error correction can be performed without need of measurements using
only unitary operations and ancilla systems which are prepared in standard states. The single-
qubit state α |0〉 + β |1〉 is encoded in three (codeword) qubits as α |000〉 + β |111〉. We assume
that the initial state has been perfectly encoded and let the three qubits independently of each
other pass through a bit-�ip channel (illustrated in Fig. 22 as the red framed X on each line of
the codeword qubits). Suppose a bit �ip occurred on at most one qubit, then the circuit in Fig.
22 provides a perfectly working procedure in order to detect the error and recover the correct
quantum state. The error diagnose is achieved by a combination of controlled gates, namely
of CNOT gates and a To�oli gate. We refer to Section 2.4.2 where the action of the CNOT
and To�oli gate is described and their matrix representation given. Their circuit symbols are
illustrated in Fig. 23. The black solid circles indicate the control qubits while the the target
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Figure 22: Error correction circuit which consists of two ancilla qubits and three codeword qubits
which encode a single logical qubit. The circuit corrects a single bit-�ip error on the wires of
the three codeword qubits. The red framed X represent possible random �ips of at most one
qubit [21].

(a) (b)

Figure 23: Circuit symbols: (a) CNOT and (b) To�oli gate.

qubits are identi�ed by the symbol ⊕ which highlights that the action of the CNOT and To�oli
gate on the target qubit is addition modulo two. In Fig. 22 the To�oli gate acts on more than
one target, namely on three. The e�ect on each target |ti〉, with i = 1, 2, 3, is |ti〉 → |ti ⊕ c1c2〉,
where |c1〉 and |c2〉 are the states of the control qubits.

The two ancillary are initialized both in the state |0〉 before starting error correction and have
to be reinitialized each time error correction is performed. The three controlled gates acting
as last gates in the circuit are controlled by the ancilla qubits and e�ect the recovering of the
correct quantum state while the error itself is detected by the four preceding gates. If no bit �ip
occurred on the wires of the codeword qubits, the �nal state |ψ〉 of the ancilla system is |00〉. If
the upper erroneous X gate on the left has acted, the state of the ancillas is |10〉, if the middle
one has acted |11〉 and if the lower one has acted |01〉. We note again that this error correction
circuit works only if at most one erroneous X gate has acted.

Such a quantum error correction circuit as in Fig. 22 could be realized by applying local operator
control on a Heisenberg spin-1

2 chain of length �ve. The relevant unitary U which e�ects the
error correction results from Fig. 22 by multiplying the CNOT gates and the To�oli gate from
the left to the right:

U = CNOTQ1A1CNOTQ2A1CNOTQ2A2CNOTQ3A2CNOTA1Q1CNOTA2Q3ToffoliA1A2Q1Q2Q3 ,
(6.0.1)

where the subscripts denote the control and target qubits (in this order) on which the respective
gate is acting. The unitary U can be implemented by applying a control �eld to one of the
spins at the end of the Heisenberg spin chain [1]. In principle, the order of the qubits in the
chain makes no di�erence except that the matrix representation of U is modi�ed. It seems,
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however, reasonable to control one of the ancilla qubits and put it hence at one end of the chain.
Moreover, we could apply a control �eld to both ancillary qubits which allows to initialize them
directly to |0〉. But since the system is complete controllable by control of one spin at the end,
the initialization could as well be done indirectly by quantum control.

The question arises whether the unitary U may be implemented by controlling only the x-�eld.
We will not represent U here in its matrix representation since it is a large 25 × 25 matrix but
we summarize some of its properties. It is a permutation matrix, i.e that one entry in each row
and column is equal to 1 while the others are 0. The trace does not vanish which is why we may
conclude that −iU is not contained in the Lie algebra LX generated by {−iH0,−iS1x}. Further-
more, we note that U is not Hermitian. These collected properties complicate the answering to
the arisen question and we have to let it unanswered.

However, implementing U by applying a control �eld in x- and y-direction to one spin at the end
of the chain, is just a question of time. Since the algorithm used throughout this work does not
enable the implementation in 'reasonable' time, we are not able to present results at this point.

7 Conclusions

In this work we were concerned with operator control achieved by local control of an isotropic
Heisenberg spin-1

2 chain. We have mainly discussed a three-spin chain which we extended at the
end to a chain of arbitrary length. In order to �nd optimal control �elds, we have maximized the
�delity between target gate and dynamic unitary over the �eld amplitudes. The found optimal
�elds have been analysed regarding their time dependence and pulse shape. We have examined
the �delity with respect to its robustness if (classical) random noise occurs and to the behaviour
if the optimal �elds are smoothened by attenuating high-frequencies in the Fourier space. Here,
we review brie�y the main results. At �rst we have seen that local control of a Heisenberg chain,
namely applying a control �eld to the �rst spin, enables the implementation of gates to high ac-
curacy. Concretely, we have shown that spin-�ip gates and even entangling gates with universal
property like CNOT and

√
SWAP gates can be achieved with optimal �delities. Moreover, we

have observed that the achievement of those gates is equally 'hard'. That is, the number of time
steps and the minimal evolution time needed is similar for all considered gates. Even a rotation
operator close to the identity could not be implemented in signi�cant shorter time. We have
examined the issue of minimal time by comparing the implementation of gates for Heisenberg
chains of two, three, and four spins. It seems that the minimal time is exponentially increasing
in the number of spins.

Quantum control systems are in practice open systems introducing noise. We have analysed
the sensitivity of the �delity to classical noise. For this purpose we have a�ected the optimal
�elds by random noise. We have seen that the �delity is less sensitive, hence more robust, to
noise the smaller the pulse timings T are. If the pulse duration is �xed and the evolution time
increased, then the �delity becomes more sensitive the longer the systems evolves under the
noise. We have assumed piecewise constant functions for the controls. In order to smoothen the
piecewise constant optimal controls, we have removed high frequencies in the Fourier space by
applying ideal-low pass and Gaussian �lters. We have shown that smooth control �elds with
high �delities may be reached if the �eld amplitude is weak and the variance in the amplitude
small. The work has been completed by describing how a quantum error correction circuit may
be implemented by local control of a Heisenberg �ve-spin chain.
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A Appendix

A.1 Basis of the dynamical Lie algebra for controlling the x-�eld only

Based on notes of D. Burgarth, we calculate a basis for the dynamical Lie algebra LX correspond-
ing to the quantum control system (4.3.5) which consists of an isotropic Heisenberg three-spin-1

2
chain whereas a control �eld pointing into x-direction only is applied to the �rst spin in the
chain. The Lie algebra is generated by the set {−iH0,−iH1} and its dimension is 18 as may
be computed by using the algorithm described in Table I of Ref. [8]. The Hamiltonian H0 is
the Heisenberg interaction Hamiltonian de�ned in (4.2.2) and H1 represents the control part of
the full system's Hamiltonian: H1 = S1x. In order to simplify the calculation we neglect trivial
constants and rede�ne the Hamiltonians H0 and H1 as

H0 := XX1 + Y Y 1 + ZZ1 + 1XX + 1Y Y + 1ZZ, (A.1.1)

H1 := X11, (A.1.2)

whereas the sign ⊗ for the Tensor product is omitted in all terms and where 1 denotes the
2 × 2 unit matrix and X, Y , Z denote the usual Pauli matrices. A basis for the Lie algebra
generated by {−iH0,−iH1} may be derived by �nding a complete set of linearly independent
(repeated) commutators of the set of generators and linear combinations of it. The calculation
is straightforward and given in the following without much explanations. Expressions in round
brackets have to be understood as matrix multiplications, not Tensor products.

[H0, H1] = (Y X −XY )Y 1 + (ZX −XZ)Z1 (A.1.3)

= −2iZXY + 2iY Z1 (A.1.4)

= 2i(Y Z1− ZY 1) (A.1.5)

H2 := Y Z1− ZY 1 (A.1.6)

[H1, H2] = (XY − Y X)Z1− (XZ − ZX)Y 1

= 2iZZ1 + 2iY Y 1

= 2i(ZZ1 + Y Y 1) (A.1.7)

H3 := ZZ1 + Y Y 1 (A.1.8)
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[H2, H3] = (Y Z − ZY )11− 1(Y Z − ZY )1 + 1(ZY − Y Z)1− (ZY − Y Z)11

= 2iX11− 2i1X1− 2i1X1 + 2iX11

= 4i(X11− 1X1) (A.1.9)

H4 := 1X1 (A.1.10)

[H4, H0] = Y (XY − Y X)1 + Z(XZ − ZX)1 + 1(XY − Y X)1 + 1(XZ − ZX)1

= 2iY Z1− 2iZY 1 + 2i1ZY − 2i1Y Z

= 2i(Y Z1− ZY 1 + 1ZY − 1Y Z) (A.1.11)

H5 := 1ZY − 1Y Z (A.1.12)

[H5, H4] = 1(ZX −XZ)Y − 1(Y X −XY )Z

= 2i1Y Y + 2i1ZZ

= 2i(1Y Y + 1ZZ) (A.1.13)

H6 := 1Y Y + 1ZZ (A.1.14)

[H5, H6] = 1(ZY − Y Z)1− 11(ZY − Y Z) + 11(Y Z − ZY )− 1(Y Z − ZY )1

= −2i1X1 + 2i11X + 2i11X − 2i1X1

= 4i(11X − 1X1) (A.1.15)

H7 := 11X (A.1.16)

[H3, H6] = Z(ZY − Y Z)Y − Y (Y Z − ZY )Z

= −2iZXY + 2iY XZ

= 2i(Y XZ − ZXY ) (A.1.17)

H8 := Y XZ − ZXY (A.1.18)

[H8, H1] = (Y X −XY )XZ − (ZX −XZ)XY

= −2iZXZ − 2iY XY

= −2i(ZXZ + Y XY ) (A.1.19)

H9 := ZXZ + Y XY (A.1.20)

We de�ne

H̃10 := H0 −H3 −H6 = XX1 + 1XX, (A.1.21)
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where the ˜ denotes that this matrix is not linearly independent of the other elements which are
derived up to now.

[H̃10, H3] = [(XZ)(XZ)− (ZX)(ZX)]1 + Z(XZ − ZX)X

+ [(XY )(XY )− (Y X)(Y X)]1 + Y (XY − Y X)X

= −2iZY X + 2iY ZX

= 2i(Y ZX − ZY X) (A.1.22)

H11 := Y ZX − ZY X (A.1.23)

[H̃10, H6] = X(XY − Y X)Y + 1[(XY )(XY )− (Y X)(Y X)]

+X(XZ − ZX)Z + 1[(XZ)(XZ)− (ZX)(ZX)]

= 2iXZY − 2iXY Z

= 2i(XZY −XY Z) (A.1.24)

H12 := XZY −XY Z (A.1.25)

[H1, H11] = (XY − Y X)ZX − (XZ − ZX)Y X

= 2iZZX + 2iY Y X

= 2i(ZZX + Y Y X) (A.1.26)

H13 := ZZX + Y Y X (A.1.27)

[H7, H12] = XZ(XY − Y X)−XY (XZ − ZX)

= 2iXZZ + 2iXY Y

= 2i(XZZ +XY Y ) (A.1.28)

H14 := XZZ +XY Y (A.1.29)

[H11, H5] = Y 1(XY − Y X)− Z[(Y Z)(XY )− (ZY )(Y X)]

− Y [(ZY )(XZ)− (Y Z)(ZX)] + Z1(XZ − ZX)

= 2iY 1Z − 2iZ1Y

= 2i(Y 1Z − Z1Y ) (A.1.30)

H15 := Y 1Z − Z1Y (A.1.31)

[H15, H1] = (Y X −XY )1Z − (ZX −XZ)1Y

= −2iZ1Z − 2iY 1Y

= −2i(Z1Z + Y 1Y ) (A.1.32)
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H16 := Z1Z + Y 1Y (A.1.33)

[H14, H5] = X1(ZY − Y Z) +X(Y Z − ZY )1−X(ZY − Y Z)1−X1(Y Z − ZY )

= −2iX1X + 2iXX1 + 2iXX1− 2iX1X

= 4i(XX1−X1X) (A.1.34)

H17 := XX1−X1X (A.1.35)

[H13, H2] = (ZY − Y Z)1X + 1(Y Z − ZY )X − 1(ZY − Y Z)X − (Y Z − ZY )1X

= −2iX1X + 2i1XX + 2i1XX − 2iX1X

= 4i(1XX −X1X) (A.1.36)

H18 := 1XX −X1X (A.1.37)

The set {−iH0,−iH1,−iH2,−iH3,−iH4,−iH5,−iH6,−iH7,−iH8,−iH9,−iH11,−iH12,−iH13,
− iH14,−iH15,−iH16,−iH17,−iH18} forms a basis for LX whereas H0 may be replaced by H̃10.
We remark that by linear combination of H̃10, H17 and H18 the elements XX1, X1X and 1XX
can be generated.

Having this basis for the Lie algebra LX at hand, we may answer the question whether a gate is
achievable by controlling only the x-�eld or not, at least for the gates 11X, 1X1, and 1

√
SWAP.

The answer is, 'yes, they are', i.e. that they are contained in the reachable set of the control
system, namely in the Lie group eLX which corresponds to the algebra LX . The reasoning for
stating this becomes clear considering the elements of LX . We have seen that the elements
−i(11X) and −i(1X1) are contained in the algebra. Hence, the gates 11X and 1X1 can be
reached due to the relations

−i(11X) = e−i
π
2

(11X), (A.1.38)

−i(1X1) = e−i
π
2

(1X1). (A.1.39)

The square root of swap 1
√

SWAP is generated up to an irrelevant phase by e−i
π
8
S23 (recall Eq.

(2.4.18)), where S23 is de�ned as

S23 = 1XX + 1Y Y + 1ZZ. (A.1.40)

We point out that −iS23 is an element of LX as may be seen by linear combining the basis
elements.
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A.2 Fourier transform of optimal control �elds: Power spectrum

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 24: Power spectrum for the optimal control �elds of Fig. 15(a). The colours correspond
to the ones in Fig. 15(a).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 25: Power spectrum for the optimal control �elds of Fig. 15(b). The colours correspond
to the ones in Fig. 15(b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 26: Power spectrum for the optimal control �elds of Fig. 16(a). The colours correspond
to the ones in Fig. 16(a).

67



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 27: Power spectrum for the optimal control �elds of Fig. 16(b). The colours correspond
to the ones in Fig. 16(b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 28: Power spectrum for the optimal control �elds of Fig. 17. The colours correspond to
the ones in Fig. 17.

69



References

[1] D. Burgarth, S. Bose, C. Bruder, and V. Giovannetti, Phys. Rev. A 79, 060305(R) (2009).

[2] D. D'Alessandro, Introduction to Quantum Control and Dynamics (Taylor & Francis, Boca
Raton, 2008).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam-
bridge University Press, Cambridge, 2000).

[4] P. Kaye, R. La�amme, and M. Mosca, An Introduction to Quantum Computing (Oxford
University Press, Oxford, 2007).

[5] M. A. Nielsen, Phys. Lett. A 303, 249 (2002).

[6] E. Bagan, M. Baig, and R. Muñoz-Tapia, Phys. Rev. A 67, 014303 (2003).

[7] D. Dong and I. R. Petersen, arXiv:0910.2350v1.

[8] S. G. Schirmer, H. Fu, and A. I. Solomon, Phys. Rev. A 63, 063410 (2001).

[9] D. D'Alessandro, Systems & Control Letters 47, 87 (2002).

[10] S. Lloyd, Phys. Rev. Lett. 75, 346(4) (1995).

[11] N. Weaver, J. of Math. Phys. 41, 240 (2000).

[12] L. H. Pedersen, N. M. Møller, and K. Mølmer, Phys. Lett. A 367, 47 (2007).

[13] S. G. Schirmer, I. C. H. Pullen, and P. J. Pemberton-Ross, Phys. Rev. A 78, 062339 (2008).

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
Fortran 77 and 90: The Art of Scienti�c and Parallel Computing (Cambridge University
Press, Cambridge, 1997).

[15] X. Wang, A. Bayat, S. G. Schirmer, and S. Bose, Phys. Rev. A 81, 032312 (2010).

[16] P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University
Press, Oxford/New York, 1991).

[17] J. Werschnik and E. K. U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007).

[18] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series, and products (Academic Press,
New York, 1965).

[19] H. D. Raedt, A. H. Hams, K. Michielsen, and K. D. Raedt, Comp. Phys. Commun. 132, 1
(2000).

[20] A. H. Hams and H. D. Raedt, Phys. Rev. E 62, 4365 (2000).

[21] N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge University Press,
New York, 2007).

70


	Introduction
	Basics of quantum computation, information, and control
	Quantum bits
	Quantum entanglement
	Qubit state space
	Unitary operators and quantum gates
	Single-qubit operations
	Multiple-qubit operations
	Universality of quantum gates
	Average gate fidelity


	Controllability and Lie algebras
	Lie Algebras and Lie groups
	Controllability test: The dynamical Lie algebra

	Local operator control of a Heisenberg three-spin chain
	Motivation
	Sketch of the problem
	Calculation of the fidelity
	Maximization of the fidelity
	Implementation of the gate 11X: Procedure A
	Implementation of the gate 11X: Procedure B
	Implementation of other gates: Procedure A

	Sensitivity of the fidelity
	Procedure A
	Procedure B

	Search for smoothened optimal control fields
	Fourier transform
	Smoothing filters
	Unitary evolution
	Results


	Generalization to Heisenberg spin chains of arbitrary length
	Calculation of the Hamiltonian
	Comparison between two, three, and four spins
	Minimal time
	Sensitivity of the fidelity


	An application: Error correction circuit
	Conclusions
	Acknowledgments
	Appendix
	Basis of the dynamical Lie algebra for controlling the x-field only
	Fourier transform of optimal control fields: Power spectrum


