Quantum-control approach to superconducting qubit arrays

Vladimir M. Stojanović

Condensed Matter Theory & Quantum Computing Group
UNIVERSITY OF BASEL
Outline of the talk

- Introduction to quantum control
Outline of the talk

- **Introduction to quantum control**

- **Local quantum control of Heisenberg spin-1/2 chains**

 R. Heule, C. Bruder, D. Burgarth, and VMS,
Outline of the talk

- **Introduction to quantum control**

- **Local quantum control of Heisenberg spin-1/2 chains**

 R. Heule, C. Bruder, D. Burgarth, and VMS,

- **Quantum-control realization of a Toffoli gate in circuit QED**

 VMS, A. Fedorov, A. Wallraff, and C. Bruder,
Outline of the talk

- Introduction to quantum control

- Local quantum control of Heisenberg spin-1/2 chains
 R. Heule, C. Bruder, D. Burgarth, and VMS,

- Quantum-control realization of a Toffoli gate in circuit QED
 VMS, A. Fedorov, A. Wallraff, and C. Bruder,

- Conclusions and Outlook
Quantum control: generalities

- **State-selective control**: How to steer a quantum system from a given initial state to a pre-determined final state?

- **Operator (state-independent) control**: How to realize a desired unitary transformation (target quantum gate)?

\[H(t) = H_0 + \sum_{j=1}^{p} f_j(t) H_j \]

\(f_j(t) \) – control fields

The system is **completely controllable** if \(H(t) \) can give rise to an arbitrary unitary transformation on its Hilbert space.
Spin-$\frac{1}{2}$ chain with XXZ Heisenberg interaction

nearest-neighbor XXZ Heisenberg coupling:

$$H_0 = J \sum_{i=1}^{N_s-1} \left(S_{i,x} S_{i+1,x} + S_{i,y} S_{i+1,y} + \Delta S_{i,z} S_{i+1,z} \right)$$

(for definiteness: $J, \Delta > 0$)

Zeeman-like local control Hamiltonian:

$$H_c(t) = \underbrace{h_x(t) S_{1x}}_{f_1(t) H_1} + \underbrace{h_y(t) S_{1y}}_{f_2(t) H_2}$$

total Hamiltonian:

$$H(t) = H_0 + H_c(t)$$
Local control in qubit arrays with “always-on” interactions

conventional control

local control
Complete controllability of an XXZ chain

Acting on the x- and y-components of the first spin in an XXZ Heisenberg spin chain renders the chain completely controllable!

sufficient to show that the dimension of the Lie algebra \mathcal{L}_{xy} generated by $\{-iH_0, -iS_{1x}, -iS_{1y}\}$ is $d^2 - 1$ ($d \equiv 2^{N_S}$)

$$\Rightarrow \mathcal{L}_{xy} \cong su(d) \Rightarrow e^{\mathcal{L}_{xy}} \cong SU(d) \text{ (complete controllability)}$$
Complete controllability of an XXZ chain

Acting on the x- and y-components of the first spin in an XXZ Heisenberg spin chain renders the chain completely controllable.

Sufficient to show that the dimension of the Lie algebra \mathcal{L}_{xy} generated by $\{-iH_0, -iS_{1x}, -iS_{1y}\}$ is $d^2 - 1$ ($d \equiv 2^{N_s}$)

$$\Rightarrow \mathcal{L}_{xy} \cong su(d) \Rightarrow e^{\mathcal{L}_{xy}} \cong SU(d) \text{ (complete controllability)}$$

Generalization: local controllability of quantum networks

D. Burgarth, S. Bose, C. Bruder, and V. Giovannetti, PRA 79, 060305(R) (2009)
Control objectives (target gates)

CNOT on the last two qubits of the chain:

\[
\text{CNOT}_{N_s} \equiv \mathbf{I} \otimes \ldots \otimes \mathbf{I} \otimes \left(\begin{array}{c}
|0\rangle\langle0| \otimes \mathbf{I} + |1\rangle\langle1| \otimes \mathbf{X}
\end{array} \right)_{N_s - 2} \text{CNOT}
\]

Flip (**NOT**) of the last qubit in the chain:

\[
\text{X}_{N_s} \equiv \mathbf{I} \otimes \ldots \otimes \mathbf{I} \otimes \mathbf{X}_{N_s - 1}
\]

sufficient to use an \(x\) control field!

√SWAP on the last two qubits of the chain:

\[
\text{SWAP}_{N_s} \quad \text{reminder:} \quad \sqrt{\text{SWAP}} \equiv e^{i \frac{\pi}{8}} e^{-i \frac{\pi}{8}} (\mathbf{X} \otimes \mathbf{X} + \mathbf{Y} \otimes \mathbf{Y} + \mathbf{Z} \otimes \mathbf{Z})
\]
Control pulses and fidelity maximization

alternate x and y (or x only !) piecewise-constant controls:

\[U(t_f) = U_{y,N_t/2} U_{x,N_t/2} \cdots U_{y,1} U_{x,1} \]

\[U_{j,n} \equiv e^{-iH_{j,n}T} \quad (j = x, y) \]
Control pulses and fidelity maximization

alternate x and y (or x only !) piecewise-constant controls:

$$h_x(t)$$

$\begin{align*}
h_{x,1} \\
h_{x,2} \\
h_{x,3}
\end{align*}$

full time evolution (total time $t_f \equiv N_t T$):

$$U(t_f) = U_{y,N_t/2}U_{x,N_t/2} \ldots U_{y,1}U_{x,1}$$

$$U_{j,n} \equiv e^{-iH_{j,n}T} \quad (j = x, y)$$

gate fidelity:

$$F(t_f) = \frac{1}{d} \left| \text{tr}[U^\dagger(t_f)U_{\text{target}}] \right|$$

$$\begin{bmatrix} 0 \leq F(t_f) \leq 1 \end{bmatrix}$$

maximize $F = F(\{h_{x,n}; h_{y,n}\})$ numerically for $N_s = 3, 4$
Optimal control pulses for the X_3 flip gate

Example results:

1. $N_t = 70, \ T = 0.5 \ J^{-1}$

 $F = 1 - 10^{-10}$

2. $N_t = 70, \ T = 0.243 \ J^{-1}$

 $F = 1 - 2 \times 10^{-6}$
Optimal control pulses for the X_3 flip gate

example results:

1. $N_t = 70, \; T = 0.5 \; J^{-1}$
 \[F = 1 - 10^{-10} \]

2. $N_t = 70, \; T = 0.243 \; J^{-1}$
 \[F = 1 - 2 \times 10^{-6} \]

For fixed t_f, more rapid switching can lead to much higher F!

for total time $t_f = 30 \; J^{-1}$:

$N_t = 20, 40, 60, 70$

$F = 0.76, 0.96, 0.999, 1 - 10^{-8}$
Δ ≈ 5 yields shortest times!

For $F \geq 1 - 10^{-3}$

$$t_{\text{CNOT}_3} \approx 11.3 \ J^{-1}$$

$$t_{\text{CNOT}_4} \approx 4.5 \ t_{\text{CNOT}_3}$$
Minimal gate times: Optimal values of anisotropy Δ

$\Delta \approx 5$ yields shortest times!

For $F \geq 1 - 10^{-3}$

$$t_{\text{CNOT}_3} \approx 11.3 \ J^{-1}$$

$$t_{\text{CNOT}_4} \approx 4.5 \ t_{\text{CNOT}_3}$$

for $\Delta \gtrsim 11$ shorter X_3 gate times for x-only control!

\Rightarrow design principle for superconducting qubits:

$$\frac{E_C}{E_J} \leftrightarrow \Delta$$
“Intrinsic robustness”: CNOT$_3$ gate ($\Delta = 1.0$)

\[t_f \equiv N_t T = 30J^{-1} \]

\[h_{j,n} = h_{j,n}^0 \rightarrow \text{randomly chosen } h_{j,n} \in (h_{j,n}^0 - \delta, h_{j,n}^0 + \delta) \]
“Intrinsic robustness”: $\sqrt{\text{SWAP}_3}$ gate ($\Delta = 1.2$)
Saturation value of fidelity

Average fidelity for noisy gate implementation (Nielsen, 2002):

\[
\overline{F}(\varepsilon, U) = \sum_{j=1}^{d} \frac{\text{tr} \left[U U_j^\dagger U^\dagger \varepsilon(U_j) \right]}{d^2(d + 1)} + d^2
\]

perfect gate implementation: \(\varepsilon : \rho \rightarrow \varepsilon(\rho) = U \rho U^\dagger \Rightarrow \overline{F}(\varepsilon, U) = 1 \)

Equivalent form involving generators \(\{T_j\} \) of \(SU(d) \):

\[
\overline{F}(\varepsilon, U) = \frac{1}{d} + \frac{2}{d(d + 1)} \sum_{j=1}^{d^2-1} \text{tr} \left[U T_j U^\dagger \varepsilon(T_j) \right]
\]

full randomization: \(\varepsilon : \rho \rightarrow \varepsilon(\rho) = 1_d/d \Rightarrow \overline{F}(\varepsilon, U) = 1/d \)
Spectral low-pass filtering of control fields

practical limitation:
control fields cannot have arbitrarily high frequencies!

frequency-filtered control fields:
\[
\tilde{h}_j(t) = \mathcal{F}^{-1}[f(\omega)\mathcal{F}[h_j(t)]]
\]

ideal low-pass filter:
\[
f(\omega) = \theta(\omega + \omega_0) - \theta(\omega - \omega_0)
\]

\(\omega_0\) – cutoff frequency
Toffoli-gate realization with superconducting qubits

state of the art: two-qubit gates with $F > 90\%$ [DiCarlo et al., (2009)]

TOFFOLI ≡ controlled-controlled-NOT
ToFelli-gate realization with superconducting qubits

state of the art: two-qubit gates with $F > 90\%$ [DiCarlo et al., (2009)]

TOFFOLI \equiv controlled-controlled-NOT

- trapped-ion [$F \approx 71\%$],
 - photonic [$F \approx 81\%$] realizations in 2009!
- conventional
 - 6 CNOTs + 10 single-qubit operations
 - approach not feasible due to long gate times!
- Way out: **use third level**
 - A. Fedorov et al., arXiv:1108.3966: $F = 64.5 \pm 0.5 \%$
 - M. D. Reed et al., arXiv:1109.4948: $F = 78 \pm 1 \%$
Toffoli-gate realization with superconducting qubits

state of the art: two-qubit gates with $F > 90\%$ [DiCarlo et al., (2009)]

TOFFOLI \equiv controlled-controlled-NOT

- trapped-ion [$F \approx 71\%$],
 photonic [$F \approx 81\%$] realizations in 2009!
- conventional approach not feasible due to long gate times!
- Way out: use third level
 A. Fedorov et al., arXiv:1108.3966: $F = 64.5 \pm 0.5 \%$
 M. D. Reed et al., arXiv:1109.4948: $F = 78 \pm 1 \%$

Can quantum control be of help?

$F \xrightarrow{\text{decoherence}} F \ast \exp(-t_g/T_2)$
Three-qubit (transmon) circuit QED setup at ETH

effective XY-type model:

$$H_0 = \sum_{i<j} J_{ij} (\sigma_{ix} \sigma_{jx} + \sigma_{iy} \sigma_{jy})$$

$$J_{12} = J_{23} = J \approx 30 \text{ MHz}, \quad J_{13} \approx 5 \text{ MHz}$$

$$H_c(t) = \sum_{i=1}^{3} \left[\Omega_{x}^{(i)}(t) \sigma_{ix} + \Omega_{y}^{(i)}(t) \sigma_{iy} \right]$$

$$\sqrt{\Omega_{x}^{2} + \Omega_{y}^{2}} \lesssim 130 \text{ MHz}$$
Toffoli gate in circuit QED: results

cutoff frequency:
\[
\omega_0 = 500 \text{ MHz}
\]
\[
\omega_0 \approx 17J!
\]

\[t_g \approx 140 \text{ ns} \quad F \approx 99\%
\]
\[t_g = 75 \text{ ns} \quad F \approx 92\%
\]
Conclusions and Outlook

- Minimal gate times in qubit arrays with XXZ-type interaction depend strongly on the anisotropy Δ [CNOT $\xrightarrow{} \Delta \approx 5$]!

- Large gate fidelities possible in the presence of random errors and for frequency-filtered control fields!

- Using quantum control, within only 75 ns a Toffoli gate can be realized with intrinsic fidelity above 92%!