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1 Introduction

The spin-Hall conductivity in the ballistic case [1, 2]

σz
yx =

e

8π
.

In the diffusive case, due to the vertex renormalization, [3]

σz
yx = 0.

Other papers confirmed this result, see [4, 5, 6].

Motivation: check the consistency of the calculation and improve its precision.

2 Hamiltonian and its eigensystem

Rashba spin-orbit interaction term modifies the Hamiltonian of a disordered system as follows:

Ĥ ′ =
p̂2

2m
+ α(σ̂1p̂y − σ̂2p̂x) + U(~r), (1)

where σ̂12 are Pauli matrices, and U(~r) is a short-range disorder potential:

〈U(~r)U(~r ′)〉 = (2πντ )−1δ(~r − ~r ′).
The spin-orbit term in the Hamiltonian (1) modifies expression for the current operator:

~̂j =
ieh̄

2m

[(

~∇ψ̂†
)

ψ̂ − ψ̂†~∇ψ̂
]

−
e2

mc
ψ̂†

(

~A + ~̃A
)

ψ̂,

where together with an ordinary vector potential ~A a fictitious vector potential
~̃A is introduced:

~̃A = −αmc/e× (−σ̂2, σ̂1, 0)T . (2)

The spin-current operator is independent on
~̃A:

~̂j
sz

= −
ih̄2

4m

[

ψ̂†σ̂3~∇ψ̂ − (~∇ψ̂†)σ̂3ψ̂ −
2ie

h̄c
~Aψ̂†(~r)σ̂3ψ̂(~r)

]

.

Due to the presence of a Pauli matrix in the expression for the current vertex, the diamagnetic term

equals zero for the spin current.

3 A generalized Kubo-Greenwood formula

In Keldysh technique the spin current equals to

~jsz(ω) = −
ih̄2

2m

∫ ∞

−∞

dE

2π
Tr

{

(

~̂p−
e

h̄c
~A
) σ̂3

2
ĜK(E,E − ω)

}

, (3)

where GK is the Keldysh component of the matrix 2x2 Green function, Tr stands for the trace in both

momentum and spin spaces, and line denotes averaging over impurities configurations. Loop expan-

sion:

σz
yx = |e|

∑

n

sn
(pFl)

n
, pFl ≫ 1,

l =mean free path

The charge current operator

p̂x −
e

c
Ãx = pFn̂x +

(

p̂x − pFn̂x −
e

c
Ãx

)

, n̂x ≡
p̂x
p

The leading term term

• In zero loop diagrams, gives the contribution∝ e(pFl) to σz
yx

• In first loop diagrams, gives the contribution∝ e to σz
yx

The correction

• In zero loop diagrams, gives the contribution∝ e to σz
yx

• In first loop diagrams, gives the contribution∝ e
pFl

to σz
yx

Thus, taking into account the contribution from
(

p̂x − pFn̂x − e
cÃx

)

in zero-loop diagrams means we

have to consider the contribution from pFn̂x in first-loop diagrams.

4 Zero-loop approximation.
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Figure 1. Diagrams for the spin Hall conductivity in the zero-loop approximation.

Wavy line denotes diffuson.

σz
yx =

e

2πm2
Tr

[σ3

2
pyĜR

(

px −
e

c
Ãx

)

ĜA

]

. (4)

One can generate diagrams of the disorder averaging technique from (4) by “dressing” it with dif-

fuson and cooperon lines. In the zeroth loop approximation, the averaging of (4) produces the two

diagrams in fig. 2.

The result:

+

(

p̂x −
e
c
Ãx

)
(

p̂x −
e
c
Ãx

)

p̂x = 0=

=⇒ current vertex renormalization results in the cancellation of the anomalous term in the charge

current vertex.

5 Weak localization correction (one loop)

Figure 2. Weak localization diagrams.

An example of the expression for one of the diagrams:

=
e

2πm2

3
∑

γγ′=0

Tr

{

∫

d2p

(2π)2
GA(~p )py

σ3

2
GR(~p )σγ ×

×
[

σγ′

GR(~q − ~p )
(

−px −
e

c
Ãx

)

GA(−~p )
]T

}
∫

d2q

(2π)2
Cγγ′

(~q )

All together, the diagrams add up to zero

6 Connection between the spin current and the magnetization

Without magnetic field and for non-magnetic impurities [7]

˙̂sk(t) = −2mαĵsz

k
(t), k = x, y

- valid for arbitrary ~E and for systems with interaction.

The magnetization

〈 ˙̂sk〉(t) = −2mα〈ĵsz

k
〉(t).

In diffusive systems, stationary state is reached at t→ ∞. =⇒ the spin-Hall current must be zero

at ω = 0.

Thus, the result of [1] for a clean sample σz
yx = e

8π means that 〈ŝy〉 → ∞, t → ∞, which is

impossible!

(this can be also generalised for the Dresselhaus term.)
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Figure 3. Spin-Hall current decay in time. (only the contribution from zero-loop diagrams) The period

of oscillation is 1/∆, and the exponential decay time is τ .

7 Conclusions

• We have calculated the zero-loop and the weak localization contributions to the σz
yx.

• Both contributions result zero independently.

• General argument: spin-Hall current is zero at ω = 0 and for B = 0.

See our article [8].
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