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1 Introduction

The spin-Hall conductivity in the ballistic case [1, 2]
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In the diffusive case, due to the vertex renormalization, [3]
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Other papers confirmed this result, see [4, 3, 6].
Motivation: check the consistency of the calculation and improve its precision.

2 Hamiltonian and its eigensystem

Rashba spin-orbit interaction term modifies the Hamiltonian of a disordered system as follows:
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where 612 are Pauli matrices, and U () is a short-range disorder potential:

(UAU ") = 2rvr) Lo (7 — 7).
The spin-orbit term in the Hamiltonian (1) modifies expression for the current operator:
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where together with an ordinary vector potential A a fictitious vector potential A is introduced:
A= —amc/e x (=6°,6,0)". (2)

The spin-current operator 1s independent on A:
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Due to the presence of a Pauli matrix in the expression for the current vertex, the diamagnetic term
equals zero for the spin current.

3 A generalized Kubo-Greenwood formula

In Keldysh technique the spin current equals to
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where G¢ 1s the Keldysh component of the matrix 2x2 Green function, Tr stands for the trace in both
momentum and spin spaces, and line denotes averaging over impurities configurations. Loop expan-
sion:
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The charge current operator
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The leading term term
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e In zero loop diagrams, gives the contributionox e(prl) to o,

Z

e In first loop diagrams, gives the contributionc e to 0,
The correction
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e In first loop diagrams, gives the contributioncx ]ﬁ to oy

e In zero loop diagrams, gives the contributionc< e to o

Thus, taking into account the contribution from (153; — prig — ¢ A

have to consider the contribution from ppn,. in first-loop diagrams.

») in zero-loop diagrams means we

emall:
4 Zero-loop approximation.
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Figure 1. Diagrams for the spin Hall conductivity in the zero-loop approximation.
Wavy line denotes diffuson.
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One can generate diagrams of the disorder averaging technique from (4) by “dressing” it with dif-
fuson and cooperon lines. In the zeroth loop approximation, the averaging of (4) produces the two
diagrams in fig. 2.

The result:

—> current vertex renormalization results in the cancellation of the anomalous term 1n the charge
current vertex.

S Weak localization correction (one loop)

Figure 2. Weak localization diagrams.

An example of the expression for one of the diagrams:
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All together, the diagrams add up to zero
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6 Connection between the spin current and the magnetization
Without magnetic field and for non-magnetic impurities [7]
sp(t) = —2may=(t), k=m,y

- valid for arbitrary E and for systems with interaction.
The magnetization

(s)(t) = —2ma(7°)(¢).

In diffusive systems, stationary state is reached at { — oo. = the spin-Hall current must be zero
at w = 0,

Thus, the result of [1] for a clean sample o, = g- means that (5,) — oo, ¢ — oo, which is
impossible!

(this can be also generalised for the Dresselhaus term.)
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Figure 3. Spin-Hall current decay in time. (only the contribution from zero-loop diagrams) The period
of oscillation is 1/A, and the exponential decay time is 7.

7 Conclusions

Z

e We have calculated the zero-loop and the weak localization contributions to the o ,..

e Both contributions result zero independently.

e General argument: spin-Hall current 1s zero at w = 0 and for 5 = 0.

See our article [8].
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