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Three-particle interaction

Classical mechanics:

U =
∑

i≤N

U1(~ri) +
∑

i<j≤N

U2(~ri ,~rj) +
∑

i<j<k≤N

U3(~ri ,~rj ,~rk).

Quantum mechanics:

Û =

∫
U1(~r )ψ̂†(~r )ψ̂(~r )dd r +

+
1

2

∫∫
U2(~r1,~r2)ψ̂

†(~r1)ψ̂
†(~r2)ψ̂(~r2)ψ̂(~r1)d

d r1d
d r2 +

+
1

6

∫∫∫
U3(~r1,~r2,~r3)ψ̂

†(~r1)ψ̂
†(~r2)ψ̂

†(~r3)ψ̂(~r3)ψ̂(~r2)ψ̂(~r1)d
d r1d

d r2d
d r3 +

+ . . .

The distinction between U2 and U3 is clear in classics, but not
in quantum mechanics.



Motivation

Questions about three particle interaction:

1. Does it exist?

2. Can it be important?

3. How can it be treated?

4. How strong is its effect on transport properties?

Answers:

1. Yes, if the particles are not classical “points”.

2. When the usual two particle interaction has no effect.

3. With standard Boltzmann equation approach.

4. exp[−EF/T ], since it is governed by scattering in the
bottom of the band.



Plan

◮ The “usual” two-particle interaction does not affect
conductivity

◮ Kinetic equation

◮ Scattering amplitude

f 0
R(εkn)

TR = T + ∆T
µR = εF

x

f 0
L(εkn)

TL = T
µL = εF + eV
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Coductance and thermopower in the

non-interacting limit

f
(0)
k =

{
f 0(εk−µL,TL) ≡ f 0

L (εk) for k > 0, (right movers),
f 0(εk−µR,TR) ≡ f 0

R(εk) for k < 0, (left movers).

f 0
L and f 0

R have different temperature and chemical potential.

hot right movers
cool left movers

in the middle of the wire
Momentum distribution

k

TR = T + ∆T TL

−kF kF

conductance : G (0) =
2e2

h

(
1− e−TF/T

)
,

thermopower : S (0) =
kB

e

TF

T
e−TF/T .



The effect of “usual” two-particle interaction

(if there is no disorder)

◮ In 2D and 3D “Umklapp” processes contribute to
transport coefficients.

◮ In 1D momentum conservation p1 + p2 = p′
1 + p′

2

together with the energy conservation allows only
interchange of particles for spectrum with positive
curvature (i.e., ∀k k∂kεk > 0).
(but not for linear spectrum, e.g., graphene)

=⇒ The 2-particle processes are ineffective in 1D.



Kinetic equation −→ vk∂x fk(x) = Ikx [f ]

Ik1x [f ] =
∑

σ2σ3σ1′σ2′σ3′

∑

k2k3
k1′k2′k3′

W123;1′2′3′×

× [f1f2f3(1− f1′)(1− f2′)(1− f3′)− f1′f2′f3′(1− f1)(1− f2)(1− f3)] ,

Boundary conditions for reflectionless contacts:

fk(x = 0) = f 0
L (εk) for k > 0, fk(x = L) = f 0

R(εk) for k < 0,

f
(1)
k (x) =

x

vk

Ik [f
(0)] for k > 0, f

(1)
k (x) =

x − L

vk

Ik [f
(0)] for k < 0.

←−Questionable, since most relaxation occurs out of the wire!
Assumption: short wire

=⇒ f = f (0) + f (1) + . . .

Task: linearize collision integral and find f (1) ∝ (V ,∆T ) to
first order in W .



Calculating scattering amplitude W ,

or how to cheat Keldysh
The most important problem is solved not strictly, saying:
– Generalized Fermi rule, come on!

W123;1′2′3′ =
2π

ℏ
|〈1′2′3′|VG0V |123〉c|

2δ(Ei − Ef ),

G0 = [Ei − H0 + i0]−1,

V =
1

2L

∑

k1k2q

∑

σ1σ2

Vqc
†
k1+qσ1

c
†
k2−qσ2

ck2σ2ck1σ1 ,

|123〉 = c
†
k1σ1

c
†
k2σ2

c
†
k3σ3
|0〉,

|1′2′3′〉 = c
†
k1′σ1′

c
†
k2′σ2′

c
†
k3′σ3′
|0〉,

or, in other words, saying that we want the 3-particle Green
function under the modulus.
(BTW, it is not completely retarded)



The diagrams for the 3-particle Green function

(εb + εc − εc′ − εb+c−c′)
−1

Ṽkc′−kc

Ṽka′−ka

kaσa
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1

4L2
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c
=

1

2
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The result – MANY terms (however, with some symmetries)



Most important scatterings
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1 f 0

2 f 0
3 (1 − f 0
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3′) ∝ e−EF/T .



Final steps and results

Ṽq = V0

[
1 −

(
q

q0

)2

+ O(q4)

]
,

where the parameter q0 ≪ kF describes the screening due to
the metallic gates.
Results: thermopower and conductance in the low temperature
limit:

S = kB

e

EF

T
e−EF/T

[
1 + L

ℓeee

]
,

G = 2e2

h
− 2e2

h
e−EF/T

[
1 + L

ℓeee

]
,

ℓ−1
eee = 8505

2048π3

(V0kF)4

ε4
F

(
kF

q0

)4(
T
EF

)7

kF,



Conclusions

◮ Three-particle collisions are essential in 1D.

◮ Unclear: how does this match Keldysh kinetic equation?

◮ The problem is interesting, but the authors could solve it
more carefully.
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