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» Introduction — a few remarks on glasses

» ultrametric structure leads to exponential distribution of
lowlier energies

» Confirmation: Numerical simulations of the glassy regime

— evidence of ultrametricity + exponential statistics +
log energy relaxation



A few remarks on glasses

» Almost degenerate ground state: infinite number of the
low-lying states separated by barriers growing infinitely in
the thermodynamic limit.

«— results in the ultrametric structure of the
configurational space.

» Coulomb gap (Efros & Shklovskii): vg, = 0.
» The Hamiltonian:
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What is ultrametric topology
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» reminds Cantor set
» almost degenerate ground state

» energy relaxation is just a random walk over this tree



Calculation 1

{Xi}"_, «— identical random variables = energies within one
set of sibling(=relating) states.

Then M2 max; X; is also a random variable.
Let Py (x) < P{X; < x}

Po(x) L P{M < x} = [Py(x)]".

Theory of extreme distributions says: Stability postulate:
Many iterations (going to the root the tree) do not change the
distribution. = functional equation

Pa(x) = [Pa(anx + bn)]",an > 0,b, > 0
It can be shown that x € RU {—o00, 400} =

P.(x) = exp[—nexp(—x)], a,=1, b,=In(n),



Calculation 2

Thus we have to plug the extreme distribution
Pn(E) = exp[—nexp(—E)],
in to the formula for the global distribution density

p(E) = [ dnw(n)oE)

where w(n) is the weight of the n-trees in the configurational
space.



Calculation 3

An example of how a glass can hop from one energy minima
to another (minimas have almost equal energy)

® How many possibilities of the branch with n
< ® sibling states are? We unite sites in pairs.

—
(we need that pairs touch each other, otherwise we can move
one atom without moving the other)

The number of clusters in the percolation theory

W, xn° §>2
(near the percolation threshold s = 187/91)
= p(E) x exp[—(E/E)],

where Ej is some characteristic energy (s-dependent).



Some relax with no formulas

Exponential statistic of low-lying energy levels results in creep
motion (e.g., of vortices in HTSC or domain walls), which, in
its turn, results in the 1/f-noise.

Are we sure that we really have
ultrametricity?



Numerics: Model

Let's do numerical simulations with the Hamiltonian

n—V
H=Y e o= Uan+ S ),
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a; € [—1; 1] =uniformly distributed random site energies.
Choice of parameters:

U =Coulomb interaction at the distance of the lattice constant
—> we are well in the glassy regime.



local minima

Numerics:
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Figure: Energy distribution of about 12000 local minimum states

in half-log representation with linear fit. Linear scale with

exponential fit (triangular inset).

«—— in fact, the level distribution is exponential.



Numerics: evidence of the ultrametricity

Are those local minima differ a lot? Let's calculate —
Normalized site occupation number difference:

Dog=N"1D [nf =]

Interpretation: we can obtain
all our numerous energy
minima by moving only 5.4%
of electrons to different cites
—> we have ultrametricity!
Essential: system size should
not be small!
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Figure: distribution of A 3.



Numerics: Energy relaxation
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Conclusions

» Ultraparametricity results exponential distribution of deep
levels.

» Glassy Hamiltonian (strong disorder + long-range
Coulomb) leads to both ultraparametricity and
exponential distribution.

» It also manifests logarithmic ralaxation.
» Size matters!

» Speculation: all disordered strongly correlated systems
have creep motion and 1/f noise.
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