

Journal Club of 03.08.2004 by Oleg Chalaev

cond-mat/0405523:

Non exponential quasiparticle decay and phase relaxation in low dimensional conductors

Gilles Montambaux and Eric Akkermans

problem:

How dephasing and phase decoherence due to electron-electron interaction in disordered system occur?

There are many times. . .

- Life time of the excitations in the Landau Fermi liquid theory, or inelastic time: Let $P(t)$ be the probability for a quasiparticle to stay in its initial state. Then τ_{in} is the characteristic scale of $P(t)$.
- relaxation of the phase coherence: if $\Phi(t)$ = phase difference between time reversed trajectories [1], then τ_ϕ is the time scale of $\langle \exp [i\Phi(t)] \rangle$.
- time of the relaxation of the distribution function to the equilibrium:

$$\frac{\partial f_E}{\partial t} = -\frac{f_E - f_E^{\text{eq}}}{\tau_f}$$

All times are of the same order(?)

Why τ_ϕ and τ_{in} are important in mesoscopics?

dephasing kills the interference effects like:

- weak localization correction to the conductivity
- negative magnetoresistance in small $L_\phi \gtrsim L_H = \sqrt{\frac{\hbar c}{2eH}}$ magnetic fields, see
B. L. Altshuler & A. G. Aronov, JETP letters, 33, 499.
- so that τ_ϕ gives temperature dependence of these effects.

τ_{in} serves as a cut-off, e.g. during the calculation of weak localization correction to conductivity in 2D [4].

Known results

- Landau IX: In the Fermi liquid $1/\tau_{\text{in}} \propto (\epsilon - E_F)^2$.
- B. L. Altshuler & A. G. Aronov, JETP letters, 30, 482 (1979):
Landau theory ignores the finiteness of the electron free path.
In the disordered system $1/\tau_{\text{in}} \propto (\epsilon - E_F)^{3/2}$, so that the quasiparticles' damping is stronger.
- Common point:
the decay is exponential $\propto \exp[-t/\tau_{\text{in}}]$

The key point

Why the decay is supposed to be exponential?

- because, like in a nuclear decay, every act of inelastic collision is independent from the others.

Montambaux & Akkermans:

this is not true because of the time-energy uncertainty $\Delta\omega\Delta t \gtrsim \hbar$ in the Fermi golden rule; in other words, the energy conservation during inelastic collisions is not exact for finite t .

The derivation of τ_ϕ

Writing the kinetic equation for f_E in Keldysh technique and linearising it, one obtains (see pp.348-349 [6])

$$\frac{1}{\tau_\phi} = \frac{T}{\nu} \int_0^T d\omega \int \frac{d^d q}{(2\pi)^d} \frac{1}{(Dq^2)^2 + \omega^2}$$

then we say that in the integral $\omega \sim Dq^2$ so that $\int d^d q \sim (\omega/D)^{d/2}$. The upper limit in $\int d\omega$ is not important because it never diverges. Let us look on the lower limit. In 3D neither the lower limit diverges and no cut-off is required. Let us consider quasi-1D case, $d = 1$,

$$\int \frac{d^3 q}{(2\pi)^3} = \frac{1}{V} \sum_{\vec{q}} = \frac{1}{S} \int \frac{dq}{2\pi}, \quad \frac{1}{\tau_\phi} = \frac{T}{S\nu\sqrt{D}} \int_0^T \frac{d\omega}{\omega^{3/2}}$$

usually they say that the lower cut-off is $1/\tau_\phi$, obtaining constant decay rate with $\tau_\phi \propto T^{-2/3}$. In [1] they say: the lower cut-off is $1/t$, not $1/\tau_\phi$!

Conclusions

- phase and excitations' relaxations in 2D are not exponential.
- the reason for this is taking into account the time-energy uncertainty in the Fermi golden rule.
- both τ_ϕ and τ_{in} have the same temperature dependence; also the corresponding relaxation laws are the same.

this presentation has been prepared using only free software;
see my presentations page for details.

References

Note: only references closely used in preparing this presentation are listed here. For deeper insight see Altshuler's papers between 1978-1984.

- [1] Gilles Montambaux and Eric Akkermans,
[arXiv:cond-mat/0405523](https://arxiv.org/abs/cond-mat/0405523) and [arXiv:cond-mat/0404361](https://arxiv.org/abs/cond-mat/0404361).
- [2] Pines, Nozieres, "The theory of quantum liquids", 1966, p. 62-63.
- [3] B. L. Altshuler and A. G. Aronov "Electron-electron interaction in disordered systems" - in series edited by A. L. Efros and M. Pollak, Elsevier, 1985.
- [4] Elihu Abrahams, P. W. Anderson, P. A. Lee and T. V. Ramakrishnan,
[Phys. Rev. B, 24, 6783 \(1981\)](https://doi.org/10.1103/PhysRevB.24.6783).
- [5] my informal [notes](#).
- [6] J. Rammer and H. Smith, [Rev. Mod. Phys. 58, 323 \(1986\)](https://doi.org/10.1103/RevModPhys.58.323).