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Chapter 1

Introduction

This is the public version of my notes. It contains “undefined references” to some unpublished stuff which I didn’t
include here.

These notes are available on the web.
“Неофициальность” этих записок значит, что они нуждаются в “зачистке” (которая потихонечку идёт вместе с

добавлением нового материала). Если наткнётесь на ошибку или глупость, пожалуйста, сообщите мне.
These are my notes(=Aufzeichnungen, Notizen): calculations, proofs that are not written in my PhD thesis and

papers. Even if you print this (rather large) document, I suggest that you have it opened in Acrobat Reader simultane-
ously. This is because this .pdf file contains many hyperlinks which facilitate surfing through it.

Take a look on the following mesoscopic experiments: 0803.0568. A nice book is [1] – covers almost all topics of the
mesoscopics. (Sometimes I am arguing with it, however.) What is written here is close to [2]. See also [3, 4, 5, 6, 7],
0310012, 0402203.

1.1 Introduction

In these notes, we consider metals with isotropic Fermi surface, which in reality is almost never true, as one can see
on this webcite. See p. [8]31 about this. Typical values of EF, pF, D, τ, Lϕ, τϕ, etc. can be found in §[9]11.4 and on
p. [cond-mat/0412664]4.

For a definition of a mesoscopic conductor, see p. [8]200. Roughly speaking, a conductor, which is smaller than the
dephasing length, is called a mesoscopic conductor1:

LT,Lϕ & L, LT =

√

~D

2πkT
(1.1)

!The restrictions for both LT and Lϕ come because of the interaction. so what is the difference? (Lϕ is the coherence
length, LT is the thermal length.2) This means that a mesoscopic system is typically small and cold:

L ∼ 5 ÷ 40µm, T ∼ 0.1K, τD = L2/D = 1 ÷ 60ns.

Our main tool in calculations is the disorder averaging technique [5, 10]. We study systems with randomly placed
impurities forming random potential U(r) for electrons. All impurities are identical. A common value for the mean
scatttering (on impurities) free path is l ∼ 100Å. This means that a metal (or a semiconductor) which we study is really
“dirty” in comparison with the “clean” (ballistic3) case, where l ∼ 10µm, see p. [11]90. In addition, we always suppose
that4

pFl≫ ~⇐⇒ µτ≫ ~, pF
df
=

√

2mµ, (1.2)

1For the clear definition of Lϕ see, e.g. papers of Montambaux. Do not mix up Lϕ and Lin; the latter can be much larger, see sec. ??.
2The importance of LT is discussed on p.[4]42, but this explanation seems me just wave-handing. The effect of LT, if it exists, would appear

automatically, e.g., in my conductivity calculations neglecting the interaction. BTW, LT is not mentioned among the relevant length scales in [1].
3It is interesting how this approach is changed in the limit τ→∞, see cond-mat/0611523.
4On p. [12]483 (§95), (1.2) is the requirement of the quasiclassical approximation. On the other hand, this is just the condition for the absence

of strong (Anderson) localization.
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where µ is the (T-dependent) chemical potential. We would also like to assume that T ≪ ~/τ – only this will allow us,

e.g., to approximate momentum operators as ~̂p ≈ fF~̂n, where ~̂n is the direction operator, |~n| = 1. Also in 3D this allows
us to forget about energy-dependence of the DoS. BTW, τ itself is also energy and temperature5 dependent.

!Relations between energy scales, see (1.19):

distance between neighbouring levels = δ = ~vF/L≪ T ≪ ~/τ0 ≪ EF. (1.3)

This model of disorder was first studied by I. M. Lifshitz (И. М. Лифшиц) [14] see p. [15]62; it is different from the
Anderson model where potential holes (or bariers) with random depth (height) are placed in the cites of a regular
lattice.

The potential U(~r ) is supposed to be δ-correlated6:

U(~r )U(~r ′)
df
=
~

2δ(~r − ~r ′)
2πν0τ̃

, (1.4)

where the overbar ¯. . . denotes averaging over different disorder configurations, τ̃ is the parameter characterizing the
strength of disorder, and ν0 is the DoS (defined on p. 21) at the Fermi level7. Eq. (1.4) reflects the assumption that the
potential of every single impurity is independent from the others. Due to the fact that the number of impurities is very
large, there must be a sort of a Central Limit Theorem for the potential function U(r) (which is a sum of contributions
from all impurities) saying that it has Gaussian distribution ([17]20). As a consequence, the moment of arbitrary order

GG . . .G averaged over such a potential can be expressed in terms of first Ḡ and second GG moments.8

• The highest priority have notations from [5], then those from [19]. The symbol ♣ in an equation means that the
equation is to be checked.

• d denotes the (quasi)dimension, Li denotes size of the system in ith direction, V =
∏

j L j is the volume, µ is the

(T-dependent) chemical potential,9 pF is the Fermi momentum,10 pF = mvF, m is the electron effective mass, vF is
the Fermi velocity, e < 0 is the charge of an electron. The standart (i.e. superconducting) flux quantum ϕ0 = π/|e|.
Let us define

∀~a,~b ∈ Cd ~a ◦~b ≡ (a1b1, a2b2, . . . , adbd)T , ~a
(

~b ◦ ~c
)

=

(

~a ◦~b
)

~c,

~a/~b ≡ (a1/b1, a2/b2, . . . , ad/bd)T ,
←→
ab = {aib j}di, j=1 (diadic).

I use the mathematical notation Supp
[

f (x)
] ≡

{

x
∣

∣

∣

∣

f (x) , 0
}

in the approximate sence: Supp
[

f (x)
]

means the set of

{x} where f (x) differs sufficiently from zero. The following square root (
√

z) and argument branches (arg z) is chosen
by default: √

Reiϕ =
√

Reiϕ/2, R > 0, −π < ϕ ≡ arg z ≤ π ⇒
√

i ≡ (1 + i)/
√

2.

• (x, y)n ≡ ∑n
m=0 amxmyn−m with arbitrary/unknown (and independent on x and y) coefficients {am}nm=0

. Used in the

relation symbols to indicate precision, e.g., O[(xa, xb)6] ≡ O(xa, xb)6 in (7.13). More generally,

(x1, x2, . . . , xm)n
=

n
∑

i1=0

n−i1
∑

i2=0

. . .

n−∑m−2
k=1 ik

∑

im−1=0

ai1,i2,...,im−1
xi1

1
xi2

2
. . . xim−1

m−1
x

n−∑m−1
r=1 ir

m .

• Note on graphical representation: for all 3 types of Green’s functions used here, G ≡ GC, GR and GA it is assumed
x −→ x′ = G(x, x′) and x←− x′ = G(x′, x). Correspondingly, p −→ p′ = G(p, p′) and p←− p′ = G(p′, p);

5I mean phonons which actively contribute to elastic scattering, see p. [13]471.

6See Fig.8.3 on p.[16]300; See also ([cond-mat/0305478]3.8-11) for more general case. Also arXiv/0801.1786. See also!condmat of F. Guinea
in 2008, where it is claimed that in case of long-range (logarithmic) disorder conductivity can be inverse proportional to the concentration of impurities.

7In the problems taking spin into account, we assume that ν is the same, as in the spinless case. That is, ν is the DoS per spin.
8This is true only within the ZLA, see Sec. 3.6 and 8.3. Also VK told me that this is incorrect. If it would be so, then tunnelling DoS would have

Gaussian distribution which is not correct in general case. The problem is discussed in [18]. However, I don’t see what’s wrong in my reflection
apart from the fact that Central Limit Theorem that I know is not for random functions, but for random variables.

9In these notes I (historically) also often use the symbol EF, which in most occasions should be substituted with µ.
10pF is derived from µ and thus also has temperature dependence.[20] Another source of its temperature dependence is the Landau Fermi liquid

theory.!Is it true that vF =
∂ε
∂p

∣

∣

∣

∣

p=pF

=group velocity?

http://arxiv.org/abs/cond-mat/0305478
http://arxiv.org/abs/0801.1786
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• Pauli matrices: σα
i j
, where α = 0 . . . 3 and σ0 is the unity matrix.

The variables p, k, q are used for momenta, ξ is energy variable (usually denote deviation from µ), ω is the frequency.

!Note: in the past p, k, q had dimension cm−1; I did not yet change this (inserting ~ where appropriate) completely.
The same mess I might have with ξ. All (including those energetic and momentum) constants assumed to have
their usual CGSE values. Also all other quantities have their normal CGS dimensions.

The gauge with scalar potential equal to zero is used. We define the current operator in momentum space without

∝ ~A term11:

~̂j = e~̂v =
ie

~
[Ĥ, x] = without SOI = −i

e~

m
~p ≈ −i

epF

m
~n ≡ −ie~v ≡ −iev~n, v = pF/m. (1.5)

• The equations and figures from the books/papers are citated with the corresponding number from the bibliogra-
phy: e.g., ([21]2.22) stands for the equation (2.22) from [21].

• Instead of saying, e.g., “diagram in Fig. 3.1(a)” I say “diagram 3.1(a)”.

In the following, we introduce averages GR/A and GRGA over the ensemble of samples. All higher order averages (like

e.g. GRGRGAGA) are expressed as infinite series of these ones and additional lonely impurity lines, e.g. like in case of
Hikami boxes in (13.35) and (13.36).

In some occasions, I use indices “I” and “II” in order to distinguish between one and the same operator in the first
and second quantization.

1.2 Notations and abreviations

√
i ≡ (1 + i)/

√
2, ξ = p2/(2m) − EF,

ℜ,ℑ = real and imaginary part,
g = pFl/~ = 2EFτ/(2~)≫ 1, see (3.41),
AE=asymptotic expansion,
BC=boundary conditions, BTW=by
the way, CCV=charge current ver-
tex, CD=cooperon or diffuson,
CS=coordinate system, DL=Daniel
Loss, DA=diffusion approximation,
DAT=disorder averaging (diagram-
matic) technique, DF=distribution
function, DM=density matrix or
Dmitry Maslov, DoS=density of
states, EG=electron gas, EM=Evgeni
Mischenko (Евгений Мищенко),
FI=functional integral, FQ=first
quantization, GF=Green’s func-
tion, GFB=Green functions box
(I mean any box made of Green
function lines: bubbles, triangles,
squares, etc), IAL=impurity averaging

lines, IMHO=in my humble opinion,
KE=kinetic equation, lhs=left hand
side, NLSM=non-linear sigma-model,
ME=matrix element, MF=magnetic
field, MSH=Mischchenko, Shytov,
Halperin, see sec.7.3, OP=one-
particle, OS=Oleg Shalaev, (Олег Ша-
лаев – myself), QED=quantum elec-
trodynamics, QKE=quantum kinetic
equantion, QM=quantum mechanics
(or mechanical), rhs=right hand side,
RMT=random matrix theory, s.c.=so
called, S.e.=Schrödinger equation,
SCBA=СБП=self-consistent Born ap-
proximation, sec. 1.4, SHC=spin-Hall
conductivity, SOI=spin-orbit interac-
tion, SPM=stationary point method
(=?=метод стационарной фазы),
SQ=second quantization, VG (Вита-
лик, ВГ) =Vitaly Golovach (Виталий
Головач), VK (ВК) =Vladimir Kravtsov

(Владимир Кравцов), VRD=vertex
renormalization diagram, WL=weak
localization, WF=wave function,
WR=Wigner representation=mixed
coordinate-momentum representa-
tion, ZBA=zero-bias anomaly (in
the tunneling DoS), ZLA=zero loop
approximation, ♣=to be rechecked,
©=thanks to.

Русские сокращения: ВАХ=вольт-
амперная характеристи-
ка, ВФ=волновая функция,
КТП=квантовая теория по-
ля, МП=матрица плотно-
сти, МЭ=матричный эле-
мент, СФ=собственная функция,
ФИ=функциональный интеграл,
функциональное интегрирование,
ФП=фазовый переход.

1.3 Basics

The Fouirier tranformation on a finite interval:

f (x) =
1

L

∑

kn

eiknx f (kn), f (kn) =

∫ L

0

dxe−iknx f (x),

∫ ∞

−∞

dk

2π
= lim

L→∞
1

L

∑

kn

, (1.6)

11That is, there is no direct coincidence between (1.5) and (3.2). In the presence of the SOI, see (6.7),6.8 and Sec. 7.2. An alternative way of

calculating velocity operator is to apply Legendre transformation to the Hamiltonian, so that vα =
∂H
∂pα

.

http://theorie5.physik.unibas.ch/loss/
http://theorie5.physik.unibas.ch/loss/
http://theorie5.physik.unibas.ch/shalaev/
http://theorie5.physik.unibas.ch/golovach/
http://www.ictp.trieste.it/~kravtsov/
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where kn = 2πn/L, n ∈ Z. From (1.6) one gets also the correspondence between δ - functions in discrete and continous k
- space: Lδn,0 corresponds to 2πδ(k).

∀~p = 2π~n/~L

∫

ddrei~p~r
= Vδ~p,0.

Physical magnitudes are usually given by
∫

dE f (E)G(λ,E); sometimes f (E) ≡ 1, sometimes it is some distribution func-
tion. The shift by chemical potential µ permits to write Green’s functions in a (1.9) - like form and also eliminate
µ from the equilibrium (i.e. Fermi) and sometimes (since deviations from equilibrium are usualy near the µ - level)
nonequilibrium distribution functions. This does not damage the diagram technique.

Note that since in diagram technique in the coordinate space one should use U(x) = U(~r )δ(t) for time independent

potential (see [5], p. 118), the dimension of the potential in the momentum space is lengthd/time (i.e. the same as the
dimension of U0).

1. If one-variable function does not depend on time: f (x) = f (~r ), then in Fourier space f (q) = 2πδ(ω) f (~q ).

2. If two-variable function depends only on difference of coordinates: G(x, x′) = G(x − x′) =
∫

dd+1p

(2π)d+1 eip(x−x′)G(p), then

G(p, p′) =
∫

dd+1xdd+1x′e−ipx+ip′x′G(x, x′) = (2π)d+1δ(p − p′)G(p).

3. GT(~r,~r ′ ) ≡ G(~r ′,~r ); GT(~p, ~p ′ ) ≡ G(−~p ′,−~p ).

4. Two - variable Matsubara (-Green) function in case of conserving-energy interaction reduces to G(En,El) =
1
TδnlG(En).

5. If we consider external potential as a perturbation and there is no spatial homogeneity, in coordinate and Fourier
space:

δ1G(x, x′) =

∫

dd+1yG(x, y)V(y)G(y, x′), δ1G(p, p′) =

∫

dd+1k1dd+1k2

(2π)2(d+1)
G(p, k1)V(k1 − k2)G(k2, p

′).

In case of spatial homogeneity the latter reduces to δ1G(p, p′) = G(p)V(p − p′)G(p′).

6. A simple first order exchange diagram in the interaction case:

~p ~p ′

=

∫

dd+1qdd+1q1dd+1q2

(2π)3(d+1)
G(p, q1 + q)G(q1, q2)G(q2 + q, p′)V(q).

1.4 Average of a Green’s function

A single scattering event is described in [22]. . . In this section we calculate the disorder average of a GF, GR/A; later

(see Sec. 2) we also calculate GRGA. It is correct12 what is told in [5], beginning from ([5]39.7) and till β = sign β/(2τ).
The disorder strongly affects properties of the system, starting from its GFs. A GF of the disordered system can not

be approximated with a first few orders of perturbation expansion; one has to sum the entire (infinite) series.13

At this point it is pertinent to explain why the diagrams with crossed impurity lines can be disregarded. The
following is not a general proof14 (which would be valid for an arbitrary diagram), but just a comparison of two
diagrams in Fig. 1.1(b).

After averaging one realizes that series for Ḡ(0)(~p ) ≡ G(~p ) implies the following self energy15 [ SCBA , see ([5]39.7) and
sec. 3.7]:

ΣR ≡ = + + + . . . =
n

V~2

∑

p1

|U(~p − ~p1)|2GR(~p1)+

+
n2

(V~2)2

∑

p1,p2

|U(~p − ~p1)|2|U(~p − ~p1 − ~p2)|2G2
R(~p1)GR(~p2) + . . . , ~q1 = ~p − ~p1, ~q2 = ~p − ~p1 − ~p2.

(1.7)

12Except one thing: to my opinion in ([5]39.6) there should be − i signω
2τ instead of

i signω
2τ .

13Note: the perturbation theory for GR and GA is the same as for casual function G because the disorder potential is time-independent [so there is
no frequency (energy) transfer in momentum space].

14I have a feeling that it is not hard to make it general, though.
15 Validity: according to ([0305478]3.10b), SCBA is justified if conductance ≫ e2/h; otherwise corrections like diagram 1.1(b) become important.

http://arxiv.org/abs/cond-mat/0305478
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~r1 ~r2~r ~r2 ~r ′~r1
(a) The main contribution.

~r1 ~r2 ~r1 ~r2~r ~r ′
(b) The correction (which is a part of the diagram [0305478]5.c.i).

Figure 1.1: Two possible diagrams for Ḡ.

The expression for ΣR can be obtained from (1.7) by changing index “R”→“A”. The expression for the self energy of the
time-ordered GF Σ can be obtained from (1.7) by removing index “R”. For arbitary realistic impurity potential U(~p ) every
term in (1.7) is finite. Note that momenta variables ~qi, i ≥ 1 are “large”: ∀i qi ∼ pF in (1.7).

Why do we ignore diagrams with crossed IAE, e.g., 1.1(b), in the ladder-series (1.7)?

Bad (hand-waving) explanation: The values of momentum in diagrams for the average Green function obey two
types of limitations. The first type stands for laws of momentum conservation which are strict. The second is the
requirement that all Green functions momenta have absolute values in the range16 p ∈ (pF−1/l, pF+1/l). Let us compare
2 diagrams in Fig. 1.1 for fixed value of external momentum ~p. The condition that “internal” modules of momentum
must be close to EF in case of the diagram in Fig. 1.1(a) leads to the system of 2 approximate equations:

p1 ≈ pF, p2 ≈ pF,

while the same condition applied to the diagram in Fig. 1.1(b) leads to the system of three approximate equations:

p1 ≈ pF, p2 ≈ pF, |~p1 + ~p2 − ~p | ≈ pF.

From this we conclude that, independent of dimensionality, the right diagram is (pFl) times smaller than the left one17.

Better explanation: We see that a diagram with “crossings” will always be small if we consider it in the frequency-
coordinate space, using the coordinate-space expressions (1.25) for the averaged GF. We see that coordinate arguments
are always “entangled” in a diagram with “crossings”, and are disentangled in a “ladder-like” diagram. Because of that
the integrand in the expression for an “entangled” diagram will contain an oscillating factor ∼ exp[i~p~r/~] exp[−r/l], while
the integrand for a “ladder-like” diagram contains only decaying exponent ∼ exp[−r/l]. The integration result will be
then pl/~ times smaller for an “entangled” diagram compared to a “ladder” diagram. It is important to remember that

p is determined by the frequency argument ω of the GF: p =
√

2m(ER + ω). In case of a non-degenerate 3DEG say, in
a semiconductor, for low-energy part of the relevant electrons pl . ~ so that the loop expansion is not valid. People
don’t care about that and just use (IMO, totally unjustified in this case) Boltzmann equation, e.g., to calculate spin
relaxation rate and obtain meaningful results. I would be happy to resolve this puzzle. . .

O.k, that was all about “entangled” diagrams, let’s move on. Next we define

ℑΣR/A
E

df
=∓ 1

2τE
, (1.8)

where I want to consider general case, when τ depends on energy.18 It is clear that such a dependence would result in
temperature dependence of physical quantities expressed in terms of GFs. The average of a Green function will have
the form19:

G(p) =
1

E − ξ~p + i
2τE

E
|E|
, GR/A(p) =

1

E − ξ~p ± i
2τE

, τE ∈ R. (1.9)

16That is, we don’t expect that our expression for ḠR/A is valid for p≪ pF − 1/l, i.e., deep under the surface of the Fermi sphere. So, we are unable
to calculate the non-universal contributions, see Sec. 3.7.1.

17In the case of diffuson and cooperon the proof is actually the same, as for Ḡ – we must just “unbend” corresponding diagrams.
18We always assume that τ is momentum-independent; this is a self consistent and absolutely neccessary assumption.
19It is easy to demonstrate, that, generally GE

R
= GE†

A
; see p. [23]82. One notes that this holds in the simpliest case (1.9) and in more complicated

case (6.17).

http://arxiv.org/abs/cond-mat/0305478
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In (1.9) ξ~p = ε(~p ) − EF = energy of the particle shifted by the Fermi energy.20 Note however, that in the left part of the

kinetic equation ([21]2.60) stands ℜΣ. This I!don’t understand: apparently, according to (1.9) and (1.8) there should
stand iℑΣ! This concerns also the discussion about ℜΣ is ignored in τ, see below. See Sec. 3.7.3.

Let us derive τE. The result will be the same for two models:

1. The limit of the hard-sphere model with the sphere radius → 0. The potential will be

U(~r ) =U0















N
∑

a=1

δ(~r − ~ra) − n















, τ̃
df
=

(

2πν0nU2
0/~

2
)−1

, n ≡ N

V
, (1.10)

∫

drU(~r ) = 0, or, in momentum space, U(q = 0) = 0,

U(~r ) ≡ 1

VN

∫

dr1 . . .drNU(~r ) = 0, U(~r )U(~r ′) = nU2
0[δ(~r − ~r ′) − n].

2. Arbitrary white-noise δ-correlated potential. {see generalizations: ([cond-mat/0305478]3.8)} Here τ̃ is defined by

U(~r )U(~r ′)
df
=

~
2

2πν0 τ̃
δ(~r − ~r ′). (1.11)

Historically I learned the first one first:

ΣR/A(~q~m,E) ≡ ΣE(~q~m) =
n

V

∑

~n

|U(~q~m − ~p~n)|2
E − ε(~p~n) − ΣE(~p~n)

=
nU2

0

V

∑

~n

1

E − ε(~p~n) − ΣE(~p~n)
, (1.12)

In the approximation with the constant DoS21 ν(ξ) ≈ ν0, (1.12) is equivalent to considering only the first term22 in (1.7):

ℑΣ(0)
R
= nU2

0

∫ ∞

−∞
dξν0 × ℑ

1

E − ξ + iδ
, δ = +0, (1.14)

From (1.14) it follows : τE = τ0 = τ̃. (1.15)

The E-dependent part of ℑΣE can be estimated as23 E
τEF
≪ E. In short, we can think that24 ReΣE = 0.

The imaginary part of (1.12) gives us an important sum rule for ℑΣE ≡ − 1
2τE

:

∀E 2πν0τ̃ =
~

2

nU2
0

=

∫ ∞

−∞
dξ

ν(ξ)

(E − ξ)2 +
1

4τ2
E

=

∫ ∞

−∞
dξ
ν(ξ + E)

ξ2 +
1

4τ2
E

=
1

V

∑

~n∈Zd

GR(~p~n,E)GA(~p~n,E), (1.16)

20It seems to me that VK once has told me that ε(~p ) ,
~

2p2

2m , however in [10] (and e.g., also in [24]) it is written that ε(~p ) =
~

2p2

2m . Also DL is convinced

that ε(~p ) =
~

2p2

2m . If ℜΣ essentially depends on ~p, then ε(~p ) ,
~

2p2

2m . Note that if ε(~p ) =
~

2p2

2m , then in 2D nothing saves us from the divergence of
ℜΣ in (1.12), since ν(ξ) is approximately a constant. However, a non-parabolicity in semiconductors can occur due to the Kane model, see, e.g.,
PRB73113314.

21See pp. [25]28-37. We define ν as spinless DoS, so that it is the same in case of spinful and spinless electrons: (Ω0 is the complete solid angle;
in 3D Ω0 = 4π, in 2D Ω0 = 2π).

ν(ξ) ≡ 1

V

∑

~n

δ

(

ξ +
µ

~
− ε(~p~n)

~

)

so that
1

V

∑

~p

=

∫

dξν(ξ)
dΩ

Ω0
. (1.13)

Another way is to say that νE =
∂NE
∂E

, where NE is the number of levels inside the sphere E < EF, defined from NE(2π)d/V = VE, where VE is the volume

of the sphere in momentum space with the sphere radius ps such that ε(ps) = E. In 2D VE = 2mEπ, and in 3D VE = (2mE)3/24π/3. The two definitions
differ by the factor V.

22It is easy to see that due to the analytical properties the other ones = 0. Due to the same reason we can substitute G→ G(0) in (1.7).
23Here E appears because we want it to go to 0 when E → 0, τ - because it appears due to the averaging over impurities, and EF serves just for

dimension. (τEF)−1 ∼ 0.02.

24Если бы это было не так, можно бы было попробовать засунуть его в Фурье - преобразование: f (x) =
∫ ddpdE

(2π)d+1 ei~p~r−i(E−µ−ReΣE)t f (p). Но непонятно:

а можно ли вообще так сдвигать преобразование Фурье? Ясно, что есть по меньшей мере 1 частный случай, когда это недопустимо: если
ReΣE = E. Вдобавок положение усугубляется тем, что в отличие от ℑΣE ≡ − 1

2τE
вполне возможно, что приближение ReΣE = const недопустимо, и

связано это может быть с расходимостью
∫

dξ в уравнении для ReΣE, аналогичному (1.16).

http://arxiv.org/abs/cond-mat/0305478
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From (1.16) we see that out of the constant DoS approximation

τ̃

τ0
=
ν̃

ν0
, ν̃

df
=

∫ ∞

−∞

dz

π

ν(z/(2τ0))

1 + z2
.

Given (1.9), from (3.33) we have
1

V

∑

~n∈Zd

GR(~p~n,E)GA(~p~n,E) = 2πνEτE, (1.17)

so that from (1.16) one concludes that

∀E νEτE = ν0τ0; τ0 = τ̃, so that ν̃ = ν0 =

∫ ∞

−∞

dz

π

ν(z/(2τ0))

1 + z2
, (1.18)

so that the even part of δνE
df
= νE − ν0 changes its sign, if not δνE ≡ 0. This should hold for a non-interacting system so

that there is no surprise that this claim is not valid, e.g., for the zero bias anomaly.
Let us parametrize25 dependencies of νE and τE in the vicinity of point E = 0:

νE ≈ ν0 (1 + xE) = ν0 + δνE, τE ≈ τ0
(

1 − yE
)

, |E| . T∗/2, xT∗/2≪ 1, yT∗/2≪ 1. (1.19)

We assume that energy-dependent deviation in (1.19) is small for ν: δνE ≪ ν0 and for all other quantities: τE, DE (see

(13.5)), etc. Since integrals
∫ ∞
−∞ dξ converge on ξ ∼ ~/τ, we also have to impose x ≪ 1. (Otherwise the loop expansion is

not valid, see Sec. 3.6.)
Already from (1.18) it follows that x = y, but historically I’ve deduced it in another way:

Если мы попробуем посчитать поправку к τ жульническим способом [т.е. разложим ν(ξ) в (1.14) вплоть до линей-
ного члена], то получим:

ℑΣ =
nU2

0

~2

∫

ddp

(2π)d
ℑG(0)

R/A
(~p ) ≡ ∓ i

2τE
,

1

τE
= 2πν0nU2

0

(

1 + E
ν′0
ν0

)

, (1.20)

Or we can choose a more honest way by expanding (1.16) in powers of E. This leads to

∫ ∞

−∞
dξν(ξ)

























ν′0(ξ)/ν(ξ)

ξ2 +
1

4τ2
0

+
τ′0/τ0

2τ2
0

(

ξ2 +
1

4τ2
0

)2

























= 0,

ν′0(ξ)/ν(ξ) ≈ x, τ′0/τ0 = −y, ν(ξ) ≈ ν0.

(1.21)

From both (1.20) and (1.21) it follows that x = y so that νEτE = ν0τ0. (1.22)

Expanding (1.16) up to second order in E one can see that still νEτE = ν0τ0.

Now some notes about the derivation of (13.5). For small q we use an approximation ε(~p + ~q ) = ε(~p ) + ~v~q + bq2/2.
Before perfoming the integration over ξ one should expand the integrand in powers of E, ω and ~q. Then for the zero-
order term (1.16) is applied; in other terms one can use (1.19) for ν(ξ). To make

∑

~n GR(~p~n,E)GA(~p~n − ~q~m,E − ω) invariant
under arbitrary shift in ~n ∈ Z

n, and in particular, to maintain the obvious relation
∑

~n GR(~p~n,E)GA(~p~n − ~q~m,E − ω) =
∑

~n GR(~p~n + ~q~m,E)GA(~p~n,E − ω), one has to assume b = xD0/τ0 = v2x/d, so that

ε(~p + ~q ) = ε(~p ) + ~v~q + x
D0

2τ0
q2
= ε(~p ) + ~v~q + x

v2

2d
q2. (1.23)

From (1.23) it folllows that usually, when we are not interested in the effects due to the ξ-dependence of the DoS ν, we
can drop quadratic term in the decomposition of ε(~p + ~q ).

For future purposes we may need the generalization of DoS (1.13):

ν(ξ, v) ≡ 1

V

∑

~n

δ
(

ξ + µ − ε(~p~n)
)

δ
(

v + vF −
∥

∥

∥

∥

~∇ε(~p~n)
∥

∥

∥

∥

)

,

∫ ∞

−vF

dvν(ξ, v) = ν(ξ).

25An example where one need to introduce see (1.19) - like dependence is thermoelectric effect, see- [8], p. 103.
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1.5 More about Born approximation

See also PRB531850.
In this Section, we consider the 3D case, since in 2D Gω(r) is a Hankel function, which we don’t like. It is known

that (4πr)−1 is the 3D Green function for the Laplace operator δ. [In particular, one can check that ∀r , 0 ∆(4πr)−1 = 0.]
The equation for the GF of a free electron gas is the Helmholz equation ([19]7.7a):

(

k2
+ δ

)

Gω(~r − ~r ′) = −2m

~2
δ(~r − ~r ′), k =

√

2m(µ + ω~)/~, µ ≡ µ(T), (1.24)

where the minus sign coincides with math-physics definition, but is opposite to the [5]-standard (which we follow).
One checks that ∀r , 0 ∆eikr/(4πr) = −k2eikr/(4πr), so that

G(r) = −2m

~2

exp(ikr − δr)

4πr
, (1.25)

where δ = +0 for the electron gas in the absence of disorder; Eq. (1.25) is valid also for the disorder-averaged GF in the
SCBA if one assumes that δ is finite (it can be also ω-dependent).

G(p) =

∫

d3re−i~p~rG(r) =

= − 2m

~2
· 2π

∫ ∞

0

drr2

∫ 1

−1

dze−iprz exp(ikr − δr)

4πr
= −2m

~2

∫ ∞

0

drr
1

−2ipr

(

e−ipr − eipr
)

exp(ikr − δr) =

= − 2m

~2

1

−2pi

[

1

ip + ik − δ −
1

−ip + ik − δ

]

=
2m

~2

[

k2 − p2
+ 2ikδ − δ2

]−1
,

δ~k

m
≡ 1

2τ

From (1.24) we conclude that τ inherits the temperature-dependence from the chemical potential µ. The product ντ
has to be constant so that (1.11) is temperature-independent.

Following DM, the simplest Born self energy is just G(a), where a =size of an impurity (which saves ℜΣ from diver-
gence):

=
GR(a)

2πντ/~2
= − ~

2τ
eika−δa ~

pFa
, ℑ = − ~

2τ
· ~k

pF
, ℜ =

−~2

2pFaτ
, ka≪ 1. (1.26)

where a is the size of an impurity (a cut-off for large momenta). Eq. (1.26) gives the first-order Born correction to the
self energy, if the GF line is the one for the free electron gas (with δ = +0). If δ is finite, (1.26) gives the self-consistency
equations. In case when ω = 0, these are

GR(~p ) =
[

G(0)
R

(~p ) − Σ
]−1

, Σ = =
GR(a)

2πντ/~2
, =⇒ k2

= k2
0 +

1

al
,

1

τω
=

~k

pF
· 1

τ
.

Thus τ in the averaged GF has a weak ∼ ω/EF frequency dependence. This dependence may be neglected near the
Fermi level; there are cases, however, when it is important – e.g., in the calculation of the DM-norm in (??), which
defines pF. Thus we can not evaluate (??), so that even at ω = 0 it is not obvious that k = pF and τω=0 = τ.

Более того, усреднённые ГФ зависят от ФР посредством импульса Ферми pF =
√

2mµ (в равновесии ФР определя-
ется температурой, и pF зависит от T). Замечу, что это противоречит духу (хотя и не букве) высказываний между
формулами ([26]16,17).

The second-simplest diagram we calculate in the momentum representation:

=
2πντ

~2
· · ,

[

2πντ

~2

]2

· ℑ =

(

2m

~2

)2 4π

(2π)3

∫ ∞

0

dp · p2
−2kδ

(

k2 − p2
)

[

(

k2 − p2
)2
+ 4k2δ2

]2
=

m2

4π~4k

[

1 +O(
δ2

k2
)

]

.

⇒ ℑ 2πντ
~2 · =

1
4kl ⇒

2πντ

~2
· ℑ · ℜ = − ~

2

16klpFaτ
≫ ℑ in case when 8klpFa≪ ~.

Next,
[

2πντ

~2

]2

· ℜ =

(

2m

~2

)2 4π

(2π)3

∫ ∞

0

dp · p2 (k2 − p2)2 − 4k2δ2

[

(

k2 − p2
)2
+ 4k2δ2

]2
=

m2δ

2π~4k2

[

1 +O(
δ2

k2
)

]

→ 0,
δ

k
→ 0.
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For simplicity let us consider the limiting case when kl≫ 1 and 8klpFa≪ ~ and ω = 0. The Born ladder can be exactly

summed:

Σ
R
= + + + . . . =















1 +
2πντ

~2
+













2πντ

~2













2

+ . . .















· = −
(

1 +
i

4kl

)

~
2eika−δa

2pFaτ
df
=µ − µ̃ − i~

2τ̃
,

where µ̃ is the renormalized chemical potential, and τ̃ is the renormalized mean scattering time:

µ̃ = µ +
~

2

2pFτ

(

1

a
− 1

4l

)

≫ µ,
~

2τ̃
=

~
2

2pFτ
·
[

1

4kla
+ k

]

⇒ τ̃≪ τ if k ∼ pF. (1.27)

We also want to take into account more sophisticated rainbow diagrams, e.g., . In order to do this we have to start

from the beginning of this Sec. with renormalized parameters:

~k→ ~k̃, δ→ 1

2k̃l

[

1

4kla
+ k

]

.

=
GR(a)

2πντ/~2
= − ~

2τ

~ exp
[

iak̃
]

pFa
, k̃ =

1√
la
, |ℑ | = ~

2τ
· ~

pF

√
la
≫ ~

2τ
,

where the GF-line stands for the GF with the renormalized parameters (1.27). We continue the procedure more and
more so that kn grows and we don’t know what to do with that:

k2
n+1 = k2

n −
2m

~2
ℜΣn = k2

n +
1

la
− 1

l2
≈ k2

n +
1

la
, kn+1δn+1 = knδn −

m

~2
ℑΣn ⇒ δn+1 =

δn +
1
2l

[

1
4k2

nla
+ 1

]

√

1 + 1
k2

nla

.

We conclude that in the limit of small a
lim
n→∞

kn = lim
n→∞

δn = ∞.

In reality, the growth could be stopped when the condition knl ≫ 1 is (no?) longer valid. (The condition δn/kn ≪ 1 will
not be violated.)

It is faster to use the SCBA: assume that exact (i.e. sum of ALL diagrams without crossings) GF looks like G(p) =

(2m/~2)(k2 − p2 − Σ), where Σ = ~
2/(2πντ)

∫

d3p/(2π)3G(p). If we denote k̃2 = k2 − ReΣ and 1/(2τ) = −ℑΣ, then the GF can be

rewritten as G(p) = (2m/~2)(k̃2 − p2 + im/(~τ)).!Stop reading here.

Now let us calculate the corrections to the Born approximation arising from diagrams with crossings. Following
DM, the corresponding correction to the free energy ΣR

ω in the momentum space is

= −
(

m

2π~2

)3
(

~
2

2πντ

)2 ∫

d3r
exp(3ik̃r)

r3
e−i~p~r

= − ~

2τ
· 1

4π
· ~

pFl
· 2π

∫ ∞

0

dr
exp(3ik̃r)

r

sin pr

pr

The expression becomes p-dependent only for p & |k̃|; the large-p asymptotic is:

ℑ = − ~

2τ
· π

2
· 3~

2pFl

ℜk̃

p
, p≫ |k̃|.

Thus this crossed diagram contributes to the p-dependence of τ. This dependence contains smallness ∝ ~/(pFl).

Consider the simplest diagram with crossing in real space:
∫

d3xe−i~p~x ~
2

(2πντ)2

∫

d3r1d3r2G(r − r1)G3(r1 − r2)G(r − x − r2),

where we used the symmetry of G: G(r1 − r2) = G(r2 − r1).

~
2

(2πντ)2

1

(4π)4

∫

d3xe−i~p~x

∫

d3r1d3(r2 − r1)
eik|~r−~r1 |

|~r − ~r1|
e3ik|~r1−~r2 |

|~r1 − ~r2|3
eik|~r−~r2−~x|

|~r − ~r2 − ~x|
, k ≈ pF/~.
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I am particularly interested in diagrams with “crossings” because external coordinates/momenta are involved in the
internal integrations. I want to prove that this “crossing” term becomes important if p is not close to pF/~. It is better
to calculate it in the momentum representation where we have one 3D-integrals less:

∫

d3q1

(2π)3

∫

d3q2

(2π)3

1

E − (~p − ~q1)2/(2m) + i0
· 1

E − (~p − ~q1 − ~q2)2/(2m) + i0
· 1

E − (~p − ~q2)2/(2m) + i0
.

First, I am not sure that this integral converges. Suppose p ≈ pF/~; then it seems that the characteristic scale of
integration is q1,2 ∼ p − pF/~. Now let us consider small values of p ≪ pF/~. Then the characteristic integration scale
grows. I mean, the integral grows when p decreases. I imagine that for small values of p its imaginary part may be
not smaller than 1/τ. If this is correct, then for values of p far from pF/~ it is insufficient to take only “ladder”-like
(i.e., “rainbow”-like) diagrams in the calculation of τ; diagrams with intersecting disorder lines may give important
p-dependent contribution. (Where p is the external momentum.)

This Section has been born in intensive discussions with D. Maslov.



Chapter 2

Average of two Green’s functions

!Conflicting notations: D sometimes stands for the diffuson self energy, and sometimes – for the diffusion coefficient.

!Развить такую идею: То, что у нас не возникает моментов (средних) выше второго порядка, есть следствие
предположения о Гауссовости нашего распределения (1.4). А то, что распределение -Гауссово, сказано, к примеру
в работе A. I. Larkin and D. E. Khmel’nitskii, Zh. Eksp. Teor. Fiz. 91, 1815 (1986) [Sov. Phys. JETP 64, 1075 (1986)], а
также в ([cond-mat/9810191]10). We consider only “ladder” diagrams, which give the main contribution to the results
(see Sec. 3.7).

!Using (13.5), we have (in case when A = 0)

C
p1

p2
=

τ̃

τ0τǫ

GR(p1)GA(p2)

−i(E1 − E2) +Dǫ(~p1 + ~p2)2
, D

p1

p2
=

τ̃

τ0τǫ

GR(p1)GA(p2)

−i(E1 − E2) +Dǫ(~p1 − ~p2)2
, ǫ ≡ E1 + E2

2
. (2.1)

In the opposite case, lq≫ 1, we have [expanding (13.2) and ignoring the ξ-dependence of DoS ν] in 2D

C
~p,E

~q−~p,E−ω

GR(~p,E)GA(~q − ~p,E − ω)
=

D
~p,E

~p−~q,E−ω

GR(~p,E)GA(~p − ~q,E − ω)
= 1 +

1

lq
+

1

l2q2
+

1 + 2iωτ

2l3q3
, (2.2)

and in 3D

C
~p,E

~q−~p,E−ω

GR(~p,E)GA(~q − ~p,E − ω)
=

D
~p,E

~p−~q,E−ω

GR(~p,E)GA(~p − ~q,E − ω)
= 1 +

π

2lq
+
π2/4 − 1 + iωτ

l2q2
,

We can see that in this case cooperon and diffuson are like in the ballistic case (when there are no impurities). This is
because of that if we are interested in very small space scales, the concentration of impurities becomes effectively very
small.

2.1 How ~A = const affects cooperon and diffuson

The influence of the magnetic field can be studied on 3 complexity levels: (i) when it only manifests itself as a phase shift

(constant vector potential, e.g. in a mesoscopic ring), (ii) due to the term −µ~σ~B and (iii) making electrons precessing,

due to the appearance of ~A in the term (p − e ~A/c)2/(2m) in Hamiltonian.

Intuitive consideration: We know that application of ~A is equivalent to adding the term −e ~A/c to momentum oper-
ators (see e.g. ([27]4.41)). Due to the fact that the denominator of a diffuson depends only on the difference between

momenta, we may expect that the diffuson will not depend on the applied field (except for the ~A-dependence of GFs in
the numerator).

Here we consider the simplest case when the vector potential ~A is constant both in time and space. The calculations

are performed for the case of a cooperon; afterwards it will be evident that the diffuson is not affected by ~A.
In order to get the perturbed self energy we can substitute GR and GA in

= Σ
(0)
2
=

1

(2πν0τ)2

∫

ddp

(2π)d
GR(p,E)GA(k − p,E − ω)

15

http://arxiv.org/abs/cond-mat/9810191
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GR GR

GA

−e~v ~A

(a)

GAGA

GR

e~v ~A

(b)

−e~v ~A −e~v ~A

GR

GA

GRGR

(c)

GR

GA

GAGA

e~v ~A e~v ~A

(d)

GR

GA

GR

GA

−e~v ~A

e~v ~A

(e)

Figure 2.1: Diagrams for calculating self energy Σ2 of a cooperon in case when ~A , 0, ~A = const. In (b) and (e) the

change of sign in the vertex (3.9) occurs because the momentum argument of GA(~k − ~p) is ~k − ~p ≈ −~npF. This is not true
for the diffuson case.

α 1 1 2 2 2

β 0 1 0 1 2

diagram from Fig.2.1 b a d e c

Table 2.1: The correspondence between diagrams in Fig.2.1 and values of α and β in ([28]A2.3). (see
LEARN/dephasing.tex)

with the expressions for them according to the perturbation theory (where the perturbation is the applied field ~A).

Note1 that as an unperturbed self energy we must take not Σ
(0)
2

(which is reducible), but the irreducible part of it

which is Σ1 = (2πν0τ̃)−1.

The first-order perturbation Σ
(1)
2

is represented by two “triangular” diagrams 2.1(a) and 2.1(b) which are both equal

to an expression (omitting n2U4
0
coefficients):

1

2πν0τ̃

∫

ddp

(2π)d
(−e ~A, ~v)G2

R(~p,E)GA(~k − ~p,E − ω) ==
1

2πν0τ̃

∫

ddp

(2π)d
(−e ~A,−~v)GR(~p,E)G2

A(~k − ~p,E − ω) = −2Dǫτǫ
τ0

τ

(

−e ~A~k
)

.

The second-order correction Σ
(2)
2

is represented by three diagrams [figs. 2.1(c), 2.1(d) and 2.1(e)]:

1

2πν0τ̃

∫

ddp

(2π)d
(−e ~A, ~v)2G3

R(~p,E)GA(~k − ~p,E − ω) =
1

2πν0τ̃

∫

ddp

(2π)d
(−e ~A, ~v)2GR(~p,E)G3

A(~k − ~p,E − ω)

= −1

2

1

2πν0τ̃

∫

ddp

(2π)d
(−e ~A, ~v)2G2

R(~p,E)G2
A(~k − ~p,E − ω) = −Dǫτǫ

τ0

τ̃

(

−e ~A~k
)2
.

Finally we obtain that cooperon changes in the following way: instead of (2πν0τ̃)−1 we have

1

2πν0τ̃

[

1 −Dǫτǫ
τ0

τ̃

(

−4e ~A~k + 4e2A2
)

]

. (2.3)

So, in accordance with the intuitive consideration, when ~A , 0 we have (compare with (2.1))

C
~p,E

~k−~p,E−ω
=
τ̃

τ0

G̃R(~p,E)G̃A(~k − ~p,E − ω)

l2ǫ(
~k − 2e ~A )2/d − iωτǫ

, (2.4)

where G̃ denotes Green functions changed due to the applied ~A.
For the diffuson we would have the same consequence of formulas with ~q − ~p substituted by ~p − ~q. It is clear that

such substitution would lead to cancellation of all the considered diagrams (see Fig. 2.1): the first two diagrams cancel
each other, while the 3rd and the 4th cancel the 5th one.

1More profound proof: C = C(0) + C(1) + C(0)Σ2C, where C1 = C0Σ1C0 and Σ2 = Σ
(0)
2
+ Σ

(1)
2
+ Σ

(2)
2
. From here it is evident that Σ1C(0) + Σ

(0)
2

C = Σ1C, so we

arrive to our statement: C = C(0) + C(0)
(

Σ1 + Σ
(1)
2
+ Σ

(2)
2

)

C.
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An important note: from (2.4) one sees that cooperon self energy (see sec. 2.2) in coordinate space is

1

2πν0τ0τǫ

1

V

∑

~n∈Zd

ei~k~n~r

Dǫ(~k~n − 2e ~A )2 − iω
, ~k~n =

2π~n

~L
. (2.5)

On the other hand, from (13.10) we have:

1

2πν0τ0τǫ

1

V

∑

~n∈Zd

ei
(

~k~n+2e ~A
)

~r

Dǫk
2
~n
− iω

, ~k~n =
2π~n

~L
− 2e ~A. (2.6)

These two expressions are equivalent. So one can introduce a rule for writing expressions for the diagrams in momen-

tum representation in case ~A = const: write the same as if A = 0 but change all sums over the momentum from (2.5) to

(2.6). The form (2.6) seems to be more useful because its definition of ~k~n is the same as for (13.10).

2.2 Considering self energy

См., напр., spinHall.pdf. One can calculate more general objects: C
p1p3

p2p4
≡ GR(p1, p3)GA(p2, p4) and D

p1p3

p2p4
≡ GR(p1, p3)GA(p4, p2).

Only “ladder” diagrams are taken into account here. Due to this fact D
p1p3

p2p4
, C

p1p3

p4p2
(even when ~A = 0).

Here are the key points for the calculation of self energy:

1. Every wavy line due to the averaging produces δ-function representing momentum conservation laws.

2. Integration is taken over momenta of all GFs, which are between the wavy lines. Finally we have the integration
over momentums which are carried by wavy lines and one δ function, representing total momentum conservation
in the diagram.

3. Except for the case r = 0 diagram with r+1 wavy lines can be obtained from the one with r wavy lines by multiplying
by independent of r magnitude X(±). Here it is essential that in the considered model the impurity potential is
constant in momentum space: U(~q ) = U0.

After all we get2

C
p1p3

p2p4
= (2π)d+1δ(p1 + p2 − (p3 + p4))GR(p1)GA(p2) ×

[

(2π)d+1δ(p1 − p3) +
1

2πν0τ̃
· GR(p3)GA(p4)2πδ(E1 − E3)

1 − X(+)

]

, (2.7)

D
p1p3

p2p4
= (2π)d+1δ(p1 + p4 − (p3 + p2))GR(p1)GA(p2) ×

[

(2π)d+1δ(p1 − p3) +
1

2πν0τ̃
· GR(p3)GA(p4)2πδ(E1 − E3)

1 − X(−)

]

. (2.8)

For ~A = 0 one can obtain (2.1) from (2.7) and (2.8) by integrating over p3 and p4. In case of ~A , 0 this correspondence
is approximate; the exact one would be if one expands GR(p3)GA(p4) in (2.7) in perturbation series up to the second

order by ~A, like in sec. 2.1.
So, the question arises: must we change the Green functions in numerators of (2.7) and (2.4) or not and (if must)

how? An expansion up to the second order by ~A would provide the exact correspondence between (2.1) and (2.7), while

the use of exact formula (13.10) would provide periodicity in ~A in cylindrical geometry. The latter seem to work, see
sec. 8.12.

So, we have3

GR(p1, p3)GA(p2, p4) =
[

C
p1p3

p2p4
+D

p1p3

p4p2
− C

(0) − C
(1)

]

[

1 +O

(

~

pFl

)]

, (2.9)

where C
(0) = D

(0) and C
(1) = D

(1) are the zeroth and first order diagrams for cooperon (or diffuson). We can also consider
somewhat “universal” self energy:

C
p1p3

p2p4
=

1

2πν0τ0τǫ

(2π)d+2δ(p1 + p2 − (p3 + p4))δ(E1 − E3)

−i(E1 − E2) +Dǫ

(

~p1 + ~p2 − 2e ~A
)2

, (2.10)

D
p1p3

p2p4
=

1

2πν0τ0τǫ

(2π)d+2δ(p1 − p2 − (p3 − p4))δ(E1 − E3)

−i(E1 − E2) +Dǫ(~p1 − ~p2)2
, (2.11)

2I wrote the formulas in this subsection for more common case with the applied constant vector potential ~A, see sec. 2.1.
3Or may be, instead of subtracting C(1) in (2.9) it is better just to say that, by definition, a cooperon has no diagram with one impurity line. I

think this is like I did in sec. 7.

http://theorie5.physik.unibas.ch/shalaev/public.html/spinHall.pdf


Chapter 2 page 18 generated October 16, 2011

31

42

1 3

2 4

GA(~k − ~p, E − ω)

GR(~p, E)

GA(~k − ~p, E − ω)

GR(~p, E)

(a)

31

2

1

2 4

3

4

GA(~p− ~k, E − ω)

GR(~p, E)

GA(~p− ~k, E − ω)

GR(~p, E)

(b)

Figure 2.2: Diagrams for (a) cooperon and (b) diffuson.

where Dǫ is the diffusion coefficient. Notice that (2.10) and (2.11) differ from their values in case of constant DoS only
by substitution of τ, D with their energy-dependent generalizations τǫ, Dǫ, etc.

However, I doubt that this will be so beautiful for Hikami boxes.

From this point until the end of the section the ξ - dependence of ν is ignored.
There is no energy transfer in cooperon or diffuson lines, so in energy representation we have simple products of

the type: GR(E1)GR(E1)ΣE1

E2
GA(E2)GA(E2). In time representation we apparently have complication: we get convolution

(свёртку). Let us write the expressions for C and D in momentum- time representation (with the removed (2π)2δ(E1 −
E3)δ(E2 − E4)):

C
~p1~p3;t1

~p2~p4;t2
=

(2π)dδ(~p1 + ~p2 − (~p3 + ~p4))δ(t1 + t2)ϑ(t1) exp
[

−Dt1

(

~p1 + ~p2 − 2e ~A
)2
]

2πν0τ2
; (2.12)

D
~p1~p3;t1

~p2~p4;t2
=

(2π)dδ(~p1 + ~p4 − (~p3 + ~p2))δ(t1 + t2)ϑ(t1) exp
[

−Dt1
(

~p1 − ~p2
)2
]

2πν0τ2
; (2.13)

In coordinate-energy representation the calculation is analogous to the GF in Sec. 1.5: in 3D we get exponential
coordinate dependence, while in 2D we get Hankel function.

In coordinate-space representation for the self energies of cooperon and diffuson we get

C~r1~r3;t1

~r2~r4;t2
=

∫

ddp1...4

(2π)4d
ei~p1~r1−i~p3~r3 ei~p2~r2−i~p4~r4

∫

dE1dE2

(2π)2
e−i(E1t1+E2t2)C

p1p3;E1

p2p4;E2
, (2.14)

D~r1~r3;t1

~r2~r4;t2
=

∫

ddp1...4

(2π)4d
ei~p1~r1−i~p3~r3 ei~p4~r4−i~p2~r2

∫

dE1dE2

(2π)2
e−i(E1t1+E2t2)D

p1p3;E1

p2p4;E2
,

In 3D C~r1~r3;t1

~r2~r4;t2
= δ(~r1 − ~r2)δ(~r3 − ~r4)δ(t1 + t2)ϑ(t1)

1

2πν0τ2

(

π

Dt1

)d/2

× 1

(2π)d
exp

[

− (~r2 − ~r4)2d

4l2t1/τ

]

exp
[

2ie(~r2 − ~r4) ~A
]

, (2.15)

D~r1~r3;t1

~r2~r4;t2
= δ(~r1 − ~r2)δ(~r3 − ~r4)δ(t1 + t2)ϑ(t1)

1

2πν0τ2

(

π

Dt1

)d/2

× 1

(2π)d
exp

[

− (~r2 − ~r4)2d

4l2t1/τ

]

. (2.16)

From (2.15) and (2.16) we see that C~r1~r3;t1

~r2~r4;t2
= D~r1~r3;t1

~r2~r4;t2
for ~A = 0.

Because of δ-functions in (2.15) and in (2.16) in coordinate representation it is natural to draw the diagrams for C
and D like in Fig. 2.2. In coordinate space we arrive to somewhat new diagram technique: a solid line denotes Green
function with coordinates in the ends of the line; to a wavy line corresponds cooperon or diffuson self energy given by
(2.15) or (2.16).

We are interested in processes, which have characteristic times ≫ τ. Here this means t1 ≫ τ; as a consequence, the
characteristic space scale of a cooperon and diffuson is much bigger than l.
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When studying in 2D case cylindrical (or torus) geometry with A = Ax , 0, we will have to study discrete version of
cooperon self energy (2.15). From (13.13) it follows that

1

Lx

∑

qnx

exp
[

i(qnx − 2eA)rx − (qnx − 2eA)2Dt
]

=
1

Lx

∑

n

exp













i
2π

Lx

(

n − ϕ

ϕ0

)

rx −
(

2π

Lx

)2
(

n − ϕ

ϕ0

)2

Dt













= ♣ 1

2
√
πDt

∑

m∈Z
e2πimΦ/Φ0 exp

[

− (rx −mLx)2

4Dt

]

,

(2.17)

where Φ = ALx and qnx = 2πn/Lx; n ∈ Z.

the following is to be combined with the previous discussion.
From (13.13) it follows that

C~x1~x2;E1

~x7~x8;E2
= C~x1~x2;E1

E2

∑

n1,n2∈Z
δ
(

x1 − x7

2L
− n1

)

δ
(

x2 − x8

2L
− n2

)

= C~x1~x2;E1

E2
δ(x1 − x7)δ(x2 − x8),

if we restrict the coordinates to have values 0 ≤ x < L.
Finally, let us write the Dyson equation for the diffuson in the mixed (Wigner) Rp-representation. In an inhomoge-

neous case

D(~R, ~p ) = 1 + exp
[

i

2

(

∂X
R∂

D
p − ∂X

p ∂
D
R

)

]

X(~R, ~p )D(~R, ~p ), (2.18)

where X(~R, ~p ) is the diffuson “bubble” in the Wigner representation. Dyson equation for cooperon is analogous to (2.18).



Chapter 3

Charge conductivity: simplest case

I probably should erase most of this section, since I’ve published a good (and short) explanation in [20]. The
general relation between j, E, and σ for the system without spatial dispersion:

j(t) =

∫ ∞

0

σ(t1)E(t − t1)dt1 ≡
∫ ∞

−∞
σ(t1)E(t − t1)dt1, σ(t1 < 0)

df
= 0 =⇒ j(ω) = σ(ω)E(ω) = σ(ω)

iω

c
Aω. (3.1)

In the important case, when a problem with initial condition is considered, E(t < 0) ≡ 0 and j(t < 0) ≡ 0, so that (3.1) is
valid also for Laplace transforms (which we denote with tilde):

j̃(−iω) = σ̃(−iω)Ẽ(−iω) =⇒ j̃(ω) = σ̃(ω)Ẽ(ω),

provided that functions j̃(p), Ẽ(p), and σ̃(p) have no branchcuts. See also (13.7).
See p.[29]100-102 and p.[29]115-116 for the connection between conductivity (проводимость) and conductance

(электропроводность).
Below the conductivity is calculated using two techniques: Matsubara and the one for T = 0. However, both of them

are questionable in this (non-equilibrium!) case.
The Matsubara technique was designed (and guaranteed to give correct results) only for the equilibrium processes,

when the Hamiltonian is time-independent. So what is written in section 3.2 should be considered as a recipe that
works, nothing more. The ground of the method lies in Keldysh technique - see Sec. 9. As for the T = 0 technique, in
addition it has a disadvantage that averaging in it is performed on the ground state only, so that all the excited states
are not taken in account.

At first I will calculate the major (Drude) contribution to the conductivity, which corresponds to the “bubble”
diagram in Fig. 3.1(a). This is a sort of a “warm-up” which helped me to understand different diagrammatic techniques:
zero-temperature, Matsubara (both described in [5]), and Keldysh (described in [21] and in Sec. 9). In Sec. 3.4 I
calculate the WL correction using Matsubara1.

3.1 Calculations using zero-temperature technique

To study conductivity we need expressions for the operator of current density (in the interaction representation) and

its value ~j(x) = 〈0|~̂j(x)|0〉 [compare with (13.9)]

~̂j(x) =
ie~

2m

[

(∇ψ̂†(x))ψ̂(x) − ψ̂†(x)∇ψ̂(x)
]

− e2

mc
~A(x)ψ̂†(x)ψ̂(x); x ≡ (~r, t), (3.2)

where the first term called “kinetic part”, and the second — “diamagnetic part” see, e.g., p.[30]160.

~j(x) =
e~

2m
lim

x′→x+0
(∇r′ − ∇r) G(x, x′) − ne2

mc
~A(x). (3.3)

1If I knew wonderful Keldysh at the time when I wrote this section, I would certainly use it instead of disgusting Matsubara. It is not only my
opinion, see cond-mat/9810191, 0109316.

20

http://arxiv.org/abs/cond-mat/9810191
http://arxiv.org/abs/cond-mat/0109316
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We wrote (3.3) to first order in ~A(x), so the dependence of N = 〈0|ψ†(x)ψ(x)|0〉 on x was neglected. In the Hamiltonian

calibration (scalar potential ≡ 0, see ([5]29.1))), our perturbation operator is given by V̂(t) = − 1
c

∫

~A(y)~̂j(y)ddy. To first

order in ~A we thus have

V̂(t) = − ie~

2mc

∫

ddy ~A(y)
[

(∇ψ†(y))ψ(y) − ψ†(y)(∇ψ(y))
]

. (3.4)

Then we utilize formulas ([5]8.7-9) and obtain (see I, 67):

δG(1)(x, x′) = − ie

2mc

∫

dd+1y ~A(y) lim
y′→y

[

(∇~y′ − ∇~y)G(x, y′)G(y, x′)
]

, (3.5)

δG(1)(~x,E; ~x ′,E′) = − ie

2mc

∫

ddy ~A(~y,E − E′) lim
~y ′→~y

[

(∇~y′ − ∇~y)GE(~x, ~y ′)GE′ (~y, ~x ′)
]

,

From (3.5) we have:

δG(1)(p, p′) = − e

2mc

∫

dd+1p3dd+1p4

(2π)2(d+1)
G(p, p3)G(p4, p

′) ~A(p3 − p4)(~p3 + ~p4) (3.6)

- for the case when there is no spatial homogeneity, which reduces to

δG(1)(p, p′) = − e

2mc
G(p)G(p′) ~A(p − p′)(~p + ~p ′) (3.7)

in the homogeneous case. In the essential case of spatially homogeneous applied field ~A(x) we have ~A(q) = ~Aω(2π)dδ(~q )
and (3.7) reduces to

δG(1)(p, p′) = − e

c
G(p)G(p′)~v ~A(E − E′)(2π)dδ(~p − ~p ′). (3.8)

But on the other hand we know that δG(1)(p, p′) = G(p)V(p − p′)G(p′)/~, so we see that in this case

the electromagnetic vertex V(q) = − e~

c
~v ~A(q). (3.9)

From (3.5) it follows that

~j(x) +
ne2

mc
~A(x) = − ie2

~

4m2c
lim
x′→x

{

(∇~r ′ − ∇~r)
∫

dd+1y ~A(y) lim
y′→y

[

(∇~y ′ − ∇~y)G(x, y′)G(y, x′)
]

}

, (3.10)

which is almost2 the formula ([5]39.1).
Let’s make Fourier transformation of (3.5) and of (3.10):

G(x, y′) =

∫

dd+1p1dd+1p3

(2π)2(d+1)
G(p1, p3)ei(p1x−p3 y′), ~A(y) =

∫

dd+1q

(2π)d+1
eiqy ~A(q),

G(y, x′) =

∫

dd+1p2dd+1p4

(2π)2(d+1)
G(p4, p2)ei(p4 y−p2x′)

=

∫

dd+1p2dd+1p4

(2π)2(d+1)
G(−p4,−p2)ei(p2x′−p4 y).

In Fourier-space (3.10) is equivalent to

~j(q) +
ne2

mc
~A(q) =

ie2
~

4m2c

∫

dd+1p1

(2π)d+1

dd+1p3dd+1p4

(2π)2(d+1)
G(p1, p3)G(p4, p1 − q) ×

(2~p1 − ~q )
[

~A(p3 − p4)(~p3 + ~p4)
]

. (3.11)

Under the integral we have two Green’s functions that are to be averaged. It is clear that the integral in (3.11) is
nonzero only if ~p1 and ~p3 are correlated; particularly in the case when ~p1 = ~p3 which occurs in zeroth order of averaging3,
i.e. when 〈GG〉 = 〈G〉〈G〉. Keeping this in mind4, we consider only the zeroth order and thus have

~j(q) +
ne2

mc
~A(q) =

ie2
~

4m2c

∫

dd+1p

(2π)d+1
G(p)G(p − q)(2~p − ~q ) ~A(q)(2~p − ~q ). (3.12)

2Note that (3.10) is not consistent with [5] - in formula ([5]39.1) there stands 1/2.
3In other words, we have no diffuson here. Life becomes more complicated when impurity scattering or GF are not isotropic, and additional

contributions, like diagram in Fig. 7.1(b) appear.
4 This is not true when ~q , 0. See also section 3.4.
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Considering then the case of spatially homogeneous applied field, we have q = (ω,~0) ≡ ω and5

~j(ω) +
ne2

mc
~Aω =

ie2
~

m2c

∫

dd+1p

(2π)d+1
G(p)G(p − ω)~p ~Aω~p. (3.13)

From the relation
∫

dd+1p

(2π)d+1
G(~p,E)G(~p,E ± ω)pip j ≈

ν0τ

d

p2
F

~2
δi j(|ω| + iω2τ),

neglecting diamagnetic term Ne2

mc
~Aω, we have6

jk(q) =
∑

l

iω

c
σklAl(q), σi j = σδi j signω, σ =

ne2τ

m~
=

e2

~
ν0D0,

n

m
=
ν0p2

F

m2d
. (3.14)

σi j depends on signω and thus is incorrect. Apart from this “Kleinigkeit” σ is correct, cf. Eq. ([21]4.7).
This problem may occur from the before mentioned illegacy of this technique in calculating any response functions.

3.2 Calculations using Matsubara technique

!From this point insert ~ and c.
The formulas in this section to some extent repeat those of Sec. 3.1.

The current operator and its value are given by

~̂j(x) =
ie~

2m

[

(∇ψ†(x))ψ(x) − ψ†(x)∇ψ(x)
]

− e2

mc
~A(x)ψ†(x)ψ(x), (3.15)

~j(x) = 〈~̂j(x)〉 = ie

2m
(∇r′ − ∇r) |x′→x+0G(x, x′) − ne2

mc
~A(x) (3.16)

The perturbation operator is given by!in the next eq. I’ve later changed sign which resulted in consequtive sign
changes

V̂(t) = − ie

2mc

∫

ddy ~A(y)
[

(∇ψ†(y))ψ(y) − ψ†(y)(∇ψ(y))
]

.

δG(1)(x, x′) = − ie

2mc

∫

ddy

∫ 1/T

0

dτ1
~A(~y, τ1) lim

y′→y

[

(∇~y ′ − ∇~y)G(~r, τ; ~y, τ1)G(~y ′, τ1;~r ′, τ′)
]

,

Here I insert somewhat new formula that permits me to do the rest of calculations almost automatically (because they
do not deal with time or energy variables, but only with spatial ones):

δG(~r,~r ′; En,En′ ) = −
ie

2mc

∫

ddyT4
∑

k,l

~AEk−El
(~y) lim

~y ′→~y

[

(∇~y ′ − ∇~y)G(~r, ~y; En,El)G(~y ′,~r ′; Ek,En′ )
]

,

δG(1)(~p, ~p ′; En,En′ ) = −
e

2mc

∫

ddp3ddp4

(2π)2d
T2

∑

k,l

G(~p, ~p3; En,El)G(~p4, ~p
′; Ek,En′ ) ~AEk−El

(~p3 − ~p4)(~p3 + ~p4),

s~j(~q, ωn) +
Ne2

mc
~A(~q, ωn) = (3.17)

ie2

4m2
T3

∑

n,k,l

∫

ddp1

(2π)d

ddp3ddp4

(2π)2d
G(~p1, ~p3; En,El)G(~p4, ~p1 − ~q; Ek,El − ωn) × (3.18)

(2~p1 − ~q ) ~AEk−El
(p3 − p4)(~p3 + ~p4). (3.19)

s

5this expression can be expressed graphically as closed diagram with vi and v j lines - see Fig. 3.1(a).
6There is also the number of particles missing in (3.14), see the note after (3.22).
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What is the sense of ~j(ωn) and ~A(ωn)? I can not clearly answer this question now. I only follow the recipe: to make
analytical continuation to continuous frequencies and get real current and vector potential. VK has told that the proof
is that this technique do coincide with the Keldysh one, see Sec. 9. Олег Евтушенко advised me to read in [31] about
this.

After the averaging, assuming ~q = 0, we get

~j(ωn) +
Ne2

mc
~A(ωn) =

ie2

m2
T

∫

ddp

(2π)d

∑

l

G(~p,El)G(~p,El − ωn)~p ~A(ωn)~p (3.20)

And now we arrive to a key point of the procedure. We are to make analytical continuation of ~j(ωn), ~A(ωn) and
G, to the Fourier-transformation of the current, vector potential and of time-dependent Green functions GR or GA

correspondingly. For this purpose we use formulae ([5]17.25):

G(ωn) = GR(iωn), ωn > 0; G(ωn) = GA(iωn), ωn < 0.

We assume that somewhat a-like relation is valid for ~j(ωn) and ~A(ωn): ~j(ωn) = ~j(iω) and ~A(ωn) = ~A(iω).
Keeping this in mind, we make analytical continuation (see rzi.pdf) of the sum in (3.20) and obtain7:

T
∑

l

G(~p,El)G(~p,El − ωn) =

=

∫

+∞

−∞

dz

4π
GR(~p, z)GA(~p, z − ω) tanh

z

2T
−

∫

+∞

−∞

dz

4π
GR(~p, z)GA(~p, z − ω) tanh

z − ω
2T

+

+

∫

+∞

−∞

dz

4π
GR(~p, z)GR(~p, z − ω) tanh

z − ω
2T

−
∫

+∞

−∞

dz

4π
GA(~p, z)GA(~p, z − ω) tanh

z

2T
. (3.21)

For simplicity let us consider the case of T = 0. Also we are interested in the limiting case ω→ 0.
We expect that two terms in (3.21) would give us Drude formula for conductivity, while the last two ones are to

cancel diamagnetic term in (3.20).
Using (13.33) with analogy of (3.14), we get conductivity89:

σi j = σDδi j, σD =
e2

h
EFτ

2πν0

m
=

e2

~
ν0D =

Ne2τ

m~
=

e

~
Nµ, N

df
=

mv2
F
ν0

d
, σ =

e2

~
G, G = ν0DS/L≫ 1, (3.22)

where (for the dilute electron gas) µe = eτ/m is the mobility10 (=подвижность), σ is the conductance, and G is so-called
“dimensionless conductance”. It is dimensionless ∀d, and people (VK) call it “large parameter of the diagrammatic
expansion in the disorder averaging technique”. [However, based on (3.41) I would rather use this name for g] According
to ([0305478]3.10b), the condition G≫ 1 in (3.22) is crucial for the validity of the SCBA.

The conductance is proportional to the electron concentration: σ = |e|nµe, Naı̈vely applying Ohms law, we conclude
that the conductance of a wire with the length l and crossection nd−1 is e2/(hd). The quantity e2/h = (25813Ω)−1 is
called “the unit of conductance”; one can explicitly distinguish (=выделить) it in the expression for the linear-responce
conductivity (8.7). Why don’t I have n in (3.22)? Because of the inapropriate normalization, see the note after (13.30).
In fact, (3.22) gives the conductance per electron. See also (13.34).

3.3 Cancellation of the diamagnetic term

(See also Sec. 3.5) The part of (3.20) [see also (3.21)], which was not taken into account in (3.22) is equal to (after
analytical continuation and before the averaging)11

ne2

mc
~Aω =

ie2

4m2

∫

ddp1

(2π)d

ddp3ddp4

(2π)2d
(2~p1 − ~q )

[

~A(~p3 − ~p4, ω)(~p3 + ~p4)
]

× (3.23)

×
∫

dz

4π

{

GR(~p1, ~p3, z)GR(~p4, ~p1 − ~q, z − ω)
(

tanh
z − ω

2T
− 1

)

− GA(~p1, ~p3, z)GA(~p4, ~p1 − ~q, z − ω)
(

tanh
z

2T
− 1

)}

.

7Note that everywhere the expressions like
∫ ddp

(2π)d must be considered as approximations of 1
V

∑

~p.
8Since we did not took into acount spin, σD in (3.22) gives conductivity per spin projection.
9С проводимостью связано характерное время рассасывания объёмного заряда τM = ε/(4πσ) – максвелловское время релаксации.

10Mobility is useful in not-dilute semiconductors, see pp. [32]14,28. According to ([33]7.36), µe = |e|τ/m.
11It is clear that the inserted ones in (3.23) do not change it.

http://theorie5.physik.unibas.ch/shalaev/rzi.pdf
http://arxiv.org/abs/cond-mat/0305478
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The aim thus is to prove (3.23). Let us make the proof for the simplest case of homogeneous field ~A so that ~q = 0.

∫

ddp1ddp3

(2π)2d
p1ip3 jGR(~p1, ~p3, z)GR(~p3, ~p1, z − ω) =

∫

ddp1ddp3

(2π)2d
〈~p1|p̂i|~p1〉〈~p1|ĜR|~p3〉〈~p3|p̂ j|~p3〉〈~p3|ĜR|~p1〉 =

=
1

V2

∑

~p1n,~p3m

〈~p1n|p̂i|~p1n〉〈~p1n|ĜR|~p3〉〈~p3|p̂ j|~p3〉〈~p3|ĜR|~p1n〉 =

=
1

V2

∑

( ~p1n ,~p3m
~p ′

1n′ ,~p
′
3m′

)

〈~p1n|p̂i|~p1n〉〈~p1n|1̂|~p ′1n〉〈~p ′1n|ĜR|~p3m〉〈~p3m|p̂ j|~p3m〉〈~p3m|1̂|~p ′3m〉〈~p ′3m|ĜR|~p1n〉 =

=
1

V2
Sp

(

p̂i1̂ĜRp̂ j1̂ĜR

)

=
1

V2
Sp

(

p̂iĜRp̂ jĜR

)

, (3.24)

where

ĜE
R/A =

[

E − Ĥ ± iδ
]−1

, δ = +0, |~p 〉 = 1√
V

ei~p~r, 〈~p |~p ′〉 = δ~p~p ′ . (3.25)

Sp(piG
Ep jG

E−ω) ≈ Sp(piGp jG) + ω Sp(piGp jG
2), G ≡ GE. (3.26)

Note that the term ω Sp(piGp jG
2) in (3.26) is a non-universal correction (see p. 30) which must be ignored. I mean, we

must disregard it not only because it is small, but because we everywhere disregard non-universal terms. In order to

generalize the results of this Sec., we perform the rest of the calculation for velocity-operators12 ~̂v. Then

vi = −
i

~

[

xi, Ĥ
]

=
i

~

[

xi,E − Ĥ ± i

2τ

]

=
i

~

[

xi,G
−1

]

,

Sp
[

viGv jG
]

=
i

~
Sp

[(

xiG
−1 − G−1xi

)

Gv jG
]

=
i

~
Sp([xi, v j]G) = −δi j Sp G,

(3.27)

where we’ve assumed that [x̂i, p̂ j] = [x̂i,mv̂ j], which is true without SOI and for the linear SOI Hamiltonian (6.1).

Sp(piGp jG
2) =

im

~
· Sp

[(

xiG
−1 − G−1xi

)

Gp jG
2
]

=
im

~

[

− Sp

(

xip j
∂

∂E
G

)

− Sp(xiGp jG)

]

,

Sp(xiGp jG) = Sp([xi, x j]G) = 0.

(3.28)

Eq. (3.28) is important for the derivation of the Kubo-Greenwood formula for the conductivity, which is exact in the
limit of small ω, see eq. (2.4) from PRB4815218.

For GA we would have the same. The proof is made for the case of ω = 0. From Lehmann representation13

GR/A(~r,~r ′; E) =
∑

n

ψn(~r )ψ∗n(~r ′)E − En ± iε, ε = +0, (3.29)

we see that in case of no interaction between the electrons we have (cf. pp. [25]28-37)

GR(~r,~r ′; E) − GA(~r,~r ′; E) = −2πi
∑

n

δ(E − En)ψn(~r )ψ∗n(~r ′), (3.30)

where the sum is taken over all distinct states (some of the states may be degenerate), so that

1

V

∫

ddr
[

GR(~r,~r; E) − GA(~r,~r; E)
]

= −2πiνEV, (3.31)

where νE is the density of states defined by (1.13). Note that (for a homogeneous system) coordinate integration here is
fictitious, because integrand does not depend on coordinates. (In fact, it only gives V)

From (3.31) one obtains:
1

V

∑

p

[

GR(~p,E) − GA(~p,E)
]

= −2πiνEV. (3.32)

Supposing that disorder averaged Green function has the form (1.9) one obtains

∀E
1

V

∑

~p

1

(E − ε(~p ))2 +
1

4τ2(E)

= 2πνEτE (3.33)

12Sometimes (6.8) ~̂v , ~̂p/m.
13Seems that some people mean other things [than (3.29)] by Lehmann representation, see p.[29]134.
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GA

GR

~̂j −e~v ~A

(a) Main (Drude) contribution.

~q − ~p

~q − ~p

~p

~p

−e~v ~A
~̂j

~q − ~p

~q − ~p

~p

~p

~̂j

−e~v ~A

(b) Weak localization contribution. Two forms of the same diagram are shown, see
Sec. 3.6.

Figure 3.1: Diagrams for calculating conductivity. The current and electric field vertexes conserve momentum. Because
we have no diffuson or cooperon on Fig. 3.1(a), for ω≪ 1/τ it is ω-independent. (ВК, 03.05.2002)

3.4 The weak localization correction

See the literature list in [4], and also (some of numerous) experiments: PRL89276803, [0703053]. In addition to the
zeroth order diagram, considered in section 3, one can consider a sequence of “crossed” diagrams, each of the terms
in which can be unbinded to a cooperon-like diagram [see fig. 3.1(b)]. This “cooperon” has a pole at ~p1 = −~p3, so ~p1 and
~p3 are again correlated like in case considered in Sec. 3 .

In the weak localization diagram, we are lucky that only small values of q contribute to the result.14 Imagine the
opposite: in case of large q we could approximate cooperon line with it value on q ∼ 1/l, and then perform 2 independent
integrations: by ~p and by ~q−~p. This would mean that the Hikami box15 on the right of Fig. 3.1(b) splits into two bubbles.
The largeness of an additional bubble is compensated by the smallness of the coefficient of the cooperon, but still we
would have the diagram of the same order, as the main contribution to the conductivity! Fortunately, this is not the
case: both of two bubbles have only one vector vertex, which makes them zero.

From (3.11) and (2.7) we get the correction to the conductivity for zero temperature technique

δσ = − signω
e2D

π

∫

ddq

(2π)d

1

−i|ω| +Dq2
,

We see here again strange sign - type singularities, like in section 3.1. As before, Matsubara technique is free from
them:

♣ δσ = −2e2D

∫

ddq

(2π)d

1

−iω +Dq2
(3.34)

One can see that (3.34) produces negative correction to the conductivity, which can be considered as decreasing
propagating ability of electrons. This is a reason to call (3.34) the WL correction16 To calculate the integral in (3.34) we
should substitute17 −iω by −iω+ 1/τϕ. Also we should introduce a cut-off, upper limit18 for integrals by q: l0 ∼ l. Finally

14This is not completely true: in 2D, in the wide region of values of the integration variable q, the integrand behaves as 1/q, so we get log. However,
the upper cut-off ∼ 1/l is not important; see also below in this Sec.

15The physical sense of a HB is explained on p. 71, Fig. 14 of arXiv/0712.1154.
16Note that SOI may lead to positive corrections to the conductivity – “antilocalization” [34, 35].
17Note that the way of calculating τϕ is still not clear. It occurs from evaluating the complete (that is infinite) perturbation series for the electron-

electron interaction. Its physical sense: in mesoscopic systems, we always look for coherence effects. The coherence is broken by the temperature
fluctuations and by the interaction between the electrons. With each of these factors we can associate some length, on which the coherence is
broken and compare these lengths with the size of the sample L. If these lengths are both larger then L, they (and corresponding effects of coherence
breaking) are not important.

18In reality we always have a cut-off at q ∼ 1/l our HBs behave like ∼ (1 + l2q2)−1. We loose this cut-off when we assume that the diffusion
approximation holds.

http://arxiv.org/abs/cond-mat/0703053
http://arxiv.org/abs/0712.1154
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we get for
∫

ddq

(2π)d
1

−iω+Dq2 (cf. [1] and p. [36]282-283)

in (quasi) 1D

√
τϕτ

2l
,

in 2D
τ

2πl2
ln













1 +
1

2

τϕ

τ

l2

l2
0













,

in 3D
3τ

2l3π2















l

l0
− 1

l

√

3τ

τϕ
arctan













√

τϕ

3τ

l

l0



























.

(3.35)

From this it is easy to see that
δσ

σ
∼ τ

ldν0

∼ 1

Dν0ld−2
. (3.36)

In the future, the following will one of our parameters of smallness19:

δσ

σ
=

1

ν0

∫

ddq

(2π)d

1

−iω +Dq2
. (3.37)

Our considerations are correct only if (3.36) is small. !BTW, where could one find the proof20 of the fact that
in 1D there is always localization? We usually work in 2D, which is special, since an infinite 2D sample is always
localized, but finite ones – not neccesary [37].

A small resume: When considering the average of two Green functions, one should always keep in mind that
actually there are always two contributions: cooperon-like one and the diffuson like. In our particular case the
zeroth order gives Drude formula (3.14), diffuson contribution is equal to zero, and cooperon contribution gives weak
localization (3.34).

3.5 How everything is simple in Keldysh technique

Eqs. (3.2), (3.3), (3.4), ([5]8.9) and (3.5) hold also for the Green function GCK
and ordering Tc originally defined in

Keldysh technique, see (9.1). One can show that (3.5) is also conserved by the “matrix” isomorphism (9.2).
Note that operators in quantum mechanics are introduced in the same manner, as in [38], when the fluctuations

are discussed: we invent a hermitian operator, which has the average equal to the quantity in which we are interested
in. Once these conditions are fulfilled, we say this is an operator of the considered quantity. In this way becomes
absolutely clear the derivation of (3.4). From (3.5) we arrive to (3.8) note that here

δ(1)G(~p; E,E − ω) = G(~p,E)
[

− e

c~
~v ~Aω

]

G(~p,E − ω),

δGK(~p; E,E − ω) = (hE − hE−ω) GR(~p,E)
[

− e

m~
~v ~Aω

]

GA(~p,E − ω), (3.38)

so that σ = νDe2.

!insert ~ in the last eq.

The diamagnetic term ∝ ~A in the current operator (3.2) is cancelled by

δ(GR − GA)(~p; E,E − ω) =
[

GR(~p,E)GR(~p,E − ω) − GA(~p,E)GA(~p,E − ω)
]

[

− e

m~
~v ~Aω

]

. (3.39)

From (3.38) and (3.39) we see that δGK is not proportional to δ(GR − GA). This contradicts a usual belief that in linear
responce “everything is like in equilibrium”.

Somewhat more tricky is the calculation of the correction of the conductivity due to the interaction. Now we have
a perturbation operator consisting of two terms21: (a) external electric field and (b) the interaction. Because our
measurement (current) operator is a vector one, only terms with odd numbers of our electric field vertices produce

19cf with G (3.22) and g (3.41).
20Найти и рассказать об этом Б. Н. Захарьеву.
21Somewhat similar situation had been already considered in Sec. 2.1
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Figure 3.2: Correction to conductivity due to the interaction (see condCorr.nb).

non-zero results. So, the largest non-zero correction should be the one that comes from the mixed term in the

second order of perturbation theory:
(

V̂1(t1) + V̂2(t1)
) (

V̂1(t2) + V̂2(t2)
)

→ V̂1(t1)V̂2(t2) + V̂2(t1)V̂1(t2). We see that effectively

we have commutating22 operators: ∀t1, t2

[

V̂1(t1), V̂2(t2)
]

− = 0, where V̂1(t) is given by (3.4) and V̂2(t) - by ([5]6.4) with all

ψ(~r )→ ψ(~r, t) (the same for ψ†; t is one and the same for all ψ and ψ†).
One could naı̈vely think that it is possible to perturb with V̂2 Green functions in diagrams for δG(1) already perturbed

with V̂1; however this would lead to the loss of the diagram from Fig. 3.2.
Literature to learn more on the topic:

• Scaling theory of localization PRL42673.!Вроде бы это есть также и в книжке Гантмахера.

• Correction to the conductivity due to interaction: [39, 40].

• Hall effect: [41].

• Weak localisation correction ∆ρxy = 0: [42], as well as my own (easy) calculation.

3.6 The loop expansion

This Sec. is written in [20]; see also Sec.[43]III.3.c and especially p.[43]296. During my talk in Korea there were several
questions about the loop expansion. Apparently it is not described in the known literature, so let me do it here.

There are two ways of representing diagrams in the disorder averaging technique. Consider two diagrams in
Fig. 3.1(b). The first diagram is understood by a larger number of people than the second one. It’s cooperon is
represented as a ladder. This way has intuitive connection with the calculation of the cooperon; it reminds the fact
that a cooperon is represented by an infinite series of diagrams, see Sec. 2. However, once we have learned how to
calculate a cooperon, it is better to represent diagrams in an alternative way: by taking the inverse Fourier transfor-
mation of a Green function, it is easy to notice that, in coordinate space, our averaged Green functions are short-range
objects: e.g., in 3D GR/A(~r,~r ′ ) ∝ exp[|~r − ~r ′|/l]. Thus, thinking now in coordinate space, we can say that the length of
a Green function line is l. Since in the disorder averaging technique we are unable to observe any effects on scales
shorter than l, to say that the length of a Green function line is l, is the same, as to say that this legth is zero, which
means that we can consider it not as a line, but as a point.

Consider now the lhs-diagram in Fig. 2.2(a), which depicts a cooperon in its “usual form”. Being an average of two
Green functions, a cooperon has four external line ends. From Sec. 2.2 we know, that (in the coordinate space) the
distance between points 1 and 2 is of the order of an impurity size (i.e., practically zero). This is the reason for us

22and this is the only qualitative difference from the ordinary case that I see.

http://theorie5.physik.unibas.ch/shalaev/public.html/spinHall.pdf
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to merge points 1 and 2 into one point; we have done it on the second (rhs) diagram in Fig. 2.2(a). Analogously, also
points 3 and 4 in coordinate space get merged into one point. From Sec. 2.2 we know that the distance between 1 and
3 is much larger than l. Thus the second diagram in Fig. 2.2(a) reminds us about the spatial structure of a cooperon:
in a coordinate space, a cooperon has only two external line ends. The explanation for the diffuson in Fig. 2.2(b) is
analogous.

Based on these arguments, we give the recipe to transform any diagram from its “usual form” to its “coordinate
form”: just transform all CD lines into their coordinate form according to23 Fig. 2.2. The simpliest example of one and
the same diagram in two different forms is the WL diagram depicted on Fig. 3.1(b). More complicated example is the
diagram in Fig. 11.5, who’s “coordinate form” is the first diagram in Fig. 11.3(b).

Ok, now we can transform any diagram from its “usual form” into its “coordinate form”. The “coordinate form” looks
better from estetical point of view, but this is not its main advantage. Let me now finally tell what loops do I mean, when
speaking about the loop expansion. If I take a diagram in its “coordinate form” and squeeze all Green function lines
into points, the result will contain only CD lines, which will form a certain number of loops. For example, a bubble in
Fig. 3.1(a) has obviously no loops (since it has no CD lines which could form a loop); a WL diagram in Fig. 3.1(b) (on
the right) has one loop, and both diagrams on Fig. 11.3(b) have two loops.

Why the number of these loops is so important? Because (see Sec. 12)

(number of loops) =(number of CD lines) − (number of GFBs) + 1 =

=(number of independent “small′′ momentum variables).
(3.40)

Here by “large” momentum variable I mean, e.g., an internal momentum ~p of a GFB; its characteristic value (given

by the convergence scale of
∫

ddp/(2π)d) is p . 1/l. Normally (except for the case of ZLA, when there are no CD-lines
carrying non-zero momentum) we prefer to work in the diffusion approximation. (This permits us to assume that
ql≪ 1 during the calculation of the CDs and GFBs). That is why we say, that the “mass” standing in the denominator
of a CD, is small, so that q∗l ≪ 1, where q∗ is a characteristic momenta of a CD; it corresponds to the momentum of a

CD line, typically denoted by ~k, ~q; its characteristic value depends on the particular problem. Possible candidates are:
1/L (like in Sec. 10.4), or Lω from Sec. 10.4 with ω ≡ T or ω ≡ T̃. In case of SOI, it can be x/l [where x is defined in (6.3)].
The WL-correction represents an important exception24 from this rule: in fact, from (3.36) and (3.37) we realize that in
this case q∗ = 1/l, and q∗l is not a small parameter, so that the diffusion approximation, strictly speaking, is not valid.

[See also the note about the cut-off for
∫

dq before (3.35).]
Let us compare two diagrams for the same physical quantity (this means, that they have the same number of

external vertices25 of the same nature). An estimate for a GFB is ∝ ντh−1, where h is the number of Green function
lines composing the GFB26. Every CD line ∝ (2πντ)−1. Let us estimate ν according to (13.11). Let us denote L1,2, H1,2, C1,2

number of loops, GFBs, and CD-lines in the two considered diagrams; quantities h1 j denote number of GF lines in the
jth GFB of the first diagram, and h2n do the same in the second diagram.

1st diagram

2nd diagram
∼

∫

∏L1

i=1
ddki

[

∏H1

j=1
2πντh1 j−1

]

1
(2πντ)C1

∫

∏L2

l=1
ddql

[

∏H2

n=1
2πντh2n−1

]

1
(2πντ)C2

= L = C −H + 1,
∑H1

j=1
h1 j −

∑H2

n=1
h2n = 2(C1 − C2) =

= (2πν)H1−H2+C2−C1 × τH2−H1+C2−C1 × τ2(C1−C2) × (q∗)d(L1−L2)
=

[

4π2

n2

l

pF
(nq∗)d

]L1−L2

=

= n ∼ ~

pF
=













4π2

(

q∗

pF

)d

pFl













L1−L2

= in 2D =

[

4π2 (q∗l)2

pFl

]L1−L2

, (3.41)

where we used (3.40)13.11). Note: from (3.41) we see that DA ( q∗l ≪ 1) is not necessary for the validity of the
loop expansion (however, it is usually used out of the ZLA in order to simplify calculations cf. Sec. 13.2) The final
note: to generate diagrams, some people who don’t know how (or don’t want) to use computers, use their brains in

23См. также мою презентацию на русском языке.
24Formally – yes, it is an exception, however, we are mainly interested from the MF and temperature dependence of Lϕ, which occurs on the lower

limit of the integral. In other words, nothing would be changed, if in
∫

dq we would set the upper limit not to 1/l, but, e.g., to 1/(10l), given that
10l << Lϕ, so in reallity also in the WL-case we can say that q∗l≪ 1, if it is so important to assume this.

25E.g., all diagrams for the conductivity have 2 external vertices: one for the applied electric field, and another one which measures the current.
26Sometimes, like in (13.35), GFB gains additional smallness of the order of q∗l ≪ 1, where q∗ is the characteristic momentum of a CD line (i.e.,

“small” momentum variable). However, one has to calculate a GFB in order to reveal how much of q∗l it has. As I noted, the characteristic value
of q∗ is non-universal – it depends on the problem. It is clear that both pFl and (q∗l) can be varied. My estimates.nb, written for a metal say that
pFl ∼ (q∗l)−1 ∼ 100. So one should be careful.

http://theorie5.physik.unibas.ch/shalaev/public.html/iftt.pdf
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an unpleasant way: at first they have to draw all possible diagrams in the “usual form”, then redraw them in the
“coordinate form”, calculate the number of loops, and prey that no important diagrams are forgotten. If this brings you
headache, follow my way instead: use the set of the procedures which I have developed for this purpose, see Sec. 12.

3.7 General thoughts on the precision of the diagrammatic technique

!This section has to be corrected in accordance with [20]. For energies close to EF, the GFs are very different from
GFs of the disorder-free system; the latter are strongly modified due to the disorder. In fact, the averaged GF is the
result of the summation of infinite perturbation series (SCBA). The situation is different for energies far away from the
Fermi level: the first-order correction to the disorder-free GF is δ(1)gE

r = U[gE
r ]2 ≪ gE

r so that the disorder-free GF is only
slightly changed. This behavior can be modelled by introducing energy dependence in 1/τ→ 1/τ(ξ) + 1/τee(ξ), where τee

is the relaxation time for the electron-type excitations in the Fermi liquid theory. The elastic relaxation time τ(ξ) = τ
is constant for |ξ| . 1/τ; it increases with increasing |ξ| > 1/l. The inelastic relaxation time τee is infinite at the Fermi
level; it decreases with increasing |ξ|. Based on these arguments, we estimate the relation between “universal” and
“non-universal” integrals:

∫ ∞
−EF

dξg2
r

∫ ∞
−∞ dξgrga

∼
min[E2

F
τ2

ee

∣

∣

∣

∣

ξ=−EF

, 1]

EFτ
≪ 1. (3.42)

!Check with DL: We argue that even in a dirty material (but with high concentration of electrons) with EFτ ∼ 1 the
relation (3.42) still must be small. It would be of the order of 1 if one neglects interaction effects, which diminish the
effect of external fields on the deep states. One can think of an analogy with a wind creating waves on the surface
of a sea. The correction (3.42) is analogous to the effect of the bottom on the surface waves. This effect is large only
if the wave amplitude is comparable to the depth. When the wind (external perturbation) is weak, it creates small
waves which can be calculated neglecting interaction effects. One would strongly overestimate the wave amplitude
created by a strong wind, if he neglects interaction between the water molecules. The interaction together with the
gravity, stabilizes the see surface: if the depth is large, the interaction effectively makes it infinite. Analogously,
interaction between electrons stabilizes the Fermi sphere against strong external perturbations (e.g., strong disorder).
It only seems in our interaction-free calculation that the disorder affects the electrons near the bottom of the energy
spectrum. In reality, because of the interaction, the effect of disorder is much smaller on deep electrons; that is, EF

in (3.42) is much larger than the Fermi energy.

During our calculations of diagrams in DAT we use the following approximations:

1. Ignoring diagrams with crossed IAL in the diagrammatic expansion for 〈GRGA〉 (where every IAL connects GR with
GA). This is not an approximation, since every such “crossing” is included into another diagram, where an IAL is
substituted with the ladder. This is analogous to how 1.1(b) is included into the diagram [0305478]5.c.i.

2. In the SCBA (see Sec. 1.4): ignoring diagrams with crossed IAL, which would result in the ξ- and (in case of SOI)
spin-dependent corrections to τ in the GF’s denominator.

3.
∫ ∞
−EF

dξ ≈
∫ ∞
−∞ dξ =⇒

∫

d2p

(2π)2 Gn
R

(~p ) ≈ 0, n ≥ 2. This means ignoring non-universal corrections, see p. 30.

4. (without SOI) Average DoS≈ const – must work fine in 2D. This is the same assumption, as квадратичность
(?=quadracity) of the energy dispersion. In fact, at least in semiconductors, electron dispersion law is not
quadratic, see, e.g., this Chinese paper.

5. !Requires discussion with guru. Ignoring IAL with more than two ends, See pp. [36]80-81. see p.[5]428. This
is really strange, because, apparently, averaging must be Gaussian, and for such an averaging we know that
〈U(~r )U(~r ′)〉 ∝ δ(~r − ~r ′) =⇒ 〈U(~r1)U(~r2)U(~r3)U(~r4)〉 ∝ δ(~r1 − ~r2)δ(~r3 − ~r4) + δ(~r1 − ~r3)δ(~r2 − ~r4) + δ(~r1 − ~r4)δ(~r3 − ~r2), so that no
lines with more than two ends can occur.27 An attempt to study a diagram with a disorder line having 4 ends in

the model (1.11) results in divergent integrals
[∫

dξGR(ξ)
]3
, which I don’t know how to interpret.

27However, people draw lines with 3 ends, see, e.g., arXiv/0902.2571.

http://arxiv.org/abs/cond-mat/0305478
http://theorie5.physik.unibas.ch/shalaev/public.html/31-05-2005.pdf
http://arxiv.org/abs/0902.2571
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6. (Better call it not “approximation”, but “assumption”) Segregation of length scales (required for the loop expansion;
see Sec. 3.6): the charachteristic GFB momentum must be much larger than characteristic CD momentum:
p ∼ pF ≫ 1/l≫ max[1/L, x/l], where x determines “mass” of a CD-line [e.g., in case of SOI x is given by (6.3).] In the
simpliest case, when CD-lines are massless, the required segregation is provided by the diffusion approximation:
l/L≪ 1.

7. Consider now lonely IALs, which we sometimes insert into HBs (cf. Figs. 7.2(b), 7.2(c), 11.1, etc). Such IAL can
be (on both ends) appended with an additional IAL, connecting two GF, to which the considered (“main”) IAL is
attached. Such a structure can be considered as a “renormalized” IAL, which will weakly (∝ (pFl)−1) depend on the
momentum which flows through it. This effect is similar to what we would have if we connect by a IAL two GFs
(of the same type) belonging to different HBs. Thus, in order to make the procedure for generating diagrams self-

consistent, we have to impose a rule: an addition of an IAL should not lead to ∝ (pFl)−1-smallness. !Can these
corrections be ever important? E.g., if the first loop contribution to some quantity is zero, can these corrections
have the same order of magnitude as the contribution of two-loop diagrams?

Many (if not all) of these approximations have relative correction ∼ (EFτ)−1. Does it make sense then to calculate first
and second loop corrections if I’ve already used all these approximations to calculate diagrams of the zero loop? E.g.,
the 1st-loop contribution can be of the same order, as corrections to all aboveenumerated approximations (which I’ve
neglected!). Thinking in this way, one concludes that only calculating the ZLA makes sense (because I will die before
I’ll take into account corrections to all these approximations).

Fortunately, the situation isn’t so bad. Concerning the 3rd approximation: When Altshuler-Aronov studied WL
contribution to the conductivity, they considered only the WL diagram 3.1(b), which should be of the same order, as
corrections to the Drude diagram 3.1(a). However, the integrand under

∫

dξ is MF-independent in the Drude-diagram,

so it was clear that, even if they would calculate
∫ ∞
−EF

dξ precisely, they would not obtain MF-dependence.

Read this section until the end, but let me make the conclusion now: We are always allowed to use the 3rd
approximation (and, I suspect, other approximations, too). This permits us to use computer symbolic calculation
programs (like Mathematica or Maxima) to calculate analytically huge expressions for complicated diagrams. We can
only calculate the main contribution to a physical quantity. E.g., I don’t know, how one could calculate corrections
∼ (EFτ)−1 to the WL correction, or, e.g., a correction ∼ f (xα, xβ)(EFτ)−2 to the SOI-dependent charge conductivity. [since

from (8.13) I know that the leading SOI-dependent contribution is ∼ e2/h × (EFτ)−1].

3.7.1 Universal and non-universal contributions

Thoughts form 03.07.2008: from the discussion with DM about the SCBA we conclude that τ is independent on SOI.

Older stuff: See my email to DL 17:27 20.01.2008. Let us give a definition: we say that “integral J =
∫ ∞
−EF

f (ξ)dξ

converges on (the scale of) δξ”, if Jδξ ≡
∫ δξ

−δξ f (ξ)dξ has the same order of magnitude as J. If |Jδξ| ≪ |J|, this means, that the

integral does not converge on δξ, but on some other scale ≫ δξ. Obviously, this definitions wouldn’t make any sence
for oscillating integrals, but we don’t deal with them. (All our integrands are rational functions – products of GFs.)

In Eq. (3.41) we estimated GFB with h GF lines as 2πντh−1. This is based on the assumption that
∫

dξ converges on

the scale δξ ∼ 1/τ so that
∫

dξGn
R

Gm
A
∼ τn+m−1. The simplest example of such a GFB is a bubble ν

∫

dξGR(ξ)GA(ξ) = 2πντ.
It is universal, because only values of ξ = ε~p − EF out of close vicinity of zero (i.e., ε~p ∈ [EF − 1/τ,EF + 1/τ]) contribute to
the result. Only in this close vicinity of the Fermi level Landau Fermi liquid theory (see pp.[44]22, [45]76, [8]25,31,
[46]345,347,350, [47]395-400) is valid. Some integrals, e.g.,

∫

dξG2
R

(ξ), we call non-universal. We don’t like them and we

want to forget about them because (i) they are smaller (at least by the factor of (EFτ)−1 ≪ 1) than universal integrals from
GFB having the same number of GF lines, and (ii) we cannot calculate them, because we don’t know the integrand in
the important region of integration, i.e., for ε~p ≪ EF−1/τ, see Sec. 1.4. [In addition, we don’t know the energy spectrum
and the density of states far away from EF.]

The universal corrections are produced by (i) both real and imaginary parts of the
∫

dξGn
R

Gm
A
, (ii)

∫

dξ SpℑGn
R/A,

and (iii)
∫

dξ Sp
[

Gn
R
− Gn

A

]

. All other contributions we agree to neglect due to good physical reasons. Due to the same

reasons we always approximate
∫ ∞
−EF

dξ ≈
∫ ∞
−∞ dξ.!

But what is even more important, long ago, before we started to calculate anything with the diagrammatic technique,
we have sacrificed our ability of going far away from EF in order to be able to ignore effects of interaction (or consider
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them perturbatively). Long ago we have sworn to great god Landau that we never calculate any integral involving the
states far away from EF, and we must not forget about that.

I can not exclude that sometimes, e.g., when the quantity of interest is given by two-loop diagrams, it can happen,
that non-universal corrections could be of the same order of magnitude as universal ones. However, I have never
experienced such situations. Anyway, universal contributions are crucially different from the non-universal ones.
Non-universal ones are much more individual28, so if we found a non-zero universal effect it is extremely unlikely that
non-universal corrections could cancel it (though may be could sometimes change sign).

In conclusion, we must always ignore non-universal integrals, because

• due to the invalidity of the SCBA for the values of ξ far away from EF, we don’t know the integrand. Electrons
deep under the Fermi level can not elastically scatter off impurities, because they don’t have free slots with the
same energy. I expect that these “deep” electrons behave very similar to the dilute electron gas in the absence of
the disorder; one could express such behavior with a ξ-dependent τ ≡ τξ, such that τξ ≈ τ0 =const for |ξ| . 1/τ0

and τξ →∞ for ξ→ −EF.

• we have no reasons to believe that the loop expansion works for non-universal corrections.

• far away from the Fermi level, the Landau theory may not work; then the effects of the interaction between
electrons may not be neglected.

• See #3 on p. 29 and the introduction in [20].

3.7.2 Precision in problems with SOI

Example from my experience: calculation of
∫

d2p

(2π)2 ~pGR(p,E)GA(p,E − ω) in Sec. 7.1. [For the moment let us forget about

corrections to the 2nd approximation, and believe that our expressions (6.23) are absolutely precise.] From Sec. 7.3
we know that it is o.k. to employ 3rd approximation [see private comµnication with MSH], which also gives relative
corrections ∼ (EFτ)−1. What is so special about the 3rd approximation?

Theorem 1 Suppose B(ξ, x) [or B(~p, x)] is an integrand for some GFB; ξ [or ~p] is the integration variable, and x represents

parameters (frequencies, SOI amplitudes, etc). Suppose
∫ ∞
−∞ dξB(ξ, x) converges on 1/τ ≪ EF (see Sec. 3.7 about what this

means). Then

⊐

∫ ∞

−∞
dξB(ξ, x) , 0 =⇒

∫ ∞

−EF

dξB(ξ, x) =

[

1 +
a(x)

EFτ

] ∫ ∞

−∞
dξB(ξ, x), (3.43)

and a(x) contains no large parameter EFτ≫ 1. IMHO any GFB integral must converge on ξ ∼ 1/τ; I think, this property can

be considered as a part of the GFB’s definition.

Note that because of the Sec. ?? I have doubts that (3.43) could be rewritten for
∫

ddp. !I’ll prove (3.43), when time
permits. . . Once we believe in (3.43), it is clear, why it is possible to use 3rd approximation for both diagrams in
Fig. 7.1.

Now let us explore more interesting case of SOI-corrections to the charge conductivity in Sec. 8, see (8.7). This
case is more complicated, since the corrections are small compared to the main (Drude) conductivity. The recipe: as
ususally, calculate every GFB of a diagram separately, but two times: first perform

∫

dξ for the integrand with SOI
amplitudes set to zero, obtaining the main contribution to this GFB. The result will not be precise because of the 3rd
approximation involved; however, the corrections are going to be x-independent. Such corrections can not spoil our
party.

Then, we integrate the integrand with the Drude (i.e., x-independent) contribution subtracted. When the main

contribution
∫ ∞
−∞ dξB(ξ, x) , 0, the situation is standart: we can employ 3rd approximation. A dangerous situation is

when the main contribution is zero, and not due to the matrix structure of the GFB or due to the angle integration,
but just because of the 3rd approximation. (note that at first I calculate matrix part of Sp together with its angle part,
∫

dΩ~p, and only then I take
∫

dξ) Such a situation would require special treatment (until now I’ve never faced it).
Based on this, we realize that we can employ the 3rd approximation when calculating the diagram in Fig. 7.1(b).

But what about more complicated ones, e.g., on rhs of Fig. [20]??? There GFB depends momenta ~k of CD lines – these
momenta are part of x in (3.43). Thus, after we already calculated the GFB [i.e., integrated over its “main” big moment ~p

(|p−pF| ∼ 1/l)], we will integrate it over ~k. To estimate the precision of the final result, we will have to integrate a(x) ≡ a(y,~k)

28BTW, we also have no grounds to believe that DAT works for non-universal contributions.



Chapter 3 page 32 generated October 16, 2011

over ~k. Will this integration make our small correction large? No, because ~k is a “small” momentum variable. In fact,

the ~k of the GFB will be always expressed in terms of kl, so in the 6th assumption kl ≪ 1 our small correction has no
chance to become ever important. (unless

∫

ddk kills the main contribution which should never happen)

3.7.3 About SCBA

!After the discussion with DM, this section has to be completely rewritten. (See Sec. 1.5 and 6.9.) Now its time to

remmember that our expressions for GF are not absolutely precise, because of the 2nd approximation (SCBA) used. In
fact, DL was attacking me saying (in my approximate interpretation with additions) the following: “Let us now calculate

self energy for the self-consistent Born approximation in more honest way, without approximating
∫ ∞
−EF

dξ ≈
∫ ∞
−∞ dξ and

also taking corrections to the 2nd approximation into account. We will obtain spin-dependent τ (i.e., not a scalar, but
a 2 × 2 matrix) The spin-dependent correction is expected to be relatively small as 1/(EFτ) ∼ 1/(pFl). However, since the
main contribution to the charge conductivity is by (pFl)2 larger, than the resulting spin-dependent correction to the
conductivity, the effect of this spin-dependent τ has to be taken into account.”

First, in order to get rid of blaming my τ in that it has spin-dependent corrections, I will consider all spin-dependent
terms (i.e., Rashba and Dresselhaus SOI) in the Hamiltonian as a perturbation29. [Before I used GF (6.23) with
implantated Rashba SOI, while the Dresselhaus part of SOI was considered as a perturbation.] In this way, my
zeroth-order GF is a (independent of SOI amplitudes) scalar.

It’s τ is a constant, if I permit myself using the 2nd approximation; otherwise τ has corrections like the one in
Fig. 1.1(b). Due to them, τ may gain E- and |~p | ≡ p-dependence (which is expressed in terms of ξ-dependence):

τ = τ0 + δτ(p,E) ≡ τ0

[

1 +
1

pFl
g (ξτ0,Eτ0)

]

, g(0, 0) = 0, (3.44)

where we have omitted constant part of the correction. The E-dependence will lead to temperature corrections of
the final result; however, according to my estimates.nb, τ can be of about 800K (in a metal), so this can be safely
disregarded. As for the p-dependence, the analogous of (3.43) can be utilized: (reminder: at first I calculate matrix part

of Sp together with its angle part,
∫

dΩ~p, and only then I take
∫

dξ)

∫ ∞

−∞
dξB(ξ, τ ≡ τ0) , 0 =⇒

∫ ∞

−EF

dξB[ξ, τ ≡ τ(ξ)] =
[

1 +
δτ

τ0

]

∫ ∞

−∞
dξB(ξ, τ ≡ τ0),

δτ

τ0
∼ 1

EFτ

Seems obvious, that also the 4th approximation can be justified analogously.

Finally, I’ve justified all approximations except for the 5th one, which I still!have to understand. . .

3.8 Conductivity from the kinetic equation

See also: 0812.0024.
Let us take the simpliest KE ([21]2.80) for the simpliest case of δ-potential of impurity [so that v(~p− ~p ′) = U0 =const].

Note the definition of the distribution function ([21]2.77). !I must understand, how ([21]2.80) coincides with (9.5).
Let us make the first change of variables in the distribution function, introducing f̃ (ε,~n,~r, t) according to

f (~p,~r, t)
df
= f̃

[

p2

2m
+U(~r ) − EF,

~p

p
,~r, t

]

,
∂ f

∂~p
=

[

~v
∂

∂ε
+

1

pF

∂

∂~n

]

f̃ ,
∂ f

∂~r
=

[

∂U

∂~r

∂

∂ε
+
∂

∂~r

]

f̃ , (3.45)

so that the KE for f̃ looks like
[

∂

∂t
+ ~v

∂

∂~r
− ∂U

∂~r

1

pF

∂

∂~n

]

f̃ = St[ f̃ ], ~p ≈ pF~n. (3.46)

Since the integration in St[ f ] is performed only along the direction of ~p, St[ f ] is not changed: St[ f ] = St[ f̃ ]. The advantage
of (3.46) with respect to ([21]2.80) is that (3.46) shows explicitly energy conservation: neither the left part of (3.46),
nor St[ f̃ ] contain any operators, acting on variable ε. So let me from now on write ε as an index. We are interested in

29BTW, this speeds up the calculation a lot! Unless you don’t want to go into very high order.

http://arxiv.org/abs/0812.0024
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the steady situation, so that f̃ (ε,~n,~r, t)→ f̃ε(~n,~r ). I know that only anisotropic (in ~p ) part of f̃ is going to contribute into
current. I am interested in the simplest ω = 0 case, so my current is conserved: it can not depend on coordinate. Then

I conclude that also momentum-anisotropic part of f is coordinate-independent. In case of homogeneous ~∇U, (e.g.,

when the applied ~E =const), I apply ~∇~r to ([21]2.80) and obtain that ∆~r f = 0. Solving ∆~r f = 0 with the apprpriate BC, we
get ~p-isotropic part of (3.47).

Playing the same trick with f̃ and its KE (3.46) leads to

∑

i

{

vFni
∂2

∂r j∂ri
− 1

pF

[

∂2U

∂r j∂ri
− ∂U

∂ri

∂U

∂r j

∂

∂ε

]

∂

∂ni

}

f̃ = 0,

which in case of U = −eEx simplifies to

∑

i

{

vFni
∂2

∂r j∂ri
+
δi j(eE)2

pF

∂

∂ε

∂

∂ni

}

f̃ = 0.

Note that BC for f̃ are different from BC for f , see Fig. 3.3.
My life experience [which consists of §[8]3.2-3, (9.39), p.[48]347, and Journal Club] tells me that the following

ansatz30 is good for f̃ :

f̃ (0)
ε = f L

ε

(

1 − x

L

)

, f̃ε(~n,~r ) = f̃ (0)
ε + nxE f 1

ε . (3.47)

That’s all I can imagine if I don’t want to include higher orders of ~E in the ansatz.31 (I am interested in the linear
response.) Substituting (3.47) into ([21]2.80), and neglecting terms, quadratic in E, we obtain f 1

ε = vFτ( f L
ε − f R

ε )/(EL), so
that nxE f 1

ε = ( f L
ε − f R

ε )nxl/L, which contains smallness l/L. To obtain the current, we have to integrate the resulting fε(~n,~r )
by ~n and ε. But at first, just to understand how (3.47) coincides with the DF from §[8]3.3 (which is homogeneous), let
rewrite (3.47) for f (~p,~r) using (3.45):

f (~p, x) = f L
ε(x) −

f L
ε(x)
− f L

ε(x)−eV

L

(

x − px

p
l

)

≈ T ≫ eV ≈ f L
ε(x) − eE

∂ f L
ε(x)

∂E

(

x − px

p
l

)

, ε(x) ≡ p2

2m
− EF − eEx.

When calculating conductivity. we only need anisotropic in p part of f (~p, x), which is eE
∂ f L
ε(x)

∂E

px

p l, which is the same as in

([8]3.15)

Obviously the current given by (3.47), obeys charge conservation: div j = 0. !Почему-то получается в 2 раза
больше – непонятно. I was not careful up to a numerical coefficients, but it is clear that it leads to qualitatively
correct value ∝ e2D for the Drude conductivity.

!What happens in the presence of SOI? See cond-mat/0510024 and this paper.
Can we use the usual form of the KE ([21]2.80) in order to obtain the same results, as from (more complicated

than the “Drude bubble”) diagrams with the number of loops ≥ 0? My answer: most probably, not. This is because
the usual form of the KE ([21]2.80) corresponds to keeping only the largest term in the gradient expansion, which is
used on p.[21]331-332 in the derivation of ([21]2.80). Gradient expansion is valid since we have “small” and “large”
scales for momentum variables, see Sec. 3.6. In an infinite-size system with SOI, “small” momenta q ∼ x/l; since
GR/A(~r,~r′ ) ∼ exp[ipF(~r − ~r′) + |~r − ~r′|/l], there are two candidates for the role of “large” momentum scale: p ∼ pF or p ∼ 1/l.
That is, small parameter of the gradient expansion is pq ∼ x/(pFl) or pq ∼ x. Thus, if, e.g., like in [49], we are interested
in calculating corrections ∼ σDx2/(pFl), we can not use the usual form of the KE ([21]2.80) without extra justification.
Without such a justification, we need to keep higher derivatives in the gradient expansion, which is going to change
the form of the kinetic equation.
E.g., can we obtain the weak localization correction? –Probably not due to analogous reasoning.

30Note that the real life is reacher than (3.47), see p.[8]61.
31See §[8]3.2; BTW, 1/τ =

∫

W(ϑ) [1 − cos(ϑ)] dΩ/Ω0 ([8]3.11) is not true in 2D.

http://theorie5.physik.unibas.ch/shalaev/public.html/31-05-2005.pdf
http://arxiv.org/abs/cond-mat/0510024
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x

fǫ(x)

x = L

x = 0

ǫ
(a) fε(x); fε(0) ≡ f L

ε , fε(L) ≡ f R
ε = f L

ε−eV

x

ǫ

x = 0

x = L

f̃ǫ(x)

(b) f̃ε(x); f̃ε(0) = f̃ε(L)

Figure 3.3: fε and f̃ε. Thin green dashed lines are parallel to coordinate axes. Steps in energy dependence of fε(x)
result in the steps in coordinate dependence of f̃ε(x). The current of electrons flows in the direction from x = L to x = 0.



Chapter 4

Non-linear σ-model

4.1 Keldysh technique in terms of the functional integrals

The main textbook is [50]. For the moment please assume everywhere that ~ ≡ 1. Let us choose some moment t0 in
the past (following Kamenev, we will assume that t0 = −∞, remembering that this is unnecessary). The density matrix
evolves according to1

ρt = U(t, t0)ρt0
U†(t, t0), i~

∂U(t, t0)

∂t
= HtU(t, t0), U(t0, t0) ≡ 1, ∀t U(t + δt, t) = exp

[

− i

~
Ĥδt

]

, δt → 0.

The expectation value of some physical quantity O in the time moment t is

Ō = Sp
[

ρ̂tÔ
]

= Sp
[

ρ̂t0
Ôt

]

= TC

{

Sp
[

ÛCρ̂t0
Ô
]}

, Ôt ≡ U†(t, t0)ÔU(t, t0), (4.1)

where TC {. . .} is the closed-contour-ordering operator, see Fig. 9.1.
In the momentum-coordinate representation matrix element of the evolution operator is ([51]2.48)

〈x2 |U(t2, t1)| x1〉 =
∫

D[x(t)p(t)] exp
[

i

~
s(p, x)

]

, s(p, x) =

∫ t2

t1

[

pẋ −H(p, x)
]

dt. (4.2)

Analogously, in the space of Fermionic coherent states

〈

ϕ2 |U(t2, t1)|ϕ1
〉

=

∫

D[ϕ̄(t)ϕ(t)] exp
[

i

~
s(ϕ̄, ϕ)

]

, s(ϕ̄, ϕ) =

∫ t2

t1

[

ϕ̄ϕ̇ −H(ϕ̄, ϕ)
]

dt. (4.3)

In the Keldysh technique ϕ2 ≡ ϕ1 and instead of
∫ t2

t1
dt we substitute

∮

dt. The trace of the evolution operator over the

closed time contour 9.1 is equal to

Sp ÛC =

∫

dϕ̄1dϕ1
〈

ϕ1 |U(t1, t1)|ϕ1
〉

e−ϕ̄1ϕ1 = lim
N→∞

∫

dϕ̄1dϕ1 . . .

∫

dϕ̄2Ndϕ2N

〈

ϕ1 |. . .|ϕ2N
〉 〈

ϕ2N |. . .|ϕ2N−1
〉

. . .
〈

ϕN+1 |. . .|ϕN
〉 〈

ϕN |. . .|ϕN−1
〉 〈

ϕ2 |. . .|ϕ1
〉

. . .
2N
∏

i=1

e−ϕ̄1ϕ1 .

(4.4)

Let us define discretization step δt according to

∀i = 2 . . .N t1 − ti−1 = δt > 0, ∀i = N + 2 . . . 2N t1 − ti−1 = −δt < 0, for i = 1,N + 1 t1 − ti−1 ≡ 0 , t0 ≡ t2N.

Keeping in mind that

〈

ϕi

∣

∣

∣

∣

∣

exp
[

− i

~
Ĥδt

]

∣

∣

∣

∣

∣

ϕi−1

〉

≈ 〈

ϕi|ϕi−1
〉

exp
[

− iδt

~
H(ϕ̄i, ϕi−1)

]

= exp
[

ϕ̄iϕi−1
]

exp
[

− iδt

~
H(ϕ̄i, ϕi−1)

]

,

1Later, when we start the NLσM-derivation (see Sec. ??) we will assume that unperturbed GFs are homogeneous in time; for that ρt0 must
commute with the unperturbed Hamiltonian. But until that point, no restrictions on the DM ρt0 are required.

35
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we get discrete representation of s(ϕ̄, ϕ):

i

~
s(ϕ̄, ϕ) = iϕ̄T g−1ϕ, ϕ̄T

= (ϕ̄1 . . . ϕ̄N, ϕ̄N+1 . . . ϕ̄2N), ϕT
= (ϕ1 . . . ϕN, ϕN+1 . . . ϕ2N),

where, e.g., for N = 4 ig−1
=

































































−1 0 0 0 0 0 0 1

1 − iδt

~
H −1 0 0 0 0 0 0

0 1 − iδt

~
H −1 0 0 0 0 0

0 0 1 − iδt

~
H −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 + iδt

~
H −1 0 0

0 0 0 0 0 1 + iδt

~
H −1 0

0 0 0 0 0 0 1 + iδt

~
H −1

































































,

where H ≡ {Hi j} is the matrix of the unperturbed Hamiltonian:

∀1 ≤ i, j ≤ 2N ϕ̄iHϕ j ≡
∫

ddp

(2π)d

p2

2m
ϕ̄i(~p )ϕ j(~p ) +

∫

ddrUdis(~r )ϕ̄i(~r )ϕ j(~r ). (4.5)

It is nice to see that the rhs of (4.4)
∫

D[ϕ̄(t)ϕ(t)] exp
[

iϕ̄T g−1ϕ
]

= det
(

−ig−1
)

= lim
N→∞

O(Nδ2
t ) = 0

is the same as the lhs of (4.4):

Sp ÛC =

∫

dϕ̄1dϕ1
〈

ϕ1 |Uc(t1, t1)|ϕ1
〉

e−ϕ̄1ϕ1 =

∫

dϕ̄1dϕ1 exp[ϕ̄1ϕ1] exp[−ϕ̄1ϕ1] = 0.

In the equilibrium case

ψ̄iρ̂0ψ j = ψ̄i

exp
[

−H̃/T
]

Sp exp
[

−H̃/T
]ψ j ≡

∫

ddp

(2π)d

∫

ddp′

(2π)d

ψ̄i~p exp
[

−H̃/T
]

~p~p ′
ψ j~p ′

Sp exp
[

−H̃/T
] , H̃ ≡ H − µ1. (4.6)

Thus, when calculating expectation values like (4.1) we meet the evolution operator ÛC always in company of the DM ρ̂0.
So, if we want to rewrite (4.1) in terms of the FI, in the upper argumentation we should substitute s→ S, g→ G, where

matrix iG−1 differs from ig−1 by substituting “one” in the upper right corner with the unperturbed2 DM,3 see. ([50]5.4).

We split the integration over the closed time contour
∮

dt in two ordinary time integrals, defining
{

ϕ f (ti)
}

∣

∣

∣

∣

N

i=1
and

{

ϕb(ti)
}

∣

∣

∣

∣

N

i=1
:

ϕ f (ti)
df
=ϕi, ϕb(ti)

df
=ϕ2N+1−i =⇒

i

~
S[ϕ̄, ϕ] = iϕ̄G−1ϕ =

∫ ∞

−∞

[

ϕ̄bϕ̇b + iϕ̄bHϕb − ϕ̄ f ϕ̇ f − iϕ̄ f Hϕ f

]

. (4.7)

If we now change the notations, taking into account that ϕ = (ϕ f , ϕb), then in the continuous limit G−1 is described by
the following 2 × 2 matrix in the ( f , b)-space:

G−1
=

(

i
∂

∂t
−H

)

σ3 ≡
[(

i
∂

∂t
− µ

)

− H̃

]

σ3, S[ϕ̄, ϕ] = ~ϕ̄G−1ϕ. (4.8)

Already from that (4.8) doesn’t contain any information about the energy distribution of electrons, it is clear that
continuous representation of the matrix G−1 can not satisfy us: during the transformation from the discrete description
to the continuous one we lost something infinitesimal, but important. Consequently, we can not utilize (4.8) for
calculating GF. On the other hand, discrete representation is also not suitable for the practical usage.4 We see that

2More precisely, with the DM-value at “initial” time moment t0 in the past.
3I don’t understand, why, differently from the bosonic case ([50]2.8), in ([50]5.4) in front of the DM stands minus sign. However, it is not

important for what follows.
4I’ve tried to invert, and then to transform according to (9.2) discrete matrix G−1 for N = 4, and I could not see that the result is the upper

triangular matrix. However I’ve noticed that the inverse matrix ∝
[

1 − ρ(1 + δ2
t H2/~2)N−1

]−1
.

http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.5.4
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.2.8
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.5.4
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the we’ve got into a dead end (=Sackgasse) – we have to “dig the tunnel” from the opposite side, i.e., dancing from
calculated before (without FI) GF (9.1) and (9.2).

New variable change ([50]5.11,5.12):

ψ = Lσ3ϕ, ψ̄ = Lϕ̄, ϕ = σ3LTψ, ϕ̄ = LTψ̄, ϕ̄TG−1ϕ = ψ̄
(

LG−1σ3LT
)

ψ,

where L is defined in ([52]15) or in (9.2). GFs, calculated with the help of FIs using (for the moment unknown) correct
matrix Ĝ−1, must coincide with GFs, obtained in a usual way (i.e., without using FIs). In other words, the following
equations must hold:

LG−1σ3LT
=

(

ĜR ĜK

0 ĜA

)−1

=













Ĝ−1
R

[

Ĝ−1
]

K

0 Ĝ−1
A













=⇒ (4.9)

=⇒ G−1
=

1

2















Ĝ−1
R
+ Ĝ−1

A
+

[

Ĝ−1
]

K
Ĝ−1

R
− Ĝ−1

A
−

[

Ĝ−1
]

K

Ĝ−1
A
− Ĝ−1

R
−

[

Ĝ−1
]

K
−Ĝ−1

R
− Ĝ−1

A
+

[

Ĝ−1
]

K















,
[

Ĝ−1
]

K
= −Ĝ−1

R ĜKĜ−1
A , (4.10)

where, according to ([50]2.30), the quantity
[

Ĝ−1
]

K
is infinitesimal, and, consequently, invisible in the continuous

limit (4.8). We know that in GF (4.9) a chemical potential µ appears in the same way, as it appeared before in (4.6).

The result of above manipulations5 is the regularization of the continuous limit of the matrix Ĝ−1: now we realize
that instead of (4.8) one should use its regularized form (4.10), and even better – more convenient and well-known
form (4.9). See the discussion in the end of Sec. [50]5.2.

4.2 Averaging over the disorder

In Sec. 4.1 we concluded that in case of non-interacting electron gas

S[ψ̄, ψ] = ~ψ̄G−1ψ, (4.11)

where instead of G one should substitute (4.9). Let us now add the disorder potential to our action. In (4.7) [see
also (4.5)] the disorder potential can be hidden in H, and this helps us understanding that the disorder potential Udis

couples to the action as Vcl in ([50]116,118), i.e., through the unity matrix γ̂cl ≡ σo. So it seems obvious that ([50]120)
should hold – we did not assume the diagonality of the matrix H in Sec. 4.1. So I don’t understand attempts of proving
this anyway obvious statement in Kamenev’s papers. So, we are switching on the disorder and we are going to average
over it, like in Sec. [50]6.1. Instead of (4.11) one should use effective action6

exp
{

i

~
S
[

ψ̄, ψ
]

}

= exp
[

iψ̄G−1ψ
]

∫

D[Udis] exp

{∫

ddr
[

−πντU2
dis(~r ) + iUdis(~r )ψ̄(~r )γ̂clψ(~r )

]

}

=

= exp















iψ̄G−1ψ −
(

ψ̄ψ
)2

4πντ















,
(

ψ̄ψ
)2 ≡

∫

ddr

2
∑

a,b=1

∫

dtdt′ψ̄a
t (~r )ψa

t (~r )ψ̄b
t′ (~r )ψb

t′ (~r ).

(4.12)

As we know from the diagrammatics, dashed lines (representing averaging over the disorder) are quite similar to the
lines of the electron-electron interaction with the difference that they don’t transfer energy (frequency). We see this
similarity in the action (4.12): it looks similar to the action of the interacting electron gas. Consequently, we treat it in
the same way, as we would in case of the interaction – performing Stratonovich-Hubbard transformation7 (introducing
matrix field Q) and integrating over the Grassmann variables. This is all what we going to do until the end of this
Section.

If we assume that all elements of the matrix Q are independent I have no idea how I could calculate the rhs
of ([50]155). The situation improves if we assume that Q is a hermitian matrix [see between ([52]11b) and ([52]12)].

5Still this procedure hasn’t completely satisfied me: seems that the difference of off-diagonal blocks of the discrete matrix ([50]5.4) should contain
DM, but we don’t see this in (4.10).

6Since ψ̄G−1ψ and ψ̄γ̂clψ are not matrices, but numbers (more precisely – products of even number of Grassmann variables which doesn’t change

the point), exp
[

iψ̄G−1ψ +Udisψ̄γ̂
clψ

]

= exp
[

iψ̄G−1ψ
]

× exp
[

Udisψ̄γ̂
clψ

]

.
7Stratonovich invented it two years before Hubbard.

http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.5.11
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.5.12
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.2.30
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#subsection.5.2
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.5.4
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Introducing notations:8

Qab
tt′ = Q̄ba

t′t =⇒ Sp Q2 ≡
2

∑

a,b=1

∫

ddr

∫

dtdt′Qab
tt′ (~r )Qba

t′t(~r ) = 2

2
∑

a,b=1

∫

ddr

∫

t≥t′
dtdt′Qab

tt′ (~r )Q̄ab
tt′ (~r ).

In this expression Sp is the product of three trace operators over three pairs of indices: Keldysh (a, b), time (t, t′) and
coordinate ~r; trace over coordinates is just a simple integral, since ∀a, b, t, t′ the quantity Qab

tt′ is diagonal in coordinate
space. In order to handle Q in the same way as G−1, we introduce notation

〈~r, t, a|Q|~r ′, t′, b〉 ≡ Qab
tt′ (~r )δ(~r − ~r ′), Sp ≡ Sp

Keldysh

Sp
time

Sp
coordinate

.

Then

ψ̄Qψ ≡
2

∑

a,b=1

∫

dtdt′ψ̄a
t (~r )Qab

tt′ (~r )ψb
t′ (~r ) =

2
∑

a,b=1

∫

t≥t′
dtdt′

{

Qab
tt′ (~r )ψ̄a

t (~r )ψb
t′ (~r ) + Q̄ab

tt′ (~r )
[

ψ̄a
t (~r )ψb

t′ (~r )
]

}

,

and the integrand must not contain any singularities of the form δ(t− t′), so that t = t′ is a set with zero measure in our
two-dimensional time integrals. Let the indices α, β run all the values of the discretized set {t ≤ t′}. Using9 Tab. [51]1.1
(See p. [51]37) for Hαβ =

πν
2τ δα,β′ and η =

i
2τ ψ̄tψt′ , we get

∫

D[Q] exp

[

−πν
4τ

Sp Q2
+
ψ̄Qψ

2τ

]

= exp















1

2πντ

2
∑

a,b=1

∫

ddr

∫

t≥t′
dtdt′

(

ψ̄b
t′ψ

a
t

) (

ψ̄a
tψ

b
t′

)















=

= exp















− 1

4πντ

2
∑

a,b=1

∫

ddr

∫

dtdt′
(

ψ̄a
tψ

a
t

)

(

ψ̄b
t′ψ

b
t′

)















≡ exp













−
(

ψ̄ψ
)2

4πντ













.

This new effective action10

exp
{

i

~
S [Q]

}

=

∫

D[Q] exp
[

−πν
4τ

Sp Q2
]

∫

D[ψ̄ψ] exp
[

iψ̄
(

G−1 ± iQ

2τ

)

ψ
]

.

We remember that nothing changes if we add a constant to the action and that log det = Sp log and taking in the last
expression the same sign as Kamenev has, we obtain ([50]157)

i

~
S [Q] = −πν

4τ
Sp Q2

+ Sp log
[

G−1
0 +

iQ

2τ
+ V

]

, V ≡ σ0Vcl + σ1Vq, (4.13)

where we for generality wrote some external (e.g., AC electric) field V.

4.3 Gapless excitations above the ground state

Because of the Sp the first variation can be easy calculated (like derivative from a function):

∀n ∈ N δ Sp Qn
= n Sp

[

Qn−1δQ
]

.

8We enlarged the set C, introducing Grassmann variables in it. The bar over a symbol denotes complex conjugate if the symbol is a usual
complex number, and (unusual) Grassmann conjugate if the symbol is a Grassmann variable. This construction is so durchsichtig that I believe
that ([50]187) is valid also in case when J – is an element of our enlarged set. We follow the standard definition of Grassmann conjugate – see
p. [53]61 and ([51]1.142b). Lerner in ([17]15) writes smth strange. In general, the title of [17] has affected its style – after reading [17] I felt being that
“pedestrian” (BC explained that this is a politically correct synonym for “complete idiot”).

9See also ([50]187).
10Don’t forget that ψ ≡ ψ(~r, t) and Q ∝ δ(~r − ~r ′), but G−1 is not diagonal in coordinate space.
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Let us calculate variation of the action in the vicinity of the stationary solution Q (where Q must be found from the

condition δS[Q] = 0). For shortness we will omit the summation over Keldysh indices and over coordinates:11

∫

dtdt′
[(

Q̄ + δQ̄
)

tt′

(

Q + δQ
)

tt′
− Q̄

tt′
Q

tt′

]

=

∫

dtdt′
[

Q̄
tt′
δQtt′ + δQ̄tt′Q

tt′

]

= 2

∫

dtdt′δQ̄tt′Q
tt′
,

Sp log













G−1
0 +

i(Q + δQ)

2τ
+ V













− Sp log

[

G−1
0 +

iQ

2τ
+ V

]

≈
∫

dtdt′















[

G−1
0 +

iQ

2τ
+ V

]−1














tt′

iδQ̄tt′

2τ
,

=⇒ δ Sp Q2

δQ̄tt′
= 2Q

tt′
,

δ Sp log
[

G−1
0
+

iQ
2τ + V

]

δQ̄tt′
=

i

2τ















[

G−1
0 +

iQ̄

2τ
+ V

]−1














tt′

,

from where we understand why ([50]158) holds.12 Please note: like in Sec. 1.5, also here arises the question about real
part of the self energy, which is silently assumed to be zero in ([50]160).

If our action would be a finite-degree polynomial like on p. [54]81-86, then we would calculate also δ2S[Q], and then
say that

S[Q + δQ] − S[Q] ≈ Sp















δQ ◦
δ2S[Q]

δQ2
◦ δQ















= S0 + Sm,

where S0 would correspond to Goldstone excitations (particles with zero mass). But, unfortunately, our action doesn’t
allow us to calculate δ2S[Q], so that we have to approach the problem in an indirect way – through the Goldstone

theorem. We hope13 that our extremum

Q
ω
≡ Λω =

(

1 2Fω
0 −1

)

∀Tω ∈
{(

rω Fω (rω − aω)
0 aω

)

∣

∣

∣

∣

rω, aω ∈ C
}

TωΛωT −1
ω = Λω (4.14)

corresponds to the minimum of the action (we call S “action” which is not quite rigorous). Note that in the absence of

perturbation (i.e., for V = 0) our action obeys continuous symmetry:14

{

Q
∣

∣

∣

∣

S [Q] = S
[

Q
ω

]

}

=

{

Q = T ◦Λ ◦ T −1
∣

∣

∣

∣

T ∈ T
}

df
=Z, T =

{

T −1
= T †

∣

∣

∣

∣

Ttt′ (~r ) = Tt−t′

}

, (4.15)

because matrices from the set T commute15 with G−1
0

(but doesn’t commute with Λ, unless they are proportional σ0 in
Keldysh space). Note that sets T and Z are isomorphic:

T1,T2 ∈ T, T1 , T2 ⇐⇒ Q1,Q2 ∈ Z, Q1 = T1 ◦Λ ◦ T −1
1 , Q2 = T2 ◦Λ ◦ T −1

2 . (4.16)

I interpret ([50]6.10-6.11) as

wrong statement: Z = ZN
df
=

{

Q
∣

∣

∣

∣

Q2
= 1, Sp Q = 0

}

. (4.17)

In reality the set Z is smaller than ZN.
16 Following the text after ([50]6.10), we call the set Z in (4.17) “Goldstone

manifold”. Analogously with the argumentation on p. [55]250-251 (i.e. fro the Goldstone theorem) we expect that Z
will generate gapless excitations. More precisely, in our case the Goldstone theorem claims that in the expansion

S [Q] − S [Λ] ≈ Sp [Q ◦ Γ ◦Q] ≡

≡
2

∑

a,b,c=1

∫

ddp1ddp2ddq

(2π)3d

∫ ∞

−∞

dE1dE2dω

(2π)3

〈

~p1 − ~q,E1 − ω, a |Q| ~p1,E1, b
〉

〈

~p1,E1, b
∣

∣

∣Γ~q,ω

∣

∣

∣ ~p2,E2, c
〉

〈

~p1,E1, c |Q| ~p1 − ~q,E1 − ω, a
〉

,

lim
~q,ω→0

Γ~q,ω = 0, Q ∈ ZN
df
=

{

Qω = T ◦Λ ◦ T −1
∣

∣

∣

∣

T ∈ TN

}

, TN =

{

T −1
= T †

∣

∣

∣

∣

∀Ttt′ (~r )
}

, Q2
ω = 1

(4.18)

11For the moment I don’t see any small parameter which validate our stationary phase approximation. Or this is just a quasiclassical approxima-
tion? But then I placed ~ incorrectly.

12Spatial coordinates in the rhs of ([50]158) coincide because Q ∝ δ(~r − ~r ′). In our notations δQ̄tt′ is a coefficient in front of this δ-function.
13These hopes have grounds. Later we see that this is minimum (or at least – not maximum) on the subset TN; see. (4.18) and ([50]6.15). So, now

we know that it is extremum and later we will see that it is not maximum. Thus, it is minimum.
14Like ∀T ∈ T, matrix ([50]6.9) is also diagonal in the frequency space (because we are interested only in stationary energy distributions), but not

diagonal in Keldysh space – it has off-diagonal 2Fω, see. (4.14) and ([50]6.9). That’s why for fixed Λ but different T in the rhs of ([50]6.10) we get
different matrices Q.

15This claim is checked for Pauli matrices assuming that
[

G−1
0

]

R
=

[

G−1
0

]

A
and

[

G−1
0

]

K
=0: then ∀i = 0 . . . 3 [σi,G

−1
0

] = 0.
16In fact, ZN ∋ T ◦Λ ◦ T −1 also for ∀T < T.

http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.10
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.11
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.10
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.9
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.9
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.10
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Γ~q,ω approaches zero when ~q, ω both approach zero. This statement is not obvious; in case of the vector field it is proved

(no, not proved, rather “shown”) on p. [54]81-86.17 The set TN is larger than T: its elements T weakly depend on
coordinate and on t + t′.18

We substitute in (4.13) ansatz for Q (4.18), multiply the log-argument by (Q-independent) constant G0. Now we throw
out of the (4.18) all terms, which are independent on Q. We get the new action19

i

~
S [Q] = Sp log

[

G−1
0 +

iTΛT −1

2τ
+ V

]

= Sp log
[

T −1G−1
0 T +

iΛ

2τ
+ T −1VT

]

≡

≡ Sp log
{[

G−1
0 +

iΛ

2τ

]

+ T −1
[

G−1
0 ,T

]

− + T
−1VT

}

= Sp log {1 + A + B} ≈ Sp

{

A + B − A2 + B2

2
− AB

}

,

(4.19)

where A
df
=GT −1

[

G−1
0
,T

]

− and B
df
=GT −1VT . We perform calculations in the frequency space.

4.4 Isotropic diffusive metal

Calculating the trace in the momentum space, we use the following MEs of GF and of T and T −1:

〈~pω|G−1
0 |ω′~p ′〉 =

(

ω − ξp

)

δ(ω − ω′)δ(~p − ~p ′), 〈~rω|T |ω′~r ′〉 = Tωω′ (~r )δ(~r − ~r ′) =⇒ 〈~pω|T |ω′~p ′〉 = Tωω′ (~p − ~p ′),

〈~p,E|Q|~p − ~q,E′〉 =
∫

ddk

(2π)d

∫ ∞

−∞

dE1

2π
〈~p,E|T |~p −~k,E1〉ΛE1

〈~p −~k,E1|T −1|~p − ~q,E′〉 =

=

∫

ddk

(2π)d

∫ ∞

−∞

dE1

2π
TE,E1

(~k )ΛE1
TE1,E′ (~q −~k ).

(4.20)

We assume that in (4.19) one is much larger then the other terms in the log-argument, and we expand the log. In
Keldysh space G−1

0
∝ unity matrix: G−1

0
= [ω − ξ]. The first order of expansion gives us

Sp
{

GT −1
[

G−1
0 ,T

]

−

}

= Sp
{

GT −1 [ω,T ]−
}

− Sp
{

GT −1
[

ξ̂,T
]

−

}

,

If we calculate the first term in the coordinate space, then, due to (4.20), G under Sp will have coinciding arguments.
Keeping in mind that ∀ω Gω(~r = ~r ′) = −iπνΛ, and that ∀ω Sp [ωΛ] = 0, we get20

Sp
{

GT −1 [ω,T ]−
}

= −iπν Sp
[

ΛT −1ωT
]

= −iπν Sp [ωQ] ≡ πν Sp [∂tQ] . (4.21)

Note that the following matrix element depend only on the direction of the “main momentum” ~n, but is independent on
its modulus p:

〈~p |[ξ,T ]|~p − ~q 〉 = T~q(ξp − ξ~p−~q) ≈ T~qvF~n~q,

∫

ddp

(2π)d
= ν

∫ ∞

−∞
dξp

∫

dΩ~n
Ω0

. (4.22)

In other words, the differential operator ξ̂ = p2/(2m) − µ = −∆/(2m) − µ acts on the product of fast function G(~r ) by slow

functions T (~r ) and T −1(~r ). From (4.22) it follows, that the result of action of ξ̂ on G(~r ) in our case is cancelled so that
τξ̂ ∼ q2l2 ≪ p2

F
l2. Keeping in mind (4.22), we conclude that the first-order term in the expansion of the action (4.19) in ξ

is zero:21

Sp
{

GT −1 [ξ,T ]−
}

= vF

∫

ddpddq

(2π)2d
GpT −1

~q
T~q~n~q = vFν

∫

dΩ~n
Ω0

∫

ddq

(2π)d
~n~q

∫ ∞

−∞
dξpG(ξp)T −1

~q
T~q = 0, (4.23)

so that the action (4.19) must be expanded up to the quadratic terms in ξ:

Sp
{

(

GT −1 [ξ,T ]−
)2
}

= νv2
F

∫ ∞

−∞
dξp

∫

dΩ~n
Ω0

∫

ddq1ddq2ddq3

(2π)3d
G(ξp)T −1

~q1
~n~q2G(ξp)T −1

~q3
~n(~q1 + ~q2 + ~q3), (4.24)

17See also Fig. on p. [55]250.
18In addition we assume that T is not proportional to the unity matrix in Keldysh space. Kamenev doesn’t say this at this point, but assumes it

further, in ([50]6.22).
19To save the letters of latin alphabet, we denote all our numerous actions with the letter S; but this doesn’t mean that they are the same.
20Certainly, the result (4.21) can be also obtained in the momentum space, remembering about (4.20).
21The next (quadratic in q) term in (4.23) will not be zero, but we conceal ourselves with assumptions that this term will be very small.

http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.22
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where we used (4.22), and disregarded the difference in momentum arguments of GFs (taking into account that anyway
we already have quadratic smallness in q). From (4.24) we conclude that

Sp
{

(

GT −1 [ξ,T ]−
)2
}

=

∫

ddk

(2π)d

∫

ddq1ddq2

(2π)2d

∫

ddp

(2π)d

[

T~q1
G~p−~q1

T −1
~k−~q1

(

ξ~p−~k − ξ~p−~k−~q2

)

T~q2
G~p−~k−~q2

T −1

−~k−~q2

(

ξ~p − ξ~p−~q1

)

]

.

In this expression the momentum ~p is much larger than all other momenta. The integrand is proportional to the
square of the small momenta. In order not to introduce additional smalnesses, we assume that momenta of both GFs
coincide (equal to ~p), and integrate over ~p. We get

~∇T −1 ≡ −T −1
(

~∇T
)

T −1
=⇒ Sp

{

(

GT −1 [ξ,T ]−
)2
}

=
2πντv2

F

d

∑

s=±

∫

ddkddq1ddq2

(2π)3d

[

~q1T~q1
(1 + sΛ)T −1

~k−~q1

~q2T~q2
(1 − sΛ)T −1

−~k−~q2

]

=

= −
2πντv2

F

d

∑

s=±
Sp

[(

~∇T
)

(1 + sΛ)T −1
(

~∇T
)

(1 − sΛ)T −1
]

=
4πντv2

F

d
Sp

{

[(

~∇T
)

ΛT −1
]2
+

(

~∇T
) (

~∇T −1
)

}

=
2πντv2

F

d
Sp

[

(

~∇Q
)2
]

.

We remember about the external field. Its linear contribution into the action is22

Sp
[

GT −1VT
]

= −iπν Sp
[

ΛT −1VT
]

= −iπν Sp [QV] . (4.25)

The last term in ([50]6.15) is the least clear to me. This term is stiff, it is independent on the impurity concentration,
appears during taking the trace over frequencies (it should be taken the first). Since T are soft modes, they transfer

small frequencies ω.23 We assume that ME
〈

~p,E
∣

∣

∣Vcl,q

∣

∣

∣ ~p − ~q,E − ω
〉

is independent of ~p and E [that is, for the case of

applied electric field (??) the results (4.26) and ([50]6.15) are wrong24]. We search for the terms integrals from which
converge at large “main” energies E. For these terms we can ignore the presence of T in the leading order, so that

Sp
[

(

GT −1VT
)2
]

≈ Sp
[

(GV)2
]

= Sp
[

hE

(

G2
R − G2

A

)

VclVq +

(

G2
R + G2

A

)

V2
cl + (GR − GA)2 V2

q h2
E + 2GRGAV2

q

]

. (4.26)

Let us try to get the last term in ([50]6.15) from the first term in the rhs of (4.26) using (3.32).

Sp
[

hE

(

G2
R − G2

A

)

VclVq

]

=

∫

ddp

(2π)d

∫ ∞

−∞

dE

2π
hE

(

G2
R − G2

A

)

∫

ddq

(2π)d

∫ ∞

−∞

dω

2π
Vcl(~q, ω)Vq(−~q,−ω) ∝

∝ lim
T≪E∗→∞

(νE∗ + ν−E∗ )

∫

ddq

(2π)d

∫ ∞

−∞

dω

2π
Vcl(~q, ω)Vq(−~q,−ω) ≈ 2ν

∫

ddq

(2π)d

∫ ∞

−∞

dω

2π
Vcl(~q, ω)Vq(−~q,−ω) ≡ ν Sp

[

VTσ1V
]

,

(4.27)

so that Sp for the last term in the action ([50]6.15) has somewhat different sense than for other terms in ([50]6.15).
I don’t like the assumption that DoS is a constant, νE ≡ ν = const. On the other hand, we remember about my old
assumption which appeared during writing the Sec 1.5: if we say that

∫

ddp/(2π)dG2
R
= 0, then we have to say that νE

is a constant in the vicinity of E = 0, asumingly, in the interval25 |E| . 1/τ. Correspondingly, in (4.27) we should by
E∗ →∞ understand E∗ → 1/τ.

Consider other terms at large frequencies E ≫ T, ω (where ω – are frequencies transfered by T ), =⇒ h2
E
≈ 1, so that

the rest terms in (4.26) are equal to

Sp
[(

G2
R + G2

A

) (

V2
cl + V2

q

)]

∝
(

GE
R + GE

A

)

∣

∣

∣

∣

E=∞

E=−∞
= 0,

where we disregarded the frequency dependence of Vcl,q (assuming that we are not interested in high-frequency pertur-

bations,26 so that Vcl,q transfers small frequencies, just like T .
Finally, if V corresponds to external electric field (??), equation (4.27) cancels the diamagnetic term.
So, we27 got the desired action ([50]6.15). It is rather simple, so that we can calculate its second varia-

tion ([50]6.25,6.23).

22Eq. (4.25) is applicable only in case when V is independent on the modulus of momentum. For the case of electric field this means approximating
~p ≈ pF~n.

23More precisely, we assume that ∀~q,E TE,E−ω(~q )→ 1 for |ω| → ∞. See also the text after ([52]47).

24In fact, when substituting (??) in ([50]6.15) we get divergence Sp
{

VTσ1V
}

= 2
∫ ddp

(2π)d

(

epx

2mc

)2 ∫ ∞
−∞

dE
2πAE

x,cl
A−E

x,q
25We implied that Tτ≪ 1, when we refused to consider stiff modes.
26High-frequency perturbations would lead to stiff modes from which we disowned from the very beginning.
27Apart from the lost coefficient which I order LATER.

http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.25
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.23
http://quantumtheory.physik.unibas.ch/shalaev/arXiv/0412296.pdf#equation.6.15


Chapter 4 page 42 generated October 16, 2011

4.5 Moral

Learning NLσM is useful because of the following reasons:

• This is an alternative way of calculating transport effects in diffusive conductors. Sure, not very convenient, but
it is nice to hold it as a back-up.

• NLσM wakes up rememberings about relativistic quantum mechanics, and this is beautiful.

• NLσM allows understanding of NLσM-articles, and search for mistakes in them.

• Some people will think that you are very clever only because you use NLσM ©.

• Some people will think that you are an idiot only because you don’t know NLσM ©.

Up to know28 I have found no real calculational advantages of NLσM in comparison with the usual diagrammatics, but
I’ve noticed disadvantages:

• NLσM is harder than the diagrammatics.

• Also in the diagrammatics the accuracy control is not ideal but in NLσM it is worse.

• How could one describe SOI in NLσM? I suspect – very uneasy. . .

28Hopefully – temporary, and everything changes when I read the articles cited by Lerner between Eqs. ([17]2-3).
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Chapter 5

Extrinsic spin-orbit: Vso ∝ ~σ · [~p × ~p ′].

Literature: for general interest: cond-mat/0504175.

!Note: Extrinsic SOI can not be ignored on the interface: there is a term in the Hamiltonian ♣ ∝ (σx
∂U
∂y − σy

∂U
∂x ),

where U is a confining potential of the quantum well responsible for Rashba SOI ∝ 〈 ∂U
∂z )〉.

When we remmember about spin, we can generalize our non-interacting Hamiltonian to

Ĥ =

3
∑

α=0

∑

λ,λ′

εα(λ, λ′)ψ†λψλ′ , (5.1)

where λ is some quantum number without spin degree of freedom. Below we consider some particular cases of
(5.1). According to Pis’ma v JETP 41527,in the presence of magnetic impurities, a disorder averaging line is given by

fαβγδ =
δαβδγδ
mτ0
+

~σαβ~σγδ
3mτs

. (In the same article, also expressions for cooperon and diffuson in this case are given.) See also
appendix B from cond-mat/0402203.

In this section we consider the case when spin-orbital scattering is provided by impurities. A physical situation
for this may be [56] “randomly placed heavy-ion impurities, which can simultaneously scatter electrons and flip their
spin”.

Let the potential of one impurity consist of 3 parts1:

U(~r ) = σ0U1(~r ) + ~σ ·
[

~∇U3(~r ) × ~p/pF

]

+ ~S(~r )~σ, (~∇U3)† = −~∇U3. (5.2)

Other ways of writing this Hamiltonian: cond-mat/0506589.!How could one rewrite (5.3) in coordinate space?
According to [58], the impurity potential ME in the momentum representation is equal to

fαα′ (~p, ~p
′ ) = Vδαα′ + VS

~Si~σαα′ − iVso[~p × ~p′] · ~σαα′ .

!Better see PRB419548.
It might be described in [59] and in §140 of [60] how from this potential one comes to the one in [34], which is (in

momentum representation):

U(~p, ~p ′) = U∗(~p ′, ~p ) = u













σ0
+ i

√

τ̃

τso
~σ · [~n × ~n ′] +

√

τ̃

τm

~S~σ













, τso, τm ≫ τ̃, (5.3)

where τ̃ is defined according to (1.10), and ~n ≡ ~p/|p| and ~n ′ ≡ ~p ′/|p′| denote the directions of momentum of an electron
before and after its scattering on the impurity. The last term in (5.3) describes the presence of magnetic impurities; let
us ignore it for the moment. One can note that, in 2D, extrinsic SOI conserves sz.

From (5.3) it follows that the complete disorder field (from all impurities) will be

U(~p, ~p ′) = u

[

σ0
+ i

√

τ̃

τso
(~σ,~n, ~n ′) + β~S~σ

]

∑

a

exp
[

i(~p − ~p ′)~ra
]

, (~σ,~n, ~n ′) ≡ ~σ · [~n × ~n ′] , (5.4)

1H.-A. Engel with Rashba in cond-mat/0505535 say that U3 ≡ U1, so that apparently, τso in (5.3) is fixed. Hans-Andreas Engel is not sure that
(5.3) is equivalent to (5.2). He supposed that they are equivalent in case when Sherman function (see my Journal Club presentation here )
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~p ~p− ~q

~k − ~p

(σ0 + i
√

τ̃
τso
~σ · ~W ′)

~k − ~p + ~q

(σ0 + i
√

τ̃
τso
~σ · ~W

~q

~p− ~k

~p

(σ0 + i
√

τ̃
τso
~σ · ~W

(σ0 − i
√

τ̃
τso
~σ · ~W ′)

~p− ~q − ~k

~p− ~q

~q

Figure 5.1: A block with one impurity averaging (dashed) line from fig. 2.2(a). ~W = [~p×~p−~q] = −[~p×~q], ~W′ = [~k−~p×~k−~p+~q] =

[~k − ~p × ~q] ≈ ~W.

where
∑

a ei~p~ra guarantees connection of dangling scattering lines while the averaging. Then the rest of the expression
is just u(ϑ) in ([5]39.6), so that we deduce that for GR/A taking spin-orbital interaction into account results only in the
renormalization of τ̃. Below we immediately prove this statement rigorously.

Important: ~n and ~n ′ can be considered as totally uncorrelated. (because processes with a spin flip are relatively
rare in comparison to “normal” scattering processes, that is, the ones without a spin flip)

Look on the diagrams with dashed lines in fig. 2.2(a). The integration is performed over the momentum passing
through the all but one of these dashed lines. Let us consider one of many dashed line, see fig. 5.1. The vertices at the
ends of the dashed line are just

1 + i

√

τ̃

τso
~σ · ~W ≡ 1 + i

√

τ̃

τso
(~σ, ~p, ~q ) ≡ 1 + i

√

τ̃

τso
ei jkσip jqk, (5.5)

1 + i

√

τ̃

τso
~σ · ~W′ ≡ 1 + i

√

τ̃

τso
(~σ,~k − ~p, ~q ) ≡ 1 + i

√

τ̃

τso
elmnσl(km − pm)qn. (5.6)

The complete expression has to be integrated over the transfered momentum ~q. The integration over its absolute value
q must leave to some renormalization of τso. What is really important is the integration over the directions of ~q. Instead

of ~q I can integrate by ~W ≈ ~W′. Due to the fact that

∀k,n

∫

d ~WWk = 0,

∫

d ~WWkWn ∝ δkn,

spin-orbital part is not mixed with the usual one, so that there will be no linear in
√

τ̃
τso

terms in the resulting

expression.
As a result, after the averaging we obtain an effective interaction line with an expression

γ0
=

1

2πν

(

1

τ̃
σ0σ0′

+
1

τso
~σ~σ′

)

, τso ≫ τ̃. (5.7)

Dealing with this expression, it makes sense to divide different spin components into a singlet and a triplet. That’s
because singlet and triplet are the eigenstates of the ~σ~σ′ operator, so that for triplet γ0 = γ0

T
σ0σ0′, and for singlet

γ0 = γ0
S
σ0σ0′, where

γ0
T =

1

2πν

(

1

τ̃
+

1

τso

)

, γ0
S =

1

2πν

(

1

τ̃
− 3

τso

)

.

Repeating the derivation from sec. 1.4, we see that for a Green’s function we always have ~σ~σ′ = σ0σ0′, so that the only
change will be that 1/τ will be substituted with 1/τT = 1/τ̃ + 1/τso.

In other words: without spin-orbital interaction and for constant density of states we obtained from (1.12) that
2πντγ(0) = 2πντnU2

0
= 1, see (1.10) and (1.15). In case when we have spin-orbital interaction, from (5.7) we have

2πντTγ
(0)
T
=

2πντT

2πν

(

1
τ̃ +

1
τso

)

= 1, so that

1

τT
=

1

τ̃
+

1

τso
. (5.8)
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The cooperon’s self energy is equal to
γ0

T

1−γ0
T

X
for triplet and

γ0
S

1−γ0
S
X
for singlet. Thus in the triplet case one obtains just a

usual expression with τ substituted with τT given by (5.8), while in case of a singlet cooperon gains a mass:!Seems
that actually it is on the contrary: triplet gains mass, and singlet does not! See the text before ([10]2.14).

σCT =
1

2πντ2
T

1

Dq2 − iω
, σCS =

1

2πντS

1

1 − τT

τS

[

1 − τT(Dq2 − iω)
] ≈ 1

2πντ2
T

1

Dq2 − iω + 4
τso

,

where we have taken into account that τS

τ2
T

− 1
τT
≈ 4

τso
.

As for the diffuson case, it seems that the only difference from cooperon’s one will be the change of the sign of ~W′

in fig. 5.1. Thus the expressions for the diffuson can be obtained from those for a cooperon by changing the sign in
front of τso.



Chapter 6

Intrinsic spin-orbit

Literature: [16] and [61] are my favorite; despite that [62] is a bad book written on purpose to confuse people, I still
sometimes open it if I don’t find the information elsewhere. Here is the Hamiltonian which we are interested in:

Ĥ =
p̂2

2m
+ a(σ1p̂y − σ2p̂x) + b(σ1p̂x − σ2p̂y) + u(~r ), ~̂p ≡ −i~~∇, a, b ∈ ℜ. (6.1)

6.1 SOI and disorder

See definitions in [20]. In the denominator of a GF, we ignore all terms which are higher than linear in ξ. Thus if
we considered cubic SOI (instead of the linear one), then we should have substituted p3 → 2m(EF + ξ)pF. Thus it can
happen that the cubic SOI brings different physics than the considered here linear SOI. However, higher-power terms
(e.g., ∝ p5) are similar to the cubic one, so considering them is senseless.

Rashba Hamiltoniam in the second quantization can be found in PRL91226803(2005); on the lattice – in
cond-mat/0504218. The exact eigensystem of the Hamiltonian (6.1) with the magnetic field is claimed to be found
in [63]. Also take a look on how SOI is affected by the interaction: PRB77233310. Let us define the s.c. SOI lengths
λ1,2 [0409054]1:

~

λ1,2
= m(a ± b), (6.2)

Without loss of generality (since the contemporary sign change of a and b does not change the conductivity, which
we are interested in2) we assume that a + b > 0. Later, in (6.19) we will expand our GFs in small parameters x and δ
defined in (6.3) and in (6.19) using a − b = sign(a − b)x

√
1 − δ/(2pFτ); so we will have to consider two cases sign(a − b) = ±1

separately.
The amplitude of the SOI can be characterised with a dimensionless parameter x, as well as with the characteristic

momentum pS or energy ∆0:

pS = m
√

a2 + b2 =
x~

2l
, ∆0 = 2pF

√
a2 + b2 =

x~

τ
. (6.3)

Note that Ĥ′ is invariant with respect to the time reversal: KĤ′K−1 = Ĥ′, where K is defined in Sec. ??. The advantage of
this new (rotated by π/4) CS is that conductivity tensor is diagonal in it.3 Formally applying Legendre transformation
(just like in classical mechanics), we arrive to Lagrangian

L =
p2(~v )

2m
− u(R−1

π/4~r ), ~p(~v ) = m~v − e

c
~̃A.

1See other SOI lengths in [64].
2This is true even without averaging over the disorder. In fact, let us first build unaveraged GF operators ĜR/A using the Hamiltonian (6.2) with

a = b = 0, and make perturbation expansion of (8.7) [including the SOI-dependent part of the vertices v̂α,β] in powers of some SOI amplitude [which
should change sign when both a and b do that]. Let us consider odd terms of this expansion. The expression under Sp in (8.7) will be proportional
to some linear combination of σ1 and σ2, so that Sp = 0 for arbitrary odd (in SOI amplitude) term. (Here we have used the fact that our Hamiltonian
and vertices v̂α,β do not contain terms ∝ σ3.)

3I realize it in the end of the calculation. I would like to prove this using (6.9) and the explicit form of the velocity operator (6.8),!but I can’t.
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where ~̃A is defined in (6.8). Analogously to the spirality operator in QED,4 our “spirality” operator M~p (denoted by ŝ
in [20]) commutes with the Hamiltonian in the absence of disorder. The Hamiltonian has a specific symmetry with
respect to rotation5 by π/2:

Ĥ(~p, ~σ) = Ĥ(−~p,−~σ) = Ĥ(R±π/2~p,R±π/2~σ)
∣

∣

∣

∣

b→−b
, (6.5)

or, in other words, Rashba SOI is invariant under arbitrary rotation [66], while Dresselhaus SOI is not; the rotation by
π/2 is special [66].

Note the significant difference of (6.1) from (5.3): here spin-orbital scattering is not disordered, and the disorder
potential is considered as spin-independent. Also division to singlet and triplet does not work: it is impossible to
diagonalize spin-orbit term in the Hamiltonian independently of the momentum value. For the same reason GR/A are
essentially non-diagonal matrices in spinor space.

An expression for the electric current can be derived in two6 ways. At first, from the charge conservation law
∂ρ
∂t + div ~j = 0. The second way is to substitute velocity operator (1.5) into the classical formula ~j = en~v, that is,

~̂j = ie[Ĥ, x]/~ = e~∇~pĤ, so that a state |ψ〉 would produce the current density ~j = eψ†(~r )~̂vψ(~r ). However, this quantity will
be non-hermitian. Without being upset by this fact, we just take its hermitian part, and obtain the usual formula for
the current density and its operator.

Let us try to follow the first way in derivation of the current, trying to obtain it from the conservation law7

i~
∂

∂t
(ψ†σγψ) = −(ψ†Ĥ)σγψ + ψ

†σγ(Ĥψ) =
~

2

2m
~∇

[

(~∇ψ†)σγψ − ψ†σγ~∇ψ
]

−

− i

m













ψ†σγσ1ψy

λ2
+
ψ†yσ1σγψ

λ2
−
ψ†σγσ2ψx

λ1
−
ψ†xσ2σγψ

λ1













, γ = 0 . . . 3. (6.6)

For γ = 0, we obtain the charge conservation law with the charge current given by8

In the rotated basis: ~j =
ie~

2m

[

(

~∇ψ†
)

ψ − ψ†~∇ψ + 2
ie

~c
~Aωψ

†ψ
]

+
e

m

(

−ψ
†σ2ψ

λ1
,
ψ†σ1ψ

λ2
, 0

)

, (6.7)

In the original basis: ~j =
ie~

2m

[

(

~∇ψ†
)

ψ − ψ†~∇ψ + 2
ie

~c
~Aωψ

†ψ
]

+ e
(

bψ†σ1ψ − aψ†σ2ψ, aψ
†σ1ψ − bψ†σ2ψ, 0

)

.

Comparing it with (13.8), we see that to calculate the current we can use the usual charge current formula [20] with
a fictitious9 vector potential10

~̃A = − c

e

(

−σ2

λ1
,
σ1

λ2
, 0

)

=
mc

~e
[(a + b)σ2, (b − a)σ1, 0] , ~̂v =

i

~
[Ĥ,~r ] =

~~̂p

m
− e

mc

(

~A + ~̃A
)

, (6.8)

Ĥ =
mv̂2

2
−m(a2

+ b2) +U(~r ), Rπ/2~v =

(

vy

−vx

)

= Rπ/2

(

~p

m
+ ~A

)

+
~̃A
∣

∣

∣

∣

σ→Rπ/2σ
. (6.9)

4а) Следует иметь в виду, что, строго говоря, спиральность и киральность – это не одно и то же, см. стр. [65]110. б)!Проверить, что
спиральность электрона сохраняется. + From QED we know that spirality is a projection of spin onto momentum. However, [20](??) seems a
different quantity. The common thing between these two definitions is that spirality remains invariant under the time-reversal:

M̂~p = σ2

[

M̂−~p
]T
σ2. (6.4)

This property is valid not only for any bilinear form A(~p, ~σ), but also for many polynomials, e.g., cubic Rashba and Dresselhaus. [BTW, this is why
quadratic (in momentum) SOI is impossible.]

5I can consider such a rotation as a unitary transformation. The corresponding unitary matrices (in both momentum and spin space) are given
by (13.40) at ϕ = π/4.

6There is a third way described in §[60]115 – see the 3th footnote before Eq. (13.8): “The variation of the Hamiltonian with respect to the

electromagnetic vector potential ~A gives electric current operator.” This way has (apparently) been used in [67] for the spin current, and no
additional rot-term has been obtained there. Finally, I want derive the current operator from the Nöther theorem in the QFT-fashion of [68].

7I used brackets in (6.6) to emphasize that in the expression (ψ†Ĥ)σγψ, the differentiating operator ~̂p in Ĥ act on ψ†, not on σγψ. By definition,

ψ†Ĥ
df
=(Hψ)†.

8!And what about the case of random (extrinsic) scattering from the 5th chapter? Is the current there modified as well?
9From (6.8) we see that the velocity operator is affected by the SOI. In ([0603144]3) it is claimed that the coordinate operator is changed as well.

10This permits us using formulas like (3.38), derived for the case of no spin-orbit interaction, by replacing ~p→ ~p− e
~c
~̃A. Note that ~̃A gets renormalized

according to (7.13). Note also the importance of the inversion of the order of quantum numbers λ ≡ (~r, t) and λ′ ≡ (~r ′, t) in (9.4).

http://arxiv.org/abs/cond-mat/0603144
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Note that we don’t get the rot-term mentioned in the 6th footnote above; if we are interested in this term, we should
manually derive it from the Dirac equation; it is an “external ingredient” of the same type as SOI.

From (6.9) one obtains BC11 for the connection of WF in two neighboring materials with different SOI amplitudes
and disorder. Using the second expression for Ĥ, we integrate SE Ĥψ = Eψ over the infinitesimal neighbourhood of the

border, and see that a generalized BC is that the spinor ~̂vψ(~r ) must be a continous function of the coordinate. Without
SOI, this corresponds to the usual text-book requirement that ψ′(~r ) is continuous.

6.2 When a = ±b

In the special case a = ±b, the Hamiltonian Ĥ′ is diagonalized by the unitary transformations. In the original CS:

a = b⇒U1V′sU
†
1 = −

√
2a(p′x + p′y)σ3, U1~v

′U†1 = −
√

2a

(

σ3

σ3

)

,

a = −b⇒U2V′sU
†
2 = −

√
2a(p′y − p′x)σ3, U2~v

′U†2 =
√

2a

(

σ3

−σ3

)

,

U1 =(U†1)−1
=

1√
2

(

1 −eiπ/4

1 eiπ/4

)

, U2 = (U†2)−1
=

1√
2

(

1 −e−iπ/4

1 e−iπ/4

)

.

Especially nice this looks in the rotated CS:

a = b⇒U1VsU
†
1 = −2apyσ3, U1~vU†1 =

( px

mpy

m − 2aσ3

)

,

a = −b⇒U2V′sU
†
2 = −2apxσ3, U2~vU†2 =

( px

m − 2aσ3
py

m

)

,

U1 =(U†1)−1
=

1√
2

(

1 −1
1 1

)

, U2 = (U†2)−1
=

1√
2

(

1 −i
1 i

)

.

(6.10)

In Sec. 7.5 and 8.2 we see that this case leads to the same results, as in the absence of SOI.

6.3 Spin current (non) conservation

Let us rewrite (6.6) for the z spin component:

i~
∂

∂t
(ψ†σzψ) =

~
2

2m
~∇

[

(~∇ψ†)σzψ − ψ†σz
~∇ψ

]

− 1

m

[

(ψ†yσ2ψ − ψ†σ2ψy)/λ2 + (ψ†xσ1ψ − ψ†σ1ψx)/λ1

]

. (6.11)

Since the right part of (6.11) can not be written as a divergence of any vector, sz is not conserved12 (and neither sx and
sy do), so that we have to use the second way for the derivation of its current13:

[∆,~r ] = 2~∇, ~̂jsi
= ~̂si~̂v, ~̂v = ~̇r =

i

~
[Ĥ,~r ] = − i~

m
~∇ + 1

m













σ1~̂y

λ2
− σ2~̂x

λ1













− e

mc
~A, (6.12)

~̂js′
i
= −σi~

2m













i~~∇ −












σ1~̂y

λ2
− σ2~̂x

λ1













+
e

mc
~A













, ~̂js′
i
(~r ) = ψ̂†(~r )~̂js′

i
ψ̂(~r ),

~̂jsi
(~r ) =

1

2

[

~̂js′
i
(~r ) + ~̂j †s′

i
(~r )

]

=
1

2

{

ŝi, ~̂v
}

=

= − i~2

4m

[

ψ̂†(~r )σi
~∇ψ̂(~r ) − (~∇ψ̂†(~r ))σiψ̂(~r ) − 2ie

~c
~Aψ†(~r )σiψ(~r )

]

, i = 1 ÷ 3. (6.13)

In the (usual) σ−basis, b = 0 : ~̂v = − i~

m
~∇ + a(σ1~̂y − σ2~̂x ) − e

mc
~A, (6.14)

11a) См. письма в ЖЭТФ т. 30 стр. 574. b) A consideration of such a boundary must involve additional (extrinsic) SOI effects, see the beginning
of Sec. 5.

12That is why it is unclear, how spin current should be defined, see PRL96076604.

13I’ve written it for more general case when we have
(

~p − e
c
~A
)2

instead of p2 in (6.1). См. [60], §111, стр. 530-531.
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We see that spin-orbital terms in the Hamiltonian make no effect on the expression for the spin current14. It is easy
to obtain an expectation valuse of the spin current from (6.13): just remove operator’s hats, integrate over coordinate
and take a spin trace. If the integration is done over the whole space, then the second term in (6.13) is obtained from
the first one using integration by parts.

Now we can rewrite (6.11) as

ṡz(~r ) + div ~jsz =
2

~













jsx
x

λ1
+

j
sy

y

λ2













.

Thus sz is not conserved15, but still expressed in terms of spin currents. This is not true for sx and sy.
In practical calculation of sz current, one should use the usual charge current formula [20] with the removed

diamagnetic term ~A → 0 and e substituted by σ3~/2 (with a Sp operator added). As for ~A, we can set it to 0 because,
if we calculate averaged over impurities spin-current, the diamagnetic term is given by some combination of terms
Sp

[

σ3GR/A
]

which both are equal to zero due to the fact that averaged GR/A depend linearly on σ1 and σ2 and does not
depend on σ3.

Some papers contradict this reasoning: [70], cond-mat/0410607.

6.4 The eigensystem and Green functions

Without the disorder part, the eigensystem of the Hamiltonian (6.2) is given by16,17,18:

ϕ~ps(~r ) =
ei~p~r

√
2V

(

s
√

i
p−
p̃

1

)

,

∫

V

ddr
[

ϕ~ps(~r )
]†
ϕ~ps(~r ) = 1, E~ps =

~
2

2m
p2
+

s∆~p

2
, s = ±1, (6.15)

p± =
px

pSλ1
± i

py

pSλ2
, p̃ = |p±| df

= ñp. (6.16)

Using Lehmann representation (3.29) we obtain expression for the G(0)
R/A

:

G(0)
R/A

(~r,~r ′; E) =
1

2V

∑

~ps

ei~p(~r−~r ′)

E − E~ps + EF ± iε













1 s
√

i
p−
p̃

s
√
−i

p+
p̃ 1













,

G(0)
R/A

(~p,E) =
1

2

{

σ0 +M~p

E − E~p+ + EF ± iε
+

σ0 −M~p

E − E~p− + EF ± iε

}

= (6.17)

=
1

2



















σ0 +M~p

E − (p+p0)2

2m + EF +
p2

0

2m ± iε
+

σ0 −M~p

E − (p−p0)2

2m + EF +
p2

0

2m ± iε



















=

=
E − ξp ± iε + ∆2 M~p

(E − ξp − ∆2 ± iε)(E − ξp +
∆

2 ± iε)
, ε = +0, ~p0 = pS

p̃

p
= pSñ, (6.18)

where M~p can be considered as a generalization of the spirality (=helicity) operator defined in ([24]5). Its generalization
for the case MF is done in ([0508681]3).

The spirality is connected with the SOI-induced spectrum splitting as [20]

∆~p =
p

pF
∆0

√

1 + δ cos(2ϕ), !ŝ ≡M =
σ1 sinϕ

√
1 − δ sign(a − b) − σ2 cosϕ

√
1 + δ

√

1 + δ cos 2ϕ
, δ =

2ab

a2 + b2
, −1 ≤ δ ≤ 1. (6.19)

where sign(a − b) ≡ 1 if we additionally assume19 that |a| > b in [20](??). The parameters x and δ are correct expansion
parameters20 for σxx and σyy in the sense that, for arbitrary function f (∆~p), [in other words, the expansion in (x, δ) is

14An interesting expression of spin current through the distribution function: ([69]7).
15Spin-orbital term does not violate time-inversion symmetry. In round quantum dots of VG it violates rotational symmetry, but in my dirty metal

I don’t have it anyway, so basically I loose no integrals of motion.
16In the original, not turned basis, the energy spectrum E~ps and eigenvectors ϕ~ps look differently from (6.15). Take a look on chiral.tm, [71], and

[49].
17Note that in the special case a = b the spin part of the WF can be made separate from its orbital part (like in the absence of SOI). One can see

that after making discrete variable substitution s = s′ sign px. Then, e.g., E~ps′ =
~

2

2m p2 + s′|a|px. [This substitution is, actually, compulsory: without it

the Hamiltonian would depend on badly defined operator |p̂x|.] A similar situation must happen also in case when a = −b.
18I should carefully realize that the basis in (6.15) is invariant under the time reversal transformation.
19See the discussion before (6.3).
20x/2 and δ are called correspondingly “quadratisches Mittelwert” and “harmonisches Mittelwert” of xa and xb.

http://arxiv.org/abs/cond-mat/0410607
http://arxiv.org/abs/cond-mat/0508681
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uniform]

lim
x→0

∂n

∂xn
lim
δ→0

∂m

∂δm
f (∆~p) = lim

δ→0

∂m

∂δm
lim
x→0

∂n

∂xn
f (∆~p), (6.20)

which is not true for the expansion in xa and xb, see the p. 65. In addition, it is nice that x and δ have physical sense:
the amplitude of the SOI and the strength of its anisotropy.

Note that ♣KGR(~p )K−1 = GT
A

(~p ), where K is the time inversion operator from Sec. 6. In case21 b = 0, eigenvalues are

the same in σ- and σ-basis. (since in this case they are independent on the direction of ~k); eigenvectors in σ-basis

can be obtained from (6.15) by substituting
√

i → i; as for M and GF, they can be obtained from (6.17) and (6.3) by
substituting σ12 → σ12.

A useful identity in 2D : arg(~p + ~q ) − arg ~p =
q

p
sin(arg~q − arg ~p ) +O













(

q

p

)2










, q≪ p.

Note offdiagonal elements of (6.17) which are proportional to k±, which correspond to the Lz = ±1 total momentum state.
In fact somehow I could say that (GR/A)↑↑ and (GR/A)↓↓ correspond to the triplet with Sz = ±1. It would be nice to draw
the inverse Fourier images of k±/k in real space.

In case when a , b this defines two Fermi surfaces (lines in our 2D system) instead of one, which are nor circles,
nor ellipses [72].

Let us now calculate the series for the self energy in the self-consistent Born approximation. It is given by the
series of diagrams (1.7). Only diagrams without intersecting dashed lines are considered in (1.7) because, according to
[5] and Sec. 1.4, every intersection results in the reduction of an integration volume in the momentum space, leading
to the smallness of the order of (pFl)−1 ≪ 1. Then, in the approximation of the constant density of states all terms in
(1.7) but the first one are equal to zero due to the analytical properties of GR/A: indeed, every such a term contains at

least one multiplier ∝ ν
∫ ∞
−EF

dξG2
R/A(~p,E) ≈ ν

∫ ∞
−∞ dξG2

R/A(~p,E) = 0. [the quality of this approximation is ∼ (EFτ)−1, as it is

discussed on p. 51.] Calculating the first term in (1.7), we see that the spin dependence from (6.17) is smeared due
to the integration over the directions of momentum. In other words, in case when |a| = |b|, the presence of spin-orbital
term in the Hamiltonian (6.1) does not affect τ = τ̃ ≡ (2πνnU2

0
)−1.

Now an averaged Green function is equal to22

GR/A =
1

G(0)
R/A

−1 ± σ0
i

2τ

. (6.21)

One can check that

∀a, b, c ∈ R (aσ0 + bM)−1
=

aσ0 − bM

a2 − b2
, (aσ0 + bM + cσ3)−1

=
aσ0 − bM − cσ3

a2 − b2 − c2
. (6.22)

From (6.21) one obtains an expression for the averaged Green function. Just like in the usual case (when there is no
Rashba term), the expression for it can be obtained by substituting ε = +0 with 1

2τ :

GR/A(~p,E) =
E − ξ(p) ± i

2τ +
∆

2 M

[E − ξ(p) − ∆2 ± i
2τ ][E − ξ(p) + ∆2 ± i

2τ ]
, (6.23)

GR/A(~p )σ3 = σ3GR/A(−~p ), G∗R/A(px, py) = GA/R(−py,−px), σ2GT
A(−~p )σ2 = GA(~p ) (6.24)

where23 by gr/a we implied “usual” averaged Green functions (1.9).
One can insert the resulting GR/A from (6.23) into the self-consistent Born approximation, to check, if it is really

self-consistent. The answer is “yes” within the approximation ∆/EF ≪ 1. In fact, if we rewrite (1.7) as

∓ 1

2τ
= ℑ

∫ ∞

−∞
dξGR/A(ξ) − ℑ

∫ −EF

−∞
dξGR/A(ξ) ≡ I − I′,

21When both a, b , 0, in the original basis M = (apy + bpx)σ1/∆ − (apx + bpy)σ2/∆ with ∆2 = (a2 + b2)p2 + 4abpxpy.
22During the calculation of self energy in (6.21) I approximated αk̃ ≈ αpF. Also without this approximation the self energy would not be just σ0/2τ,

like in (6.21), but τ , τ̃. In principle one needs not doing this approximation; if we don’t employ it, then in 2D we substitute ξ→ p2/(2m)− EF, so that
(for |β| = 1)

♣ℑσR = −
σ0

16πτ
[J(∆) − J(−∆)] , J(∆) =

∫ ∞

0
dp

p
(

E − p2

2m + EF − αp
)2

+
1

4τ2

!suspect that there is + instead of − in the last eq. The result for the averaged GR/A will still be (6.23), but now with τ , τ̃.
23Note that this result (checked by myself) is in contradiction with PRB64144423.
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then one can estimate I′ ∼ I/(EFτ). This looks like a small adjustment of τ, so that it is not important. However, the
same reasoning is true for the integrals (??),??, and this is equivalent to say that cooperon and diffuson have a (real!)
mass of the order of 1/(EFτ2). This can be taken into account by keeping in mind that there is always a small ∼ 1/(EFτ2)
cut-off for the frequency. For example in the result (7.9) we have to remember that in reality always |ω| & 1/(EFτ2), and
this determines the order of limits in (7.9): first one has to take limx→0 and only afterwards24 limω→0.

This discussion can be expanded for quantities like
∫

d2p

(2π)2 gr(p,E)ga(p,E − ∆) which occur in the calculation of (??):

whenever we consider an integral of this type, we do it with a precision (EFτ)−1 ≪ 1 given that all other energy scales
in the system like ∆ and temperature are smaller than 1/τ. The assumption ∆ ≪ τ−1 permits me to treat ∆ as a usual
frequency variable.

Then cooperon and diffuson are calculated almost like in the spinless case. One notes that ~n ≈ ~p/|p| for GR/A(~p ) and
~n ≈ −~p/|p| for GR/A(~q − ~p ).

6.5 Dealing with SOI without SCBA

The calculation of the averaged GF from the previous section can be implemented in a more elegant manner. Let us
suppose the SOI-part of the Hamiltonian is small so that we can consider it as a perturbation δĤ. Like we did it
before in (??), let us then use perturbation theory expansion for GR. Let us at first consider the situation, when the
Dresselhaus contribution to the SOI is absent, so that b = 0 in the Hamiltonian (6.1). Then the infinite perurbation
series sums up into

GR = G(0)
R

∑

n≥0

(

δĤG(0)
R

)n
=

[

(

G(0)
R

)−1 − apM
]−1

=

(

G(0)
R

)−1
+ apM

(

G(0)
R

)−2 − a2p2

, (6.25)

where G(0)
R

stands for the averaged GF without SOI, see (1.9), and

δĤ = a(σ1p̂y − σ2p̂x) = apM, M =
1

p
(pyσ1 − pxσ2), M2

= σ0.

and we’ve used (6.22). From (6.23) we see that (6.25) is just the same as previously calculated GF for b = 0. In a
completely analogous manner we take the (more general) Hamiltonian (6.2), ∆/2 [defined in (6.16)] instead of ap, and M
from (6.3), and directly obtain an expression for the averaged GF, which will be valid for arbitrary SOI amplitudes a and

b because I considered an infinite perturbation series expansion. O.k., may be not arbitrary, but at least it will be still
valid for xa,b ∼ 1. So may be it is time to stop abusing computers and try calculate everything in an analytical way.

Differently from what I thought before the resulting averaged GF can be obtained from the GF for the system without
impurities by substituting ε = +0 → 1/(2τ). It would be interesting to check if this GF indeed solves the SCBA, which,
however, appears difficult, since ℑGR is given by a long expression, which can not be easily integrated by ~p. (The
difficulty of this calculation is comparable with the conductivity calculation; so let us just believe that our GF solves
SCBA.)

6.6 The chiral basis

At some point I thought that it will be cool to calculate everything in the chiral basis. This idea appeared to be deadlock
(тупиковая, Sackgasseidee), but still interesting: Let us make perturbation theory in the Dresselhaus part of the SOI
in (6.2):

Ĥ0
df
=U

(

Ĥ
∣

∣

∣

∣

b=0

)

U† =
~

2p̂2

2m
− apσ3, U = U† = ♣ 1√

2













1 − p−
p eiπ/4

1
p−
p eiπ/4













, δĤ = −bσ3

p2
x − p2

y

p
− 2bσ2

pxpy

p
.

Consequently, in the spirit of sec. 6.5 we obtain

GR/A =

[(

EF −
p2

2m
± i

2τ

)

σ0 + αpσ3

]−1

=























[

EF − p2

2m + αp ± i
2τ

]−1

0

0
[

EF − p2

2m − αp ± i
2τ

]−1























.

24provided that σ(ω = (EFτ
2)−1) ≈ σ(ω = 0), which is equivalent to say that σ(ω = 0) is a smooth (гладкая) function with finite derivatives in ω = 0.

For a metal I estimate (EFτ
2)−1 ∼ 17K.
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Let us now diagonalize the complete Hamiltonian:

U =
1√
2

















1 −2
px(a+b)−ipy(a−b)

∆~p
eiπ/4

1 2
px(a+b)−ipy(a−b)

∆~p
eiπ/4

















≈ 1√
2

(

1 −eiα

1 eiα

)

, tan
(

α − π
4

)

=
a − b

a + b

py

px
=

√

1 − δ
1 + δ

tanϕ,

GR/A =

(

−ξ + ∆2 ± i
2τ 0

0 −ξ − ∆2 ± i
2τ

)−1

,
∂GR/A

∂δ

∣

∣

∣

∣

δ=0
= −σ3

4
∆0G2

R/A cos 2ϕ.

Working in the chiral basis has aparent advantages:

• the “physical interpretation” of the SOI (as an effective MF) is now very visible. [Especially in the 2nd loop, where
we can approximate p ≈ pF in the SOI-part of the Hamiltonian, because we are not interested in the corrections
∝ (pFl)−1, which, e.g., lead to corrections to the velocity operator, see (6.7).]

• We see that in case δ = 0 the system behaves as a 2D metal without SOI subjected to a constant external in-plane
MF, which clearly can not affect conductivity tensor (even retaining its isotropic part). This fits Sec. 8.2 very well.

• I claim even more: we can eliminate the momentum-independent part of this external MF, which should simplify
the calculation.

• Some MEs of the diffuson gain mass due to the MF, but, differently from the usual bases, the characteristic

convergence scale of
∫

d2k
(2π)2

∫

d2q

(2π)2 is q∗ ∼ (x2
a + x2

b
)1/4/l. In the spinor basis from eq. ([73]4.5), the diffuson is diagonal

even for q , 0!

However, all this fancy stuff does not work (except, may be, for the ZLA), since our simple disorder potential in the
original system corresponds to a very complicated one in the chiral basis and vice versa.§

6.7 Cooperon and diffuson

BN said that this [i.e., the employment of (13.37)] corresponds to the division of a diffuson into singlet D00 and triplet
(D11,D22,D33). I think, BN was wrong, see sec. 14.2 together with the footnote ?? on p. ??. Look on eq. ([73]4.5): I could
also work in the spinor basis (σ0, σ+, σ−, σ3) instead of (σ0, σ1, σ2, σ3). It is interesting, what would it change.

Note also that Dαα can be interpreted as elements of spin DM, see p. [10]19.

!From cond-mat/9905028 I’ve got an impression that only cooperon gains mass due to the dephasing (I mean
the term 1/τϕ in the denominator due to the interaction and . . . ), so that all components of a cooperon are in reality
finite, while some components of the diffuson have a true pole for q = 0 and ω = 0.

Note the symmetries:

X
αβ
D

(~q, ω) =X
αβ∗
D

(−~q,−ω), Xαβ(~q ) = Xβα(~q ), α, β , 2 or α = β = 2,

Xαβ(~q ) = − Xβα(~q ), α = 2, β , 2 or α , 2, β = 2,
(6.26)

Concerning the symmetries of D(~q ), see (8.17),8.18,8.19.
Finally, let us see the correspondence between my expression (??) for the cooperon with the cooperon components

in the notation of [35], namely in ([35]6,7,13). From the comparison of my expressions for the WL correction (7.21) with
([35]6) we obtain, that

Cαλβµ =

3
∑

γ,γ′=0

σ
γ
αβσ

γ′

µλ
Cγγ

′
, Cγγ

′
=

1

4

2
∑

αβµλ=1

Cαλβµσ
γ
βασ

γ′

λµ
. (6.27)

6.8 Diffuson for |a| , |b|
We see that only the (1, 1)-minor (i.e., matrix block) is affected by the SOI. So let us work with this minor in XD and D.
The following property has been checked25 up to the precision of (xa, xb, lq)6:

XD(~q, xa, xb) = Cxy
[

XD(~q, xa,−xb)
]

= Cxy
[

XD(−~q,−xa, xb)
]

= XD(−~q,−xa,−xb), (6.28)

25BTW, (6.28) holds also for the diffuson (6.37).

http://arxiv.org/abs/cond-mat/9905028
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where Cxy is defined in (8.17). Obviously the same relations hold26 also for the diffuson:

Cxy[D(Qx,Qy, δ = 0)] = D(Qy,Qx, δ = 0). (6.29)

The diffuson27 is obtained using (??) with XD given by

X22
D = X00

D − X11
D + X33

D ,
E3 − XD

x2
≈ Y(0) −

[

x2Y(0,2)
+ δY(1,0)

+ δ · x2Y(1,2)
]

, ~Q
df
= l~q/x, Q . 1, (6.30)

Y(0)
=

Q2

2
E3 +

1

2

















1 0 −2iQx

0 1 −2iQy

2iQx 2iQy 2

















, Y(1,0)
=

1

2

















−1 0 iQx

0 1 −iQy

−iQx iQy 0

















, (6.31)

Y(0,2)
= 3E3

[

Q2

4
+

Q4

8

]

+
1

2



















1 + 3Q2
x 3QxQy −iQx(4 + 3Q2)

3QxQy 1 + 3Q2
y −iQy(4 + 3Q2)

iQx(4 + 3Q2) iQy(4 + 3Q2) 2 + 9
2 Q2



















, (6.32)

Y(1,2)
=

1

4



















3(1 + 2Q2
x +Q2) 0 −iQx(8 + 3Q2)

0 −3(1 + 2Q2
y +Q2) iQy(8 + 3Q2)

iQx(8 + 3Q2) −iQy(8 + 3Q2) 6(Q2
x −Q2

y)



















, (6.33)

8 det Y(0)
= 2 +Q2

+Q6
= (Q2

+ 1)(Q4 −Q2
+ 2) = (Q2

+ 1)

(

Q2 − 1 − i
√

7

2

) (

Q2 − 1 + i
√

7

2

)

. (6.34)

The above expressions for Y coincide with the exact result (6.36) for Q = 0, and, apparently, with ([73]4.8,4.9). The

limit SOI→ 0 corresponds to Y(0) =
Q2

2 E3, Y(0,2)
Q
= − 3

8 Q4E3, and Y(1,2) = 0. The matrix (E3 − XD)/x2 − Q2E3/2 + 3Q4x2E3/8 is

Hermitian and its (3, 3)-element is a sum of (1, 1)th and (2, 2)th.
The contribution of terms from [. . .] in (6.30) to the diffuson (??) can be taken into account perturbatively:

4πντx2D(~Q ) = x2 (E3 − XD)−1 ≈
{

Y(0) −
[

x2Y(0,2)
+ δY(1,0)

+ δ · x2Y(1,2)
]}−1 ≈ d(0,0)

+ x2d(0,2)
+ δ · d(1,0)

+ x2δ · d(1,2),

d(0,0)
=

[

Y(0)
]−1

, d(0,2)
= d(0,0)Y(0,2)d(0,0), d(1,0)

= d(0,0)Y(1,0)d(0,0),

d(1,2)
=d(0,0)

{

Y(1,2)
+ Y(0,2)d(0,0)Y(1,0)

+ Y(1,0)d(0,0)Y(0,2)
}

d(0,0)
= d(0,0)Y(1,2)d(0,0)

+ d(0,2)Y(1,0)d(0,0)
+ d(0,0)Y(1,0)d(0,2)

=

=d(0,0)Y(1,2)d(0,0)
+ d(1,0)Y(0,0)d(0,0)

+ d(0,0)Y(0,0)d(1,0), x2, δ≪ 8 det Y(0) ∼ 1, 0 ≤ Q . 1.

(6.35)

The resulting Di j(~Q) will have denominator ∝ (det Y(0))n where n is an integer number, see (6.34). The expression (6.34)

for 8 det Y(0) is independent on the direction of the small momentum ~Q, so the same is true for the denominators of all
components of diffuson. Consequently, an arbitrary diagram with two loops (e.g., rhs of fig. [20]??) has denominators

[consisting of (det Y(0))α for momenta ~K, ~Q, and ~K + ~Q] which are invariant with respect to two “mirror reflections”: (i)
(Kx → −Kx,Qx → −Qx), (ii) (Ky → −Ky,Qy → −Qy), and (iii) (Kx ↔ Ky,Qx ↔ Qy).
It is interesting that the original Hamiltonian (6.1),6.2 does not possess any of these symmetries.

d(0,0)
= 2



























1+Q2
x

1+Q2 +Q2
x

2−Q2

2−Q2+Q4

QxQy

1+Q2 +QxQy
2−Q2

2−Q2+Q4

2iQx

2−Q2+Q4

QxQy

1+Q2 +QxQy
2−Q2

2−Q2+Q4

1+Q2
y

1+Q2 +Q2
y

2−Q2

2−Q2+Q4

2iQy

2−Q2+Q4

− 2iQx

2−Q2+Q4 − 2iQy

2−Q2+Q4

1+Q2

2−Q2+Q4



























, for Q≫ 1 d(0,0) ∼ 2

Q2

















1 0 0
0 1 0
0 0 1

















.

The corrections (due to δ , 0) to d(0,0) maintain parity and мнимость, i.e., e.g., elements (1, 3) and (2, 3) are purely

imaginary; d(0,0)
1,2
∝ QxQy × P(Q2

x,Q
2
y) (where P is some polynomial), etc.

26To realize this, I can represent the (E3 − XD)−1 as [(1 + Q2)E3/2 + ξ]−1, which is an infinite series in ξ. Since (6.29) holds for ξ, it holds for every
term in this series, so it is valid also for the entire series, i.e., for the diffuson. (note that this series is really infinite, unlike the expansion (6.35)
which is cut on the second term.) Or I could make a little more effort, checking this explicitly for both terms in (6.35).

27Note that, in general, XD is not the same in σ- and σ-representations. There is an exception – the special case q = 0 and xaxb = 0) due to its
diagonality and X11

D
= X22

D
. Based on our (no more present here) calculations we suspect that it always holds for q = 0 and xaxb = 0. Note (see

ORIG-BASIS/diffuson.max) that in the original basis diffuson is non-diagonal even for q = 0 if xa , 0 and xb , 0: elements 11, 23, 22, 32, 33, 44 are

non-zero. Other MEs are zero because of spin summation and angular integration (i.e., without the help of imprecise
∫ ∞
−EF

dξ ≈
∫ ∞
−∞ dξ).
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6.9 D(q = 0) can be calculated without expanding in SOI amplitudes

Let us introduce

M =
1

p̃
(βpyσ1 + pxσ2), M

2
= σ0, (σ0 ±M)2

= 2(σ0 ±M), GR/A
df
=

1

2

[

(σ0 +M)g−r + (σ0 −M)g+r
]

.

Then
GR(~p ) + GR(−~p ) − GR(−~p ) = GR(~p ),

which leads to the fact that X22
D
= X00

D
− X11

D
+ X33

D
(see above). For q = 0, XD is a diagonal matrix with elements:

X00
D = 1, X11

D =
1 + K

1 + (xa + xb)2 + K
, X33

D =
1

K
, X22

D = X00
D − X11

D + X33
D , (6.36)

K =
√

[1 + (xa + xb)2][1 + (xa − xb)2], 4πντD
∣

∣

∣

∣

q=0
= diag

(

∞, 1 + 1 + K

(xa + xb)2
, 1 +

1 + K

(xa − xb)2
,

K

K − 1

)

. (6.37)

For q , 0:

XD =
1

4πντ



























Sp[GR(~p )GA] 0 0 0

Sp[GR(~p )GA] Sp[iσ3GR(−~p )GA] Sp[−iσ2GR(−~p )GA]

Sp[GR(−~p )GA] Sp[iσ1GR(−~p )GA]
Sp[GR(−~p )GA]



























=

=

∫ 2π

0

dϕ

2π



























g+a g+r + g−a g−r 0 0 0

Sp[GR(~p )GA] 0 Sp[−iσ2GR(−~p )GA]

Sp[GR(−~p )GA] Sp[iσ1GR(−~p )GA]
Sp[GR(−~p )GA]



























,

where GA ≡ GA(~p − ~q ). We can calculate XD out of the diffusion approximation [i.e., for not small (xa, xb)], though the
resulting expressions will be complicated.



Chapter 7

The spin-Hall effect

This section resulted in our paper [74]. Related papers: cond-mat/0706.4273, [24, 75, 67, 76, 77, 78, 70], 0405065,
cond-mat/0410295, 0502478, 0503616, 0504035, 0504147, 0503616, 0505131, 05042181, 0506189, 0507007,
0507149, 0510114, 0509702, 0512054, 0509678, 0512458, 0601315, 0601525, 0605687, and many others.2

In the current vertex of the left diagram in fig. 7.1, I approximate ~p ≈ pF~n. The relative accuracy of this ap-
proximation3 is max[(EFτ)−1,∆/EF], so that I can think that the result of calculation is in reality multiplied by
{1 +O(max[(EFτ)−1,∆/EF])}.

Can I ignore ~̃A given by (6.8) in the current operator because it has amplitude (EFτ)−1 ≪ 1 with respect to the main

part? Yes, I could, if the main part of ~̂j would give non-zero result. However, it gives exactly zero in case of the left
diagram4 in fig. 7.1, and gives only a correction in the first order in (pFl)−1 in case of the right diagram. That is why the

∝ ~̃A part in the current vertex has to be taken into account in both diagrams in fig. 7.1. The diamagnetic term for spin
current is zero due to the presence of σ3 in the spin current vertex5.

notes from V. Yudson (Trieste, June 2004) (i) there is such a small effect: when we switch on the vector potential,
the spin-orbit part of the Hamiltonian changes. . . look on the paper of Aleiner and Fal’ko about this. (ii) a diffuson
has a zero-mass mode which would give giant contribution if it would not be zero. May be in reality it gives important
contribution represented by this great number weakened by some small factor like ∆/EF. (iii) As for the cut-off in the
ballistic limit: it is better to say that it is not frequency that has an infinitesimal imaginary part, but the 1/τ which has
an infinitesimal real part. In fact, when we have no disorder, GR/A are given by (6.17), so we can say instead that it is

given by (6.23) with 1/(2τ) = +0. !– as I’ve checked, the cut-off for τ does not help us; it is essentially different from
the frequency cut-off, that we really need.

7.1 The two diagrams

In this sec. we perform calculations in case xb = 0 and in the (usual) σ-basis.
The problem was inspired by the paper [75]. What they do is just calculating the diagram with a diffuson in fig. 7.1.
The method used there I could not understand. It seemed to me perverse and probably is incorrect. So we decided to
do it using standart disorder averaging technique.

The spin current formula can be obtained from the usual charge current formula [20] with ~A→ 0, where ~̂j(~p ) given

by (1.5) multiplied by σ3~/(2e) according to (6.13). For GK we use (3.38) with ~n substituted by ~n − ie ~̃A/(cpF) where ~̃A is
given by (6.8). We imply that the electric field is applied along the x axis, while the spin current is measured along the

112.04.2005 DL was going to send an email to Haldane about his cond-mat/0504218.
2J. Sinova in Korea has called all these spin-Hall activities a “Field”. May be he is right, if we judge according to the number of papers. Anyway,

in 2008 this “Field” seems to be dead.
3See the discussion on p. 51.
4Using (6.3), we obtain that in the most general case (when α , 0 and |β| , 1) the left diagram in fig. 7.1 changes sign with respect to px → −px or

py → −py. This means that only the part of the vertex ∝ ~A gives non-zero contribution to the left diagram in fig. 7.1, and this does not depend on
whether we approximate |~p | ≈ pF or not. At first I thought this is also true for the right diagram, however, as the authors of [79] have pointed out,

the ~̂p term in the current vertex gives the correction of the same order, as the ∝ ~A term, so it has to be taken into account, see sec. 7.3. As a result,
our the first version of paper [74] was incorrect.

5 For the normal current - see Sec. 8.1.
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GA

GR

~̂j −e~v ~A

(a) The bubble.

~̂jx~̂jsz
y

GA GA

GR GR

(b) The vertex renormalization (VRD).

Figure 7.1: Diagrams for the spin Hall (and charge) conductivity in the zero-loop approximation. For vertices see (7.1).

y axis. Using (3.14) as the definition of a conductivity, we get the formula for the spin-Hall conductivity6:

σ =
e

2πm2
Sp

[

σ3

2
pyĜR

(

px −
e

~c
Ãx

)

ĜA

]

. (7.1)

After the averaging (7.1) produces (in the zero-loop approximation) two diagrams in fig. 7.1. For both diagrams we need
to calculate

~P =

∫

d2p

(2π)2
~nGA(p,E − ω)

σ3

2
GR(p,E) =

πνxaτ/2

x2
a + (1 − iωτ)2

(σ1, σ2, 0), (7.2)

Consider the first diagram. One can see that the term ∝ px makes zero contribution to (7.1), because

Sp
[

σ3GR(~p )GA(±~p )
]

= 0. (7.3)

The rest of the expression gives us

σ(0)
=

ev2

2π
Sp

[

Py

(

− e

cpF
Ãx

)]

,

and the result is

σ(0)(ω) = − e~ν

4m

x2
a

x2
a + (1 − iωτ)2

= − e

8π

x2
a

x2
a + λ2

, λ = 1 − iωτ, (7.4)

where we used (13.11). Note that ℜσ(0) does not and ℑσ(0) does become large in the limit when τ−1 ≪ ω = ∆. Now let us
calculate the second diagram in fig. 7.1 with two bubbles. One obtains that

pF

∫

d2p

(2π)2
~nGR(p,E)GA(p,E − ω) = 0, but remmember about (7.14)! (7.5)

Q =

∫

d2p

(2π)2
GR(p,E)σ2GA(p,E − ω) =

2πντ

1 − iωτ
× x2

a/2 + (1 − iωτ)2

x2
a + (1 − iωτ)2

σ2. (7.6)

Note that

X22
D =

1

4πντ
Sp [σ2Q] , X22

D

∣

∣

∣

∣

ω=0
=

1

2

[

1 +
1

1 + x2
a

]

=
1 + x2

a/2

1 + x2
a

,

where X22
D

is a notation defined in[20]. From (7.3) and (7.5) it follows that for both diagrams in fig. 7.1 it is safe to
approximate the spin current vertex as py

σ3

2 ≈ pFny
σ3

2 , since the corrections will give contribution to σz
yx not larger than

∼ e
pFl .

The contribution of the second diagram in fig. 7.1 equals to7

σ(1)
yx =

3
∑

µ=0

epF

2πm2
Sp

[

Pyσµ
] 1

4πντ

1

1 − X
µµ
D

Sp
[

−pR(Q +Q′)σµ
]

, (7.7)

6DL: (7.1) is the generalized Kubo formula. OS: about (generalized) Kubo formula see pp. 54-60 in Russian edition of: Madelung, “Physics of solid
state. Localized states.”

7The multiplier 1
2 comes from (13.37). Before MSH has pointed out our mistake in [74] v. 1, I had Q in (7.7) instead of (Q +Q′), so that the result

was that for ω = 0 the contribution of two diagrams in fig. 7.1 was |e|/(4π) instead of 0. (that is, σz(0)
yx + σ

z(1)
yx = 0, which is the result of MSH [79]) This

mistake has been corrected in [74] v. 2.
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where Q′ is given by (7.14). One checks that only µ = 2 gives non-zero contribution to (7.7), and

σ(1)
yx = σ

(0)
yx

1

1 − X22
D

Sp

[

Q +Q′

mτ

σ2

2

]

, σz(0)
yx + σ

z(1)
yx = σ

z(0)
yx

1 + Sp
[

Q′

mτ
σ2

2

]

1 − Sp
[

Q
mτ

σ2

2

] . (7.8)

From (7.8) we observe that the renormalization of the current vertex (=VRD; corresponds to considering the second
diagram in fig. 7.1) results in the cancellation of the ∝ Ãx term in the electric vertex. In other words, I can forget about
the second diagram in fig. 7.1) if I ignore the term ∝ Ãx when calculating the first diagram.

It is especially important that massless singlet diffuson mode X00
D

does not give contribution; otherwise σ(1) could be

much larger than σ(0). Using (7.7) together with (??) and (7.6), we obtain (with λ is defined in (7.4))

σz(1)
yx = −σz(0)

yx

x2
a/2

x2
a + λ2

1

λ − x2
a/2+λ2

x2
a+λ2

, σz(0)
yx + σ

z(1)
yx = σ

z(0)
yx

λ − 1

λ − x2
a/2+λ2

x2
a+λ2

, (7.9)

σz
yx = −

|e|
8π

iωτx2
a

(1 − 2iωτ)
x2

a

2 − iωτλ2
, σz

yx(ω = 0) = 0, (7.10)

which is the same as ([79]25).

7.2 The renormalization of the charge current vertex

The result (7.10) can be also obtained from calculating only the “bubble” (8.7) with one of speed operators substituted
with its renormalized value. From Sec. 8.3.2 we conclude that at zero frequency

for ω = 0 Sp
[

σ̃iG
E
R

p j

m
GE

A

]

= 2mτ

(

0 b − a
a + b 0

)

, i, j = 1, 2. (7.11)

When calculating (7.11), it is essential that p , pF in (6.19). Looking now into Sec. 6.7, we write

Sp
[

σ̃iGR

(

− e

mc
Ã j

)

GA

]

= 2τ















−X12
D

λ1

X11
D

λ2

−X22
D

λ1

X21
D

λ2















= 2mτ

(

0 (a − b)X11
D

−(a + b)X22
D

0

)

, (7.12)

where MEs XD are given by (6.36). Finally, we take the sum of (7.11) and (7.12), and see that taking vertex renormal-
ization into account results in the cancellation of the anomalous contribution to the velocity:

for ω = 0 ˆ̃v = v̂ +

3
∑

γ,γ′=0

σ̃γDγγ′ Sp
[

σ̃γ′G
E
Rv̂GE

A

]

=
~p

m
, (7.13)

where Dγγ′ is given by (??),6.36. In our convenient σ̃-representation, the diffuson is diagonal: Dγγ′ ≡ Dγγ′ (q = 0, ω) =
Dγγδγ,γ′ . Note that, because of the ω-corrections to (7.11), (7.13) is not exact when ω , 0. In case when 0 < ωτ ≪ x2 ≪ 1
the main contribution of the anomalous part of the velocity operator (6.8) is cancelled, so that (7.13) has corrections
∝ x1W2; in case when 0 < x2 ≪ ωτ≪ 1, the main contribution of the anomalous part is not cancelled, so that (7.13) has
corrections ∝ x1W.

Finally, the fact that diffuson’s divergence is cancelled by the bubble, means that actually the vertex renormalization
correction can not be called “local” or “non-local”. I mean, it is correct to say that ZLA-contribution is local, despite
that it contains the vertex-renormalization diagram which has a diffuson.

7.3 The correction in the current vertex due to MSH

!Expand and/or rewrite this section together with sec. 3.7. I realized what is written here thanks to the private
comµnication with the authors of [79]. In fact, the recipe is simple and is written in this file:

Now let us calculate!insert ~ from here till the end of this subsection!and rewrite (7.14) without approximation
αp ≈ ∆/2

Q′ω = −
σ2

2mα
Sp

[

σ2

∫

d2p

(2π)2
GE

R(p)pxGE−ω
A (p)

]

=
σ2

8πmα
[Iω(α) − Iω(−α)] , (7.14)
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where!вставить частоту ω , 0:

I0(α) ≡ 1

2

∫ ∞

−∞
dp

p2

(

E − αp − p2

2m + EF +
i

2τ

) (

E − αp − p2

2m + EF − i
2τ

) .

If I approximate p ≈ pF in the denominator of I0(α), I get:

I0(αp) ≈ 2πτm3/2
(

z2
+

1

4τ2

)

1
4

√

√

√

1 +
1

√

1 + 1
4z2τ2

, z = E − ∆
2
+ EF. (7.15)

Substituting E = 0 and disregarding terms ∝ 1/(EFτ), we obtain

I0(∆) − I0(−∆) = −2πτm3/2
√

EF

(√

|2 + ∆/EF| −
√

|2 − ∆/EF|
)

, (7.16)

which gives us in the first order in ∆/EF an incorrect result:

I0(∆) − I0(−∆) ∼ −πτpFm
∆

EF
, Q′ = −mτσ2/2.←− incorrect!!! (7.17)

Let us now recalculate Q′ω from (7.14) with GR/A given by (6.23) with ∆/2 substituted by αp , αpF. In this case instead
of (7.15) we have

Iω(±∆) ≡
∫ ∞

0

dp
p2

(

E′
F
− (p±pR)2

2m +
i

2τ

) (

E′
F
− ω − (p±pR)2

2m − i
2τ

) = (7.18)

=

∫ ∞

±pR

dp

(

p ∓ pR
)2

(

E′
F
− p2

2m +
i

2τ

) (

E′
F
− ω − p2

2m − i
2τ

) = I±1 ∓ I2, E′F ≡ E + EF + ER,

I±1 ≡
∫ ∞

0

dp

(

p ∓ pR
)2

(

E′
F
− p2

2m +
i

2τ

) (

E′
F
− ω − p2

2m − i
2τ

) ,

I+1 − I−1 =

∫ ∞

0

dp
−4ppR

(

E′
F
− p2

2m +
i

2τ

) (

E′
F
− ω − p2

2m − i
2τ

) ≈
−8πmτpR

1 − iωτ
=
−2πmτpF

1 − iωτ

∆

EF
,

I2 ≡
∫ pR

0

dp

(

p − pR
)2

(

E′
F
− p2

2m

)2
+

1
4τ2

≈ 1

3

(2mER)3/2

EF
′2
+

1
4τ2

= mτpF ×
1

48pFl

(

∆

EF

)3

,

where we assumed that ER = mα2/2≪ EF. Note: if I substitute p2 with p2
F
in the numerator of (7.18), and say that in the

denominator
p2

2m − EF ≈ vF(p − pF), then I get twice less result, that is, (7.17). If I substitute p2 with p2
F
in the numerator of

(7.18), but keep the denominator untouched, I get I(±∆) ∼ πmτpR(EFτ)−1. This means that the linearizion or other tricks
with the denominator, like substituting αp→ ∆/2 change drastically (7.18). Finally, the correct expression for Q′ is

Q′ = −mτσ2/λ. (7.19)

Just to save myself from paranoia, I’ve experimented with

2πντ =

∫

d2p

(2π)2
gE

r (~p )gE
a (~p ) ∝

∫ ∞

0

dppgrga. (7.20)

If in (7.20) I approximate p ≈ pF in the denominator, the result is not changed; if in (7.20) I approximate p ≈ pF in the
denominator and linearize the denominator, the result still is not changed; From here I conclude that normally these
approximations must work, so that the case of (7.18) is really special.

On p. 490 of [5] we read that it is essential that in 〈GR/A(~p, ~p ′) ∝ 2πδ(~p − ~p ′)GR/A(~p )〉 |~p | and |~p ′| are of the order of pF.
Note that all the values of p in I2 are far away from pF, thus if this integral would give important contribution, this

would mean that the values of p far away from pF are important in (7.14). This would mean that we are in trouble
because Landau Fermi-liquid theory is broken by the fact that excitations far away from the Fermi surface become
important8.

To conclude: at first we suspected that in I(∆) the values of momentum far-away from the Fermi energy are relevant;
however finally we realize that this does not happen. In the following subsection it is explained more in detail.

8In this case we would not be able to approximate αp ≈ αpF in the denominator of the Green function (6.23), and thus τ would be very different
from τ, and the expression for the diffuson would be different from (6.37), Sec. 6.8, etc.
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7.4 The weak localization correction to σz
yx

Let us calculate the weak localization correction to σz
yx. It is given by the diagram in fig. 3.1(b) with q = 0 and corrected

vertices. Let us use the first part9 of (13.37).
Then we see that the diagram equals to

e

2πm2

3
∑

γ,γ′=0

∫

d2q

(2π)2
× Cγγ′ (~q ) Sp

{∫

d2p

(2π)2
GE−ω

A (~p )
σ3

2
p̂yGE

R(~p )σγ×

×
[

σγ
′
GE

R(~q − ~p )
(

qx − px −
e

c
Ãx

)

GE−ω
A (~q − ~p )

]T
}

≈

≈ e

2πm2

3
∑

γγ′=0

Sp

{∫

d2p

(2π)2
G<(~p )σγ

[

σγ
′
G>(−~p )

]T
}∫

d2q

(2π)2
Cγγ

′
(~q ), (7.21)

G<(~p ) = GA(~p )py
σ3

2
GR(~p ), G>(~q − ~p ) = GR(~q − ~p )

(

qx − px −
e

c
Ãx

)

GA(~q − ~p ), (7.22)

where components of the cooperon Cγγ
′
(~q ) for q = 0 are given by (??). Due to the fact that I have not yet calculated Cγγ

′
(~q )

for q , 0, I can use ([35]13) together with (6.27) in order to evaluate
∫

d2q

(2π)2 Cγγ
′
(~q ). Then we note that its off-diagonal

elements are zeros, and diagonal ones are (see [35] for notations)

∫

d2q

(2π)2
Cγγ

′
(~q ) =

2

πl2mτ
( f , f , ln, f )δγγ′ . (7.23)

The approximation (7.23) corresponds to taking into account only diagonal terms of the 4 × 4 Cooperon matrix. These
terms are special because only they can produce logarithms ln xa or ln Lϕ. The same is true for the approximation
(7.21) in the sence that corrections to this approximation do not contain terms logarithmic in xa or Lϕ. Note that the
assumption x2 ≪ 1 is mandatory for obtaining logarithm; if x2

a & 1, only massless cooperon element [that is, C22(~q )] will
give us ln Lϕ/l; the others will not produce ln xa.

Using this result one obtains that, in the electric vertex, −px gives zero contribution.

i1(xa) = ν

∫ ∞

−∞
dξg+2

r g−2
a =

2πντ3

3(1 − ixa)3
, i2(xa) = ν

∫ ∞

−∞
dξg+r g−r g−2

a = −4πντ3 1 − ixa/2

(1 − ixa)2
.

The “undressed” Hikami box in fig. 7.2

♣Vγ
= − 1

pRpF
Sp

{∫

d2p

(2π)2
G<(~p )σγ

[

σγG>(−~p )
]T

}

.

Then

V0
=

i

2
√

2
ℑi1(xa), ℑi1(xa) = Asym

x
i1(xa).

V1
=

i

16
√

2
Asym

xa

[−9ℑi1(xa) + 2ℜi2(xa)] , V2
= 0,

V3
=

i

16
√

2
Asym

xa

[i1(xa) + 2ℜi2(xa)]

One notes (without evaluation of integrals i12) that
∑

γ Vγ = 0, so that the result is zero. The corrections to the Hikami
box in fig. 7.2(a) and in fig. 7.2(b) are

V
γ
12
=

1

2mτ

3
∑

µ=0

A
γµ
12

B
µγ
12
=

1

2mτ
(A12B12)γγ , (7.24)

9By using the second part of (13.37), we can rewrite (7.22) in another way:. . . The problem is that I don’t know how to calculate KGR/AK−1 taking
spin into account.
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~p

~p

=

(a)

+

(b)

+

(c)

Figure 7.2: Weak localization diagrams. The spin current vertex is on the lhs (the green one).

where

A
γµ
1

(~q ) = Sp

{∫

d2p

(2π)2
G<(~p )σγGT

A(~q − ~p )σµ
}

, B
µγ′

1
(~q ) = Sp

{∫

d2p′

(2π)2
σγ
′
G>(~q − ~p ′ ) [GA(~p ′)σµ

]T

}

, (7.25)

A
γ′µ
2

(~q ) = Sp

{∫

d2p

(2π)2
G<(~p )σµ

[

σγ
′
GR(~q − ~p )

]T
}

, B
µγ
2

(~q ) = Sp

{∫

d2p′

(2π)2
σµGR(~p ′)σγ

[

G>(~q − ~p ′ )]T

}

,

and
(A

2µ
1

)∗ = −A
2µ
2
, (B

µ2

1
)∗ = −B

µ2

2
, (A

γµ
1

)∗ = A
γµ
2
, (B

µγ
1

)∗ = B
µγ
2
, γ , 2, (7.26)

so that we immediately see that ∀γV
γ
1
+V

γ
2
∈ R in (7.24). Mote that symmetries (7.26) are conserved by renormalizations

(7.27), and remains true also for the case ~q , 0, that is, ∀γV
γ
1
(~q ) + V

γ
2
(~q ) ∈ R.

If I approximate the electric vertex in (7.1) as
(

px − e
c Ãx

)

≈
(

pFnx − e
c Ãx

)

, then after integration over momentum I see that

the main part of electric vertex ∝ pFnx gives zero contribution. I was unable to demonstrate the fact that it gives zero,
playing around with substituting px → −px in B12 and utilizing GR/A(−px, py) = GT

R/A(px, py). Moreover, as I emphasized, I

obtain this cancellation only after performing the integration. This brings me the feeling that, analogously like we saw
it in the zero loop approximation with diagrams on fig. 7.1, I can not approximate the vertex in this manner. Instead,
it’s time to remember about the lesson of MSH from the sec. 7.3.

So, I calculated it. In both vertices (electric and spin currents) I did not approximate ~p ≈ pF~n. Then I saw that

• the diagram in fig. 7.2(c) is a complex conjugate of the diagram in fig. 7.2(b);

• The only non-zero elements of A in (7.25) are (0, 2), (1, 3), (2, 0), (3, 1).

• The only non-zero elements of B in (7.25) are (1, 3), (3, 1), and B13 = −B31.

• Thus the result would be zero if A13 = A31, which is not true.

As a result, V00 = V22, so that the term ∝ ln Lϕ/L does not contribute and the result ∝ ln xa remains finite even when
Lϕ →∞, given that xa is finite (though small10). This result is strange. Since

˙̂sk(t) = −2mα~̂j sz

k
(t), k = x, y,

the constant spin current would result in an infinite growth of magnetization per electron (in a non-interacting system),
which is impossible. I tried hard to get zero, and I was unable to. I did not analysed the anisotropic part of diagrams
in fig. 7.2(b) and 7.2(c). May be it could cancel my non-zero contribution (although, if it behaves in the same way, as
for the diagram on fig. 7.2(a), it is impossible). Due to the lack of time, I have to stop here. I conclude that there is a
mistake in my calculation. The mistake must be not simple, but deep.
– Due to this, at first I wanted to expel the calculation of the weak localization from our paper [74]v. 2. However, I
still need weak localization diagrams if I want to achieve accuarcy ∝ e in the calculation of σz

yx. See [74]v. 3 and my
presentation .

10The assumption xa ≪ 1 is essential for the approximation q→ 0 in the Hikami box. E.g., in case of the diagram in fig. 7.2(a) the anisotropic part
∝ q2

x − q2
y of the Hikami box has a large amplitude, and we would be obliged to take its contribution into account for not small xa. However ∝ q2

x − q2
y

must give us an additional power of xa in the numerator after integration.

http://theorie5.physik.unibas.ch/shalaev/public.html/spinHall.pdf
http://theorie5.physik.unibas.ch/shalaev/public.html/spinHall.pdf
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A fresh idea from DL: I have forgotten about the possibility of the renormalization of diagrams in fig. 7.2 with
diffusons carrying zero momentum. [As we know from (7.13), taking them into account results in the cancellation of
the term e

c Ãx in (7.22).]

G̃<(~p ) =G<(~p ) +

3
∑

µ=0

GA(~p )σµGR(~p )Dµµ Sp

{

σµ
∫

d2p

(2π)2
G<(~p )

}

G̃>(−~p ) =G>(−~p ) +

3
∑

µ=0

GR(−~p )σµGA(−~p )Dµµ Sp

{

σµ
∫

d2p

(2π)2
G>(−~p )

}

,

(7.27)

where only terms with µ = 2 are non-zero. Note that they have to obey the following property:

σz(0)
yx =

e

2πm2
Sp

[

G<(~p )
(

px −
e

c
Ãx

)]

=
e

2πm2
Sp

[

σ3

2
pyG>(~p )

]

,

0 = σz
yx = σ

z(0)
yx + σ

z(1)
yx =

e

2πm2
Sp

[

G̃<(~p )
(

px −
e

c
Ãx

)]

=
e

2πm2
Sp

[

σ3

2
pyG̃>(~p )

]

,

where different expressions for σz(0)
yx and σz(1)

yx are given in sec. 7.1. From (7.2),7.6,7.14,7.19 we get

♣ Sp

{

σ2

∫

d2p

(2π)2
G<(~p )

}

≈ πνxaτpF

x2
a + 1

, Sp

{

σ2

∫

d2p

(2π)2
G>(±~p )

}

= Sp[−pRQ],

♣ Sp

{

σ2

∫

d2p

(2π)2
G̃<(~p )

}

≈ πνxaτpF

x2
a + 1

, Sp

{

σ2

∫

d2p

(2π)2
G̃>(±~p )

}

= Sp[−pR (Q +Q′)]

Note that the renormalization on the rhs (i.e., of the CCV) corresponds to the cancellation of the term ∝ Ãx in CCV,
while the renormalization on the lhs (i.e., of the spin current vertex) is just zero (as I’ve checked). It must be zero,
because it would lead to a term ∝ 1

pFl in the spin-Hall conductivity, which is , 0 also when xa = 0. After the elimination

of the term ∝ Ãx in the current vertex, one can see that B1 in (7.25) is antisymmetric. The contribution to the weak
localization is proportional to

∝ ℜ
{

A02
1 B02

1 + A20
1 B20

1

}

=ℜ
[

B02
1

(

A02
1 − A20

1

)]

.

The problem is that A02
1
, A20

1
. The statement B02

1
+ B20

1
= 0 is valid both with and without taking ∝ Ãx term into account

in G>. As we know, the renormalization of the electric vertex cancels this term, so let us demonstrate B02
1
+ B20

1
= 0,

calculating G> without it:

♣2G>
∣

∣

∣

∣

Ãx→0
= g−r g−a + g+r g+a +M(g−r g−a − g+r g+a ),

♣B02
1 + B20

1 = Sp

{∫

d2p

(2π)2
G>(−~p )

[

GT
A(~p ), σ2

]

−

}

= Sp

{∫

d2p

(2π)2
G>(−~p )iσ3

py

p

[

g−a (~p ) − g+a (~p )
]

}

.

Very similary,

A02
1 − A20

1 = Sp

{∫

d2p

(2π)2
G<(~p )

[

GT
A(−~p ), σ2

]

−

}

= − Sp

{∫

d2p

(2π)2
G<(~p )iσ3

py

p

[

g−a (~p ) − g+a (~p )
]

}

(7.28)

One can see that it is non-zero because the vertex in G<(~p ) (7.22) is just σ3py.
From (7.28) we deduce that A02

1
−A20

1
= 0 if I would substituted the spin vertex on the left with the electric one. Thus

it is correct that in [35] the renormalization of electric vertices with a diffuson is ignored together with the ∝ Ãx in the
current vertex. The contribution of this term to the electric WL is not just small (as it is written in [35]), but is exacty

zero.

7.5 Spin current and spin precession

!To be reinspected, may be shortened.
We have seen that in perturbation theory the spin-Hall conductivity vanishes in the zero frequency limit, in leading
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(∝ (1/pFl)0) and subleading (∝ (1/pFl)1) order. This result suggests that the vanishing of the spin current is an exact
property of the system under consideration. Indeed, we give now a simple argument to support this claim. In this
section we argue based on general Hamiltonian (6.1) with arbitrary strong both Rashba and Dresselhaus SOI. From the

Heisenberg equation of motion for the spin ~̂s = ~̂σ/2 of the electron, i.e.
˙̂~s(t) ≡ d

dt
~̂s(t) = i[Ĥ′, ~̂s ](t), we obtain a simple relation

between spin precession and spin current!note that (7.29) works only in case of qadratic spectrum of electrons, see
this paper!

− 1

2m
˙̂sx(t) = a ĵsz

x (t) + b ĵsz
y (t), − 1

2m
˙̂sy(t) = a ĵsz

y (t) + b ĵsz
x (t), (7.29)

which is valid unless we there are no σ12-dependent terms in the Hamiltonian, other than SOI in (6.1). That is, (6.1)
remains valid also in case of perpendicularly applied magnetic field B = Bz, external (applied) electric field, electro-
electron interaction and long-range-scattering impurities.

A constant electric field, applied to a piece of a metal, or a semiconductor usually drives it into a steady state11.
Then using (7.29) we get in case a , b

~̇s = 0 =⇒ ~jsz = 0 if a , b.

That is, it is clear that spin-Hall conductivity must die at ω = 0. This is beatifully explained in more words in sec. [74]VII.
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Figure 7.3: The time evolution of 〈 ˙̂sy(t)〉 for xa = 4. The
period of oscillation is 1/∆, and the exponential decay
time is τ. Note that for any xa, 〈 ˙̂sy(t)〉 = 0 at t = 0.

The approach of 〈 ˙̂~s 〉(t) to its stationary value (in the lin-
ear response regime) can be easily illustrated by taking the
inverse Laplace transform of eq. (7.10) (restricting ourselves
to the Boltzmann value). This involves solving a cubic equa-
tion for obtaining the poles with respect to ω. The resulting
expression for 〈 ˙̂sy〉(t) consists of two parts (too lengthy to be
written down here), one coming from the real pole and an os-
cillatory one coming from the pair of complex conjugate poles.
For x2 ≪ 1 and t≫ τ, only the first part is relevant, which has
no oscillations and decays exponentially12 to zero:

〈 ˙̂sy〉(t) = −2mα〈 ĵsz
y 〉(t) = −

|e|
4π

mαx2
aEx e−t/T, t≫ τ, (7.30)

where T/2 = (∆2τ)−1 is the well-known Dyakonov-Perel spin
relaxation time [80], cond-mat/0601105. For x2 & 1 and t . τ,
the oscillatory part in 〈 ˙̂sy〉(t) becomes dominant, with period
1/∆ and exponential decay with rate 1/τ; its time dependence
for a particular value of xa is illustrated in Fig. 7.3.

The above consideration can be generalized to the case with electron-electron interaction. In this case, the total
spin of the system,

∑

i ŝi,k, and the total spin current,
∑

i ĵsz

i,k
, k = x, y, obey the same equation as before, i.e. eq. (7.30).

Thus, the same argument goes through as well, showing that the spin current must vanish in the stationary limit
also for interacting systems–provided this limit exists, which, again, we expect to be the case in the presence of

any finite amount of disorder. Finally, in the absence of disorder, no stationary limit of 〈~̂s〉(t) can be reached, i.e. the
magnetization can change indefinitely, and thus there can be a finite spin current in this very particular case. [We note
that the physically observable quantity, the magnetization change, vanishes for vanishing Rashba coupling.] However,
when the spin current approaches a non-zero but constant value for t→∞, as obtained in the linear response regime
for a clean system [0309475], the magnetization 〈ŝk〉(t) actually grows linearly in time in the asymptotic regime t → ∞.
This, of course, shows a breakdown of the linear response approximation in this case since the bound for a spin 1/2,
i.e. |〈ŝk〉(t)| ≤ 1/2, is violated. The terms beyond linear response would restore the bounded and oscillatory behavior of
〈ŝk〉(t).
!There was another issue in Korea: without interaction, does this general argument works only for the net spin

current, or for its density? EM and I colcluded that it does not work for the density, but I remember that DL said that
it does. To understand it, one needs to define current density operator according to p. [81]358.

11What are the conditions for this? Homogeneity? Size of the system? Why MSH get jsz
y , 0 near the contacts? Why my electronic watch is not in a

steady state despite its battery has constant voltage?

http://arxiv.org/abs/cond-mat/0601105
http://arxiv.org/abs/cond-mat/0309475
http://faculty.physics.ta\protect $\relax \mu $.edu/sinova/SHE_workshop_APCTP_05.html
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Charge conductivity

The results of the calculation are presented in articles [66, 20] as well as in my presentation and poster. Here we
calculate the anisotropy of the charge conductivity due to the Rashba and Dresselhaus SOI. The calculations are done
partially on computer, see diagrams.max/EXAMPLES/conductivity-SOI/ The anisotropy of the conductivity is con-
nected with the anisotropy of the energy spectrum. It is also anisotropic without Dresselhaus SOI, but in the presence
of MF [82]. The anisotropy may even arise in case of an isotropic energy spectrum, but in (macroscopically anisotropic)
quasi-1D case. Our final result contradicts the result of the kinetic equation approach [cond-mat/0611328], thus
questioning it. Other occasions, when kinetic equation can fail: cond-mat/0201007.
About Drude conductivity of the disorder-free finite-size samples, see arXiv/0801.0592.
About anomalous Hall effect, see arXiv/0804.4181.

8.1 General relations for calculating charge current

Here are the results of Sections 3.5, 3.3, 9.2, put together. Promoting WF ψ(x) ≡ ψ(~r, t) in (13.8) to annihilation operator

(spinor) ψ̂(x) ≡ ψ̂(~r, t), we get expression for the current density operator in the SQ ~̂j(~r, t). We then split it into “normal”
and “diamagnetic” contributions:

~̂jSN(~r, t) =
ie~

2m

[

(∇ψ̂†(~r, t))ψ̂(~r, t) − ψ̂†(~r, t)(∇ψ̂(~r, t))
]

− e2

mc

2
∑

s,s′=1

ψ̂†s (~r, t)
(

~A0δs,s′ +
~̃As,s′

)

ψ̂s′ (~r, t), (8.1)

~̂jSD(~r, t) =
e2

mc
~Aωψ̂

†(~r, t)ψ̂(~r, t), ~̂jS(~r, t) = ~̂jSN +
~̂jSD, (8.2)

where we ignored the (last) rot-term in (13.8). To get the current, on has to “average” ~̂j(~r, t) from (8.2) with respect to
the SQ-DM of the system [cf. (13.21),13.20]:

~j(~r, t) = 〈~̂jS(~r, t)〉 ≡ Sp
SQ

[

ρ̂S(t)~̂jS(~r, t)
]

≡
∑

(n1 ,n2 ...≥0

n′
1
,n′

2
...≥0

)

〈n1,n2 . . . |ρ̂S(t)| . . . n′2,n′1〉〈n′1,n′2 . . . |~̂jS(~r, t)| . . . n2,n1〉, (8.3)

where the (perturbed by external electric field) DM depends on time, so that averaging 〈. . .〉 is a time-dependent opera-
tion. Eq. (8.3) requires the knowledge of the (non-equilibrium) full SQ-DM, which we don’t know how (and don’t need)
to calculate.1 In order to deal with the OP-DM, we rewrite (8.3) in the FQ:

~j(~r, t) = Sp
FQ

[

ρ̂1(t)~̂jF(~r )
]

, ~̂jF ≡ ~̂j, Sp
FQ

≡ Sp . (8.4)

For the rest of the derivation, see [20]. Note that the derivation ideologically contradicts to arXiv/0803.1226v1;
For the experimental evidence of invalidity of the free-electron-gas approximation far away from the Fermi level,
see arXiv/0803.1230.

1In fact, we can not write the OP-DM in the SQ; see notes after (13.21).
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http://quantumtheory.physik.unibas.ch/shalaev/work/iftt.pdf
http://quantumtheory.physik.unibas.ch/shalaev/work/ictp-2008.pdf
http://arxiv.org/abs/cond-mat/0611328
http://arxiv.org/abs/cond-mat/0201007
http://arxiv.org/abs/0801.0592
http://arxiv.org/abs/0804.4181
http://arxiv.org/abs/0803.1226
http://arxiv.org/abs/0803.1230
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8.2 Symmetries

There are only two notes left in addition to the appendices of [66]:

• The matrix U ∈ SU(2) from ([66]A2) is isomorphic to the matrix C = Rz
−π/2R

y
π ∈ O(3) from the same Eq.

U = u−π/2,3uπ,2 =

(

0
√

i

−
√
−i 0

)

, uϕ, j = σ0 cos
ϕ

2
+ iσ j sin

ϕ

2
. (8.5)

• At first I used [xs = xa + xb, β = (xa − xb)/(xa + xb)] as the expansion parameters, however, the resulting series is not
uniform. In this way I was obtaining divergences when calculating δσ with the help of first non-vanishing terms in
diffusons and HBs. These divergences were comming from (0, 0)-components of diffusons. How: first I introduced

dimensionless momenta like ~Q = l~q/xs, then xs disappeared from the expression, so that it remained dependent
only on β. And these terms diverged. I made a little investigation, why. The conclusion was: it depends how I
expand x2

s D33(Q = 0) in series in (xa, xb), i.e. it makes difference if I (i) at first expand it in xa and then in xb, or (ii)
first expand in xb and then in xa.

We expand the conductivity tensor in series [66]:

σxx − σyy = 2
e2

h

1

pFl

∑

m,n≥0

Smnxmδ2n+1. (8.6)

From [66] we conclude that for σ(|δ| = 1) = σ(x = 0), so, if (8.6) would be correct for |δ| = 1, we would stop right here and
say that ∀x σxx − σyy = 0. However, the calculation [20] shows that S00 , 0.

8.3 ZLA and WL

8.3.1 Perturbation theory in SOI

In the ZLA we have to consider the usual “bubble” diagrams depicted on fig. 7.1(a):

σ̃(0)
αβ =

e2

2π~
Sp

[

v̂αĜRv̂βĜA

]

= − 1

2π~
Sp

[

j̃αĜR j̃βĜA

]

, j̃α = −iev̂α,GR/A → GR/A

2
∑

n=0

(

δĤGR/A

)n
, δĤ =

pyσ̃1

mλ2
= −2bpyσ̃1 = −δβσ̃1

py

pF
.

(8.7)

Normally the velocity operator in diagrams obtained from (8.7) must be renormalized according to (7.13). The exception
is ZLA bubble, where only one of two velocity operators must be renormalizaed. Such bubble will correspond to the
sum of two diagrams 7.1.

Eq. (??) was the first to use in order to solve the problem. Later I’ve realized that (i) one can consider both Rashba
and Dresselhaus SOI terms as a perturbation [BTW this noticably reduces calculation time!] and (ii) calculate in the
original (not turned) basis2. These are ways to check the calculation; I used them, and they lead to one and the same
result.

Here are the results for the SOI-dependent part of the charge conductivity (ZLA):3

the Drude contribution =
e2

h

1

4EFτ

(

1 0
0 1

)












x2
b + x2

a + x2
ax2

b −
x4

a + x4
b

2
+O(x6)













,

the vertex correction = − e2

h

1

4EFτ

(

1 0
0 1

)












x2
ax2

b −
x4

a + x4
b

2
+O(x6)













,

(8.8)

The two ZLA diagrams can be written as one bubble if we substitute one (of two) velocity operator with its renormalized
value

δσ

2σD
=

x2
a + x2

b

8(EFτ)2

(

1 0
0 1

)

+
O(x12)

8(EFτ)2
= 2

a2 + b2

v2
F

+
O(x12)

8(EFτ)2
, (8.9)

2Note (see p. 54) that in the original basis diffuson has off-diagonal elements [(1,2) and (2,1)].
3The result (8.8) has been obtained in TEKCT/SPIN-HALL/charge cond.nb. Later it has been confirmed by

CHARGE-COND/zla-{Drude,renorm}.max.
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so that conductivity tensor is isotropic, which contradicts to [49], where SOI is claimed to induce anisotropic contribu-
tion4 to the charge conductivity, see ([49]49,50): δσ ≡ |σxy|/σxx = 7ab/(4v2

F
). It also contradicts ([0508681]31) (where the

correction is negative), and ([PRB67033104]19) (where the dimension is incorrect). Moral: be careful with the kinetic
equations, see the end of §[48]VII.1. The dependence (8.8) coincides with (numerical) fig. [0510842]4.

Finally, I’ve also calculated the weak localization and found out that it does not produce any anisotropic contribu-
tion (at ω = 0) within the prescribed accuracy.

8.3.2 SOI considered exactly

The calculation from Sec. 8.3.1 can be performed without assuming that xa,b ≪ 1 (i.e., without the diffusion approx-

imation5). Let us use the results of sec. 6.5 for this. Using (7.13), we deduce that in the ZLA conductivity is given
by

2π~

e2
σ̃(0)
αβ = Sp

[

v̂αĜR

p̂β

m
ĜA

]

=

∫

d2p

(2π)2

pαpβ

m2

[

g−r g−a + g+r g+a
] − 1

2
Sp

[

(

e

mc
Ãα

) p̂β

m
M̂(g−r g−a − g+r g+a )

]

. (8.10)

Obviously, we have to face a usual divergence problem for the charge conductivity. As usually, [cf. the discussion in
Sec. 8.1], we have to approximate p ≈ pF in the current vertex in the main (Drude) contribution to the conductivity:

∫

d2p

(2π)2

pαpβ

m2

[

g−r g−a + g+r g+a
] ≈

∫ 2π

0

dϕ

2π
nαnβ

∫ ∞

0

dp

2π
p

p2
F

m2

[

g−r g−a + g+r g+a
]

=
δαβ

2

[

2pFl − 2

π
− 1

4pFl

]

, (8.11)

which is SOI independent. However, (8.11) is incorrect due to the following subtlety: I claim, that only in the diver-

gent term6 we are allowed to substitute p → pF. That is,
∫

d2p

(2π)2

pαpβ
m2

[

g−r g−a + g+r g+a
]

= 2
p2

F

m2

∫

d2p

(2π)2 nαnβg0
r g0

a+SOI-dependent
correction:

∫ 2π

0

dϕ

2π
nαnβ

∫ ∞

0

dp

2π

p3

m2

(

g−r g−a + g+r g+a − 2g0
r g0

a

)

=
8l2

pFl

∫ 2π

0

dϕ

2π
nαnβ(pSñ)2

=

= 4mτ

[

(a2
+ b2)

(

1 0
0 1

)

+ ab

(

1 0
0 −1

)]

=
1

2EFτ

[

(x2
a + x2

b)

(

1 0
0 1

)

+ xaxb

(

1 0
0 −1

)]

.

(8.12)

Note that (8.12) has also sub-leading SOI-dependent terms, which I did not write since they are relatively small ∼
(pFl)−1 ≪ 1 (the same is true for other equations in this section). The rest of (8.10) equals

1

2
Sp

[

(

− e

mc
Ãα

) p̂β

m
M̂(g−r g−a − g+r g+a )

]

=
α

2

2
∑

i=1

(

− e

mcα

)2

Sp
[

ÃαnβÃi
ni

ñ
· p

m
(g−r g−a − g+r g+a )

]

=

= δαβ
α

2
Sp

[

(

− e

mcα
Ãα

)2 n2
α

ñ
· p

m
(g−r g−a − g+r g+a )

]

= −2mτ

[

(a2
+ b2)

(

1 0
0 1

)

+ 2ab

(

1 0
0 −1

)]

,

(8.13)

where we used (6.3) and the fact that

∫ ∞

0

dp

2π

p2

m

(

g−r g−a − g+r g+a
)

= −ñpSτ

[

4 − 4

pFl
− 1

2(pFl)2

]

≈ −4ñmατ.

We see that anisotropic terms in (8.12) and (8.13) cancel each other so that charge conductivity (8.10) is proportional
to the unity tensor.

4Note that the ansatz for the kinetic equation used in [49], is not self-consistent, and this is accepted by the authors; so almost for sure the result
([49]49,50) is incorrect. in march 2006 DL told J. Schliemann about the result (8.9). In November 2006 J. Schliemann coauthored a paper where
he gets a similar result ([0611328]27) for the conductivity: ([0611328](28)) is 4 times smaller than (8.9). I was unable to understand their derivation;
I suspect that it is wrong. From p. 47 we see that in our case ϕ = π/4 so that in the original CS σ = R−1

ϕ σ̃Rϕ, ϕ = π/4.
5However, the assumption xa,b ≪ 1 is also necessary for the validity of the loop expansion. Означает ли это, что в случае сильного СОВ должна

наступать Андерсоновская локализация?
6A calculation tip: first take integrals over ξ using residues, as if there were no problems with convergence at |p| → ∞; then just take the real part

of the integration result. This corresponds to substituting p → pF in the divergent term and the correct treatment of the other terms. See also the
discussion after (3.43).

http://arxiv.org/abs/cond-mat/0508681
http://arxiv.org/abs/cond-mat/0510842
http://arxiv.org/abs/cond-mat/0611328
http://arxiv.org/abs/cond-mat/0611328
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8.3.3 Non-universal corrections

I’ve calculated the ZLA-bubble by ~p assuming finite EFτ < ∞, and this produced no corrections to our two-loop result.
However, e.g., there are non-universal finite contributions to the diamagnetic current; how can we be sure that they
are smaller than the two-loop contribution? The non-universal corrections to the WL can be even less controlled –
there we could connect two different GRs in the HB with more than one DL. In short, for the moment I don’t know how
I could really be sure that all these non-universal corrections can not be of the same order, as our two-loop result. We
only know that non-universal corrections can not cancel the universal ones.

In general (not only in ZLA), it would be nice if I could demonstrate that for all ME

precise GFB ME = approximate GFB ME ×
(

1 +
a

EFτ

)

,
∂

∂x

(

a

EFτ

)

= 0.

8.4 Two-loop diagrams

BTW, the complete list of diagrams is available in [83].
In previous sections (8.3.1) and 8.3.2, as well as in [49] we have seen, that the natural choice of precision is

∝ σD/(EFτ)2, see (8.9), which corresponds to that we have to consider diagrams till the two-loop approximation.7 With
my program (see sec. 12) I generate diagrams of the second loop and see that

• Here are the “skeleton” diagrams. After we expand all the HBs, we get in total 215 diagrams which can be divided
in 7 groups. The most important diagrams are depicted in Fig. [20]??.

• A two-loop diagram with two CDs is generally smaller, as a two-loop diagram with three CDs, because the last
one is “more divergent”. To be more precise, they must be related as8

∫

d2k

(2π)2

∫

d2q

(2π)2

1

x2 + k2

1

x2 + q2

1

1 + (k − q)2l2
≪

∫

d2k

(2π)2

∫

d2q

(2π)2

1

x2 + k2

1

x2 + q2

1

x2 + (k − q)2l2
, (8.14)

where I’ve simplified the spin-structure of the diffuson, introducing mass x2 in the most primitive way. By DL’s re-
quest, I’ve demonstrated (by explicit calculation) in Sec. 8.7, we can neglect all diagrams except for [20]??, [20]??,
and [20]??.

• It is a good move, before taking
∫

d2k/(2π)2
∫

d2q/(2π)2, to introduce new integration variables: amplitude and

anisotropy — as P = K2 +Q2 and A = 2KQ/P. This is possible since we know that the integrand is symmetric with
respect to K ↔ Q, and K,Q ≥ 0. Also the Jacobian is quite simple. The advantage is that an integrand, expressed
in terms of P and A, automatically symmetric with respect to K ↔ Q. So, “false” divergences on small momenta
vanish, see Sec. 8.5 and 8.6.

In order not to make calculations too complicated, I have to work in the DA, i.e., to assume that xa,b ≪ 1. Since
the considered diagrams are already on the limit of our precision (2nd loop), no MSH-like problems (cf. Sec. 7.3) are

7One can on the other hand, conclude that the results (8.8) and (8.13) are incomplete since they do not satisfy the condition [66] that at a = ±b
the conductivity has to be independent of the SOI.

8Note that this is without taking into account additional smallness ∼ q∗l ≪ 1 in the square GFBs of diagrams [20]??,[20]??,[20]??. This is the
general rule VK told me: a diagram is inferior, if there is another diagram with the same number of loops, but with more CD lines. Use fig. 10.1 for
memory refreshment. However, this argument is not obvious for the relation between [20]?? and [20]??, since [20]?? gains additional smallness
because it has lonely vector vertices in its HBs, unlike [20]??.
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α 0 0 1 1 2 2 3 3
β 1 3 1 3 1 3 1 3
γ 3 1 2 0 1 3 0 2

Lx
αβγ

4πνvFτ3(xa+xb)
−1 1 i 1 −i −i −1 i

Rx
αβγ

4πνvFτ3(xa+xb)
1 −1 −i −1 i i 1 −i

α 0 0 1 1 2 2 3 3
β 2 3 2 3 2 3 2 3
γ 3 2 2 3 1 0 0 1

L
y

αβγ

4πνvFτ3(xa−xb)
−1 1 i i −i 1 −1 −i

R
y

αβγ

4πνvFτ3(xa−xb)
1 −1 −i −i i −1 1 i

Table 8.1: Non-zero elements of GFB [first order in (xa, xb)] of the diagram on fig. [20]?? for q = k = 0. (Saying that
q = k = 0 in the HB, I get rid of its “classical”, SOI-independent component; This “classical” component is non-zero,
when σασβσγ ∝ σ0)

expected. (I mean, I can approximate p ≈ pF.) Analogously to sec. 7.4, the diagram on fig. [20]?? is equal to

∫

d2k

(2π)2

∫

d2q

(2π)2

3
∑

α,β,γ=0

3
∑

α′,β′,γ′=0

LαβγDαα′ (~k )Dβ′β(~k + ~q )Dγγ′ (~q )Rα′β′γ′ (8.15)

L = L(0)
+ L(1)

+ L(2), L(0)
αβγ = Sp

p

[

G<(~p )σαGA(~p −~k )σβGR(~p + ~q )σγ
]

, (8.16)

L(1)
αβγ =

1

4πντ

3
∑

δ=0

Sp
p

[

G<(~p )σαGA(~p −~k )σδ
]

Sp
p

[

GA(~p )σδGA(~p −~k )σβGR(~p + ~q )σγ
]

,

L(2)
αβγ =

1

4πντ

3
∑

δ=0

Sp
p

[

G<(~p )σδGR(~p + ~q )σγ
]

Sp
p

[

GR(~p )σαGA(~p −~k )σβGR(~p + ~q )σδ
]

,

R = R(0)
+ R(1)

+ R(2), R(0)
αβγ = Sp

p

[

G>(~p )σαGR(~p +~k )σβGA(~p − ~q )σγ
]

,

R(1)
αβγ =

1

4πντ

3
∑

δ=0

Sp
p

[

G>(~p )σδGA(~p − ~q )σγ
]

Sp
p

[

GA(~p )σαGR(~p +~k )σβGA(~p − ~q )σδ
]

,

R(2)
αβγ =

1

4πντ

3
∑

δ=0

Sp
p

[

G>(~p )σαGR(~p +~k )σδ
]

Sp
p

[

GR(~p )σδGR(~p +~k )σβGA(~p − ~q )σγ
]

.

At q = k = 0 we notice that, e.g., L(1) = ±R(2) [since the corresponding expressions differ only by the sign of τ; however,

from the simplest example of
∫

ddp/(2π)dgr(~p )ga(~p ) = 2πν|τ| we know that sometimes τ enters under the “module” sign
into the result of the integration.]

It is quite easy to demonstrate that σxy = σyx = 0. Let us now see if σxx = σyy. Let us introduce a projection and index
transposition operation Cxy for indices α, β, γ in (8.15), defined according to the rule:

The definition of Cxy : it exchanges Qx ↔ Qy, Kx ↔ Ky,

and, among indices α, β, γ, α′, β′, γ′, Cxy exchanges 1↔ 2, e.g.,

Cxy[R123(qx, qy, kx, ky)] = R213(qy, qx, ky, kx),

Cxy[R223(qx, qy, kx, ky)] = R113(qy, qx, ky, kx), Cxy[R323(qx, qy, kx, ky)] = R313(qy, qx, ky, kx).

(8.17)

The following property has been checked up to the precision of (xa, xb, lq, lk)6:

Lx
αβγ(~q,~k, xa, xb) = Cxy

[

L
y

αβγ(−~q,−~k, xa,−xb)
]∗
, Rx

αβγ(~q,~k, xa, xb) = Cxy

[

R
y

αβγ(−~q,−~k, xa,−xb)
]∗
. (8.18)

If we forget about elements of HBs, which are multiplied by zeros from the diffuson matrices, then we get better
symmetries for the product of the HBs (checked up to the 6th order):

Lx
αµγ(xa, xb)Rx

α′µ′γ′ (xa, xb) = Cxy[L
y
αµγ(xa,−xb)R

y
α′µ′γ′ (xa,−xb)],

Lx
αµγ(~k, ~q, xa, xb)Rx

α′µ′γ′ (
~k, ~q, xa, xb) = Cxy[L

y
αµγ(−~k,−~q,−xa, xb)R

y
α′µ′γ′ (−~k,−~q,−xa, xb)].

(8.19)

From (6.28) and (8.19) we conclude that, as we predicted in Sec. 8.2,

σxx(xa = 0, xb) = σyy(xa = 0, xb), σxx(xa, xb = 0) = σyy(xa, xb = 0). (8.20)
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α 0 0 1 1 2 2 3 3
β 1 3 1 3 1 3 1 3
γ 3 1 2 0 1 3 0 2

Lx
αβγ

4πνvFτ3(xa+xb)
−1 1 i 1 −i −i −1 i

Rx
αβγ

4πνvFτ3(xa+xb)
0 0 −2i 0 2i 2i 0 −2i

α 0 0 1 1 2 2 3 3
β 2 3 2 3 2 3 2 3
γ 3 2 2 3 1 0 0 1

L
y

αβγ

4πνvFτ3(xa−xb)
−1 1 i i −i 1 −1 −i

R
y

αβγ

4πνvFτ3(xa−xb)
0 0 −2i −2i 2i 0 0 2i

Table 8.2: The same, as in Tab. 8.1, but renormalized with diagrams [20]?? and [20]??. We see that now MEs of R,
which could lead to divergences, vanish.

8.5 About divergences

We know that D00(k) ∝ 2/(lk)2 is not affected by SOI, and, in principle, can lead to divergences in
∫

d2k/(2π)2
∫

d2q/(2π)2

at small momenta in our expression for the diagram [20]??. Let us at first consider MEs of HBs from Tab. 8.1. For
lk≪ min(|xa|, |xb|), integrand contains four terms ∝ D00(k):

D00(k)
[

D13(~k + ~q)D31(~q) +D31(~k + ~q)D13(~q) −D11(~k + ~q)D33(~q) −D33(~k + ~q)D11(~q)
]

≈
≈ 2D00(k)

[

D13(~q)D31(~q) −D11(~q)D33(~q)
]

First let us explore the case, when both lk, lq≪ min(|xa|, |xb|). In this limit we use expression (6.37) for the diffuson. The
most dangerous MEs of the HBs are those at k = q = 0. Their approximate values are summarized in Tab. 8.1. With
these approximate values we get divergences

σxx(xa, xb) − σyy(xa, xb) ∝ x4
b

∫

d2q

(2π)2
D00(q)

[

D11(xa + xb)2 −D22(xa − xb)2
]

+ other terms.

There would be no divergence, if exact values of Lx,y and Rx,y at k = q = 0 would be such that, e.g.,

at k = q = 0 D11Lx
013Rx

013 −D22L
y

023
R

y

023
= 0, or (1 − X22

D )Lx
013Rx

013 − (1 − X11
D )L

y

023
R

y

023
= 0, (8.21)

which I’ve checked up to the 6th order, see 2nd loop/getSymmetries.max (I am sure it is valid also for other necessary
indices.) So apparently we have no divergence when both k, q are small.

What happens if only one of ~k, ~q is not small? Then we have divergences in diagram [20]??. Let us consider the case
of zero MF. Then in addition to our “main” diagram [20]?? (which does not contain Cooperons) we have to consider
the contribution of other diagrams. Let us focus on the group of diagrams [20]??, [20]??, [20]??. Summing them
all is equivalent to a sort of “renormalization” of the right Hikami box of [20]?? (compare Tab. 8.1 with Tab. 8.2):
Rx

013
= Rx

031
= Rx

130
= Rx

310
= R

y

023
= R

y

032
= R

y

230
= R

y

320
= 0, while all other MEs of R are doubled (checked up to the 2nd order).

This divergence cancellation occurs according to the theorem on p. [84]4677.
Note, however, that in the automatic calculation of diagrams spin indices and momentum variables in dia-

grams [20]??, [20]??, and [20]?? do not coincide, so that there are non-zero MEs corresponding to D00
~k

and D00
~q
.

This apparently results in divergences at ~k, ~q → 0. These divergences are “false”; they get mutually cancelled. A good
way to get rid of them is the usage of symmetric momenta variables (P,A) defined in Sec. 8.6.

Next, looking on expansion, we understand that we risk to get divergences at lk, lq≫ 1, because we expand our HBs
assuming lk, lq ≪ 1 (see Sec. 13.2). However, the appearance of such a divergence would mean that (l, q) are not small
momentum variables, which would contradict at list the assumption that we work in the diffuson approximation (and
probably even the assumption of the loop expansion in Sec. 3.6.) Fortunately, in my calculation it did not occur.

Finally, for m ≥ 2 in (8.6), one may face divergences at k, q → 0, if he forgets subtracting the WL-alike diagram with
3 dashed lines, see the caption for Fig. [20]??. One may naı̈vely think that this “extra” diagram [which we must 3
times subtract from the sum of [20]??,[20]??,[20]??] can be obtained from any of [20]??,[20]??,[20]?? by substituting
X̄D → 0 into the expression (??) for their diffusons. Viewed in this way, this subtraction seems unimportant since it can
not affect terms with m < 6 from (8.6). However, one should also take into account the change in momentum structure
of the diagram. This leads to the fact that it has only one loop [instead of two loops for [20]??,[20]??,[20]??], so it can
affect only terms with m ≥ 2. Note that the infinite WL-series, in principle, could affect all terms in the expansion (8.6)
[but not S00 as we’ve concluded in Sec. 8.7.]
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8.6 Integrating
∫

d2k
(2π)2

∫

d2q

(2π)2 on computer: analytics and numerics

See diagrams.max/EXAMPLES/conductivity-SOI/5/ We calculate the leading term ∝ S00 in the expansion (8.6). In
the calculation, we use dimensionless HBs and dimensionless diffusons, and we integrate in dimensionless variables,
so we should not forget that

The final result =
e2

h
(2mτ3vFx)2δ

x4

l4
1

(2mτx2)3

1

(2π)2

∫ ∞

0

dK

∫ ∞

0

dQ

∫ 2π

0

dϕ

2π

∫ 2π

0

dψ

2π
×

×our dimensionless expression,

(8.22)

where the обезразмеривающий factor (2mτ3vFx)2 is introduced manually in integrand.max. Further change of vari-
ables brings us additional coefficients, see (8.23).

Since the angular dependence of the denominator is only due to (~K+ ~Q)2 = K2 +Q2 + 2KQ cosψ, we can easily perform
the integration on the other angle. Then we have to integrate the rational function

∫ 2π

0

dψ

2π

P1(sinψ, cosψ)

P2(cosψ)
,

where P1,2 are polynomials. The denominator is even in ψ, so we can leave only even (in ψ) part of the numerator. Then
numerator thus can be expressed as a another polynomial:

∫ 2π

0

dψ

2π

P3(cosψ)

P2(cosψ)
, P3(cosψ) =

∑

n

an cosn ψ.

We perform the integration over ψ using the method from p. [85]228-229. Because of the large number of terms to
integrate and large size of the expressions, this analytical integration (i.e., basically, calculation of residues) is done
on computer, see integrate.max. We use the fact that the denominators of all massfull elements of the diffuson D~k+~q

can be factorized into two expressions: uno = 1 + (~k + ~q)2 and due = 2 − (~k + ~q)2 + (~k + ~q)4. The size of the integration result
grows rapidly with powers of uno and due in the denominator, so it is neccessary to split integrands into elementary
fractions.9

Since (according to the basic assumption of the loop expansion) integrals over (~k, ~q ) converge on the scale of k . x/l
and q . x/l, we naturally introduce dimensionless variables K = kl/x and Q = ql/x. Next, the integrand is symmetric
with respect to K ↔ Q, and the integration operator has this symmetry too. So we symmetrize10 every term of the
integrand, and express it in terms of new variables11 P = K2 +Q2 and A = 2KQ/P. Accordingly, our integration operator
is changed:

∫ ∞

0

dK

∫ ∞

0

dQ KQ = 2

∫ ∞

0

dK

∫ K

0

dQ KQ = 2

∫ ∞

0

dP

∫ 1

0

dA
PA

2J
,

A =
2KQ

K2 +Q2
, J =

∣

∣

∣

∣

∣

∂(P,A)

∂(K,Q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

4
K2 −Q2

K2 +Q2

∣

∣

∣

∣

∣

∣

= 4
√

1 − A2.

(8.23)

9Huge integration results usually contain the difference of large numbers, which is calculated numerically with bad accuracy, which results in
various artefacts, like, e.g., “false” divergences.

10With this symmetrization we get rid of “false” divergences at k, q→ 0, see Sec. 8.5.
11Since the vicinity of A = 1 is very important for the integration, it makes sense to further change variable A = 1 − B−2, see here for more details.
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8.7 Other diagrams

By the request of DL, I’ve checked that [20]??-alike looking hexagonals (see hexagons/), and saw that their contribu-
tion12 to the expansion (8.6) is (exactly) S00 = 0:

~q

~k

=

∫

d2k

(2π)2

∫

d2q

(2π)2

3
∑

α,β,γ,δ=0

D
αγ

~k
D
δβ

~q
Sp
~p

[

G<(~p )σ̃αGA(~p −~k )σ̃βG
>(~p −~k + ~q)σ̃γGR(~p + ~q)σ̃δ

]

,

~ k ~q

=

∫

d2k

(2π)2

∫

d2q

(2π)2

3
∑

α,β,γ,δ=0

Dαδ
~k

D
γβ

~q
Sp
~p

[

G<(~p ) ¯̃σ†αGT
A(~k − ~p ) ¯̃σβG

>(~p −~k + ~q) ¯̃σ∗γGT
R(~k − ~p ) ¯̃σT

δ

]

,

~q

~ k

=

∫

d2k

(2π)2

∫

d2q

(2π)2

3
∑

α,β,γ,δ=0

D
αβ

~k
D
δγ

~q
Sp
~p

[

G<(~p ) ¯̃σ†αG>T(~k − ~p )σ̃T
γGT

A(~k − ~q − ~p ) ¯̃σβGR(~p + ~q)σ̃δ
]

.

In principle, one can add lonely IALs into their GFBs, but this will separate current vertices, and will make the

argument (8.14) valid. I mean, we can forget about these lonely IALs. !No, this is not true!!! (since, e.g, I can insert
IALs into diagram [20]?? without splitting vertices)

In addition, there is a WL-diagram13 together with its two-loop correction:

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

+
�
�
�
�
�

�
�
�
�
�

��
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=

∫

d2q

(2π)2

3
∑

α,β=0

(

D
αβ

~q
+C

αβ

~q

)















Sp
~p

[

G<(~p ) ¯̃σ†αG>T(~q − ~p ) ¯̃σT
β

]

+

+
1

4πντ

3
∑

γ=0

Sp
~p

[

G<(~p )σ̃γGT
R(~q − ~p ) ¯̃σT

β

]

Sp
~p

[

GR(~p ) ¯̃σ†αG>T(~q − ~p )σ̃γ
]

+

+
1

4πντ

3
∑

γ=0

Sp
~p

[

G<(~p ) ¯̃σ†αGT
A(~q − ~p )σ̃γ

]

Sp
~p

[

GA(~p )σ̃γG>T(~q − ~p ) ¯̃σT
β

]



















,

where C
αβ

~q
is the (pFl)−1-correction to the cooperon:

C
αβ

~q
=
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σ̄βσ̄α
σ̄γ

G
A ( ~k

−
~p )

G
A (~p−

~q)
GR
(~p
)

σ̄δ

GR
(~k
+
~q −

~p ) =

3
∑

γ,δ,µ,ν=0

D
αγ

~k
D
δγ

~k

∫

d2q

(2π)2
D
µν

~q
×

×
{

Sp
~p

[

GT
A(~k − ~p ) ¯̃σ†γGR(~p )σ̃µGA(~p − ~q ) ¯̃σT

δGT
R(~k + ~q − ~p )σ̃T

ν

]

+

+
1

4πντ

3
∑

κ=0

Sp
~p

[

GT
A(~k − ~p ) ¯̃σ†γGR(~p )σ̃κGT

R(~k + ~q − ~p )σ̃T
ν

]

Sp
~p

[

σ̃κGR(~p )σ̃µGA(~p − ~q ) ¯̃σT
δGT

R(~k + ~q − ~p )
]

+

+
1

4πντ

3
∑

κ=0

Sp
~p

[

GT
A(~k − ~p ) ¯̃σ†γGR(~p )σ̃µGA(~p − ~q )σ̃κ

]

Sp
~p

[

σ̃κGA(~p − ~q ) ¯̃σT
δGT

R(~k + ~q − ~p )σ̃T
νGT

A(~k − ~p )
]

}

.

12Note that, apparently, the corresponding S20 , 0 – at least before the integration over the modulus of momenta k, q.
13Note that the famous “WL logarithm” cancels away from the difference σxx −σyy I had to be anxious about WL diagrams, since I was not sure that

they don’t contain convergent (at small momenta) terms.



Chapter 8 page 72 generated October 16, 2011

Finally, there is one more diagram of the WL-type:
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��

=

3
∑

α=0

LαDαα
0 Rα, Lα =

∫

d2k

(2π)2

3
∑

β,β′=0

D
ββ′

~k

{

Sp
~p

[

G<(~p ) ¯̃σ†βG
T
A(~k − ~p )σ̃T

αGT
R(~k − ~p ) ¯̃σT

β′

]

+

+
1

4πντ

3
∑

δ=0

Sp
~p

[

G<(~p )σ̃δG
T
R(~k − ~p ) ¯̃σT

β′

]

Sp
~p

[

σ̃δGR(~p ) ¯̃σ†βG
T
A(~k − ~p )σ̃T

αGT
R(~k − ~p )

]

+

+
1

4πντ

3
∑

δ=0

Sp
~p

[

G<(~p ) ¯̃σ†βG
T
A(~k − ~p )σ̃δ

]

Sp
~p

[

σ̃δG
T
A(~k − ~p )σ̃T

αGT
R(~k − ~p ) ¯̃σT

β′GA(~p )
]

}

,

Rα =

∫

d2k

(2π)2

3
∑

β,β′=0

D
ββ′

~k

{

Sp
~p

[

G> ¯̃σ∗βG
T
R(~k − ~p )σ̃T

αGT
A(~k − ~p ) ¯̃σβ′

]

+

+
1

4πντ

3
∑

δ=0

Sp
~p

[

G>σ̃δG
T
A(~k − ~p ) ¯̃σβ′

]

Sp
~p

[

GA(~p ) ¯̃σ∗βG
T
R(~k − ~p )σ̃T

αGT
A(~k − ~p )σ̃δ

]

+

+
1

4πντ

3
∑

δ=0

Sp
~p

[

G> ¯̃σ∗βG
T
R(~k − ~p )σ̃δ

]

Sp
~p

[

GR(~p )σ̃δG
T
R(~k − ~p )σ̃T

αGT
A(~k − ~p ) ¯̃σβ′

]

}

.

The calculation in WL/2.max shows that Lα , Rα.
From the above diagrams, we are afraid of the following:14
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where we have to calculate the HBs explicitly and demonstrate that they can not alter S00 in the expansion (8.6). In the
first diagram, the zeroth-order (in SOI) of the HB is important, which is independent on the cooperon indices so that

the diagram is proportional to C00 − C11 − C22 − C33, which is isotropic (!I wonder if this isotropy is exact). The second
diagram is almost the same as the first one, but with the renormalized cooperon. As for the 3rd diagram, by using
brutal computer force I’ve demonstrated in WL/2.max that it is also harmless. I used the fact that only diagonal MEs
of the diffuson survive the angular integration over its momentum.

Later I’ve made an independent direct check15: divided all 215 diagrams (yes, 215 ones, if we consider every HB as
a sum of three!) into 7 groups, and demonstrated, that only one (fifth) group of 27 diagrams [shortly represented by
three diagrams in Fig. [20]??, [20]??, and [20]??] gives rise to S00 in (??).

8.8 Finite-frequency corrections

B. Altshuler: the result for the conductivity at ω = 0 in (??) is singular at a2 + b2 = 0, so it would be interesting to
calculate it in case of (large in comparison with SOI) finite frequency. The calculation for this case (x2 ≪ −iωτ) is
performed in diagrams.max/EXAMPLES/conductivity-SOI/wt greater x/ The integrand is much simpler, than for
ω = 0 – See [66, 20]. The case x2 ≫ −iωτ is much more sophisticated; for the moment it is not ready yet.

We studied this finite-frequency case because this is the simplest way to take the dephasing into account: sub-
stituting −iωτ → τ/τϕ – see, e.g., before ([7]6.24). Note, however, that Montambaux [1] claims that the diffuson is a
classical object.16

See Sec. 11.5.2 for the estimate of τϕ.

14If I had to calculate higher in x orders of the diagrams in this section, I would have to subtract some diagrams with a finite number of IALs,
since I start my cooperons with one IAL.

15See diagrams.max/EXAMPLES/conductivity-SOI/

16!Discuss this with DL: In particular he says that classical conductance is proportional to the diffuson. I understand this as a claim that
diffuson does not die in a large sample at room temperature.
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8.9 Conclusions

The coefficient S00 gives the anisotropic part of the conductivity tensor of a phase coherent semiconductor, and is
valid17 for x > l/Lϕ(T), where Lϕ(T) is the phase coherence length. In case when Lϕ = ∞ the correction (15) depends
non-analytically on the SOI amplitudes in the vicinity of x = 0. At x = 0 (i.e., in the absence of SOI) the conductivity
tensor is isotropic but [at T = 0, if we believe that18 Lϕ(T = 0) = ∞] an infinitesimal SOI brings it to the anisotropic
phase. We expect that this spontaneous symmetry breaking does not take place for T > 0, because of the finite value
of Lϕ(T). Thus at T = 0 we observe a sort of a phase transition,19 which can be described by the following 2D order
parameter:

~η =
(

Sp [σ1σ] , Sp [σ3σ]
)

.

Differently to a superconductor or a ferromagnet, the order parameter η(T) has infinite support. So a closer analogy
for us is the Bose-Einstein condensation (=BEC), where the order parameter is
number of particles in the ground state

total number of particles . However, in BEC there is a non-analicity in the µ(T)-dependence at the transition temper-

ature20. I don’t know if we have such non-analyticities in our system.
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A A

Figure 8.1: !This figure is obsolete – see my
poster. The measuring device. The voltage is
applied between two A-contacts. The anisotropic
conductivity results in the non-zero potential dif-
ference between two B-contacts, depending on the
piercing magnetic flux.

The rotation in the coordinate space corresponds to the rota-
tion in the ~η-space by double angle. While the magnitude η is zero
for the system without SOI, an arbitrary small SOI makes it finite
provided that Lϕ = ∞ and the “harmonic average” δ of Rashba and
Dresselhaus amplitudes is non-zero. The direction of ~η is then de-
termined by the direction of crystal axes, determining the “main
axes” of the SOI part of the Hamiltonian. The isotropic phase in
the absence of SOI can be restored by destructing the phase co-
herence, e.g., by increasing the temperature.

In conclusion, it is not clear:

• Do we have a phase transition or a “crossover”?

• Is the transition temperature T = 0 or T∗ > 0? [T∗ being the
scale of the Lϕ(T) dependence.]

• Do we have non-analyticities (at the transition point) in the
dependencies of any thermodynamic parameters of the sys-
tem?

For the information about BEC, see §[38]45, p. [45]16 and pp. 219-
220 from the first volume of Russian physical encyclopedia.

DL: “the classification of different strange phase transitions can
be found in the (in my opinion – boring) book by Subir Sachdev.”
I understood that this classification is more like a play of words;
this classification does not have deep physical sense.

17Following the request of B. Altshuler (supported by DL), I’ve calculated the divergence of δσ(ω , 0) here.
18In Fig. 0707.19931 it is claimed that Lϕ becomes infinite at finite (though very small) temperature.
19In fact, according to[86], the main feature of a phase transition consists in the following: introduction of an infinitesimal term in the Hamiltonian

results in a finite correction to physical characteristics of the system.
20which results in non-analyticity of other thermodynamic parameters of the system. Note that this non-analyticity is usually drawn approximately,

so that
∂µ(T)

∂T
is a discontinous function. I suspect that in reality all the derivatives of the order parameter and µ(T) are everywhere continuous.

Можно попробовать это доказать с помощью теоремы о неявной функции.

http://quantumtheory.physik.unibas.ch/shalaev/work/ictp-2008.pdf
http://arxiv.org/abs/0707.1993


Part III

Current autocorrelator

74



On p. 9 of cond-mat/0201007, they say, that “The phase coherence is not significant for the current fluctuations
in the weakly disordered metals”. In [87] they say that inelastic phonon scattering processes kills shot noise, so that
in the macroscopic piese of metal it is not observed. On the other hand, inelastic elecron-electron interaction even
slightly enhances it!

When the electron-phonon interaction is weak and the thermoconductivity is sufficient, everywhere in the sample
the energy distribution fE is just a shifted equilibrium one, with a width corresponding to the surrounding temperature.
In this situation, the consideration based on the Landauer formalism must fail (see sec. ??), and one has to use
quantum kinetic equation instead.

Now suppose there is no electron-phonon interaction, but there is strong elecron-electron interaction. Then fE is
again a Fermi function, but its width is given by an affective temperature (9.38). This should also give no contribution
to the shot noise, but should enhance Nycquist noise (according to sec. ??).

Sec. ?? demonstrates that splitting noise in Nyquist (equilibrium) noise and shot noise is completely artificial. In a
homogeneous quasi-1D (two-terminal) sample the noise is determined by the effective temperature; the latter depends
on whether the system is in equilibrium or not.

8.10 A note about different types of averaging

One can be confused by the fact that we have three types of averaging that we have: quantum, statistical, and disorder
averaging. In the definition of the the physical quantity, like concentration or current, the first two averages already
present. We can thus calculate only a disorder-correlator, and this would be just the same, as in UCF or with my
current-current correlator from thesis [88]. However, we could also calculate a correlator with all the three averages
involved. Such a correlator will be expressed via the 2-particle density matrix.

Thus one has to distinguish two different types of correlators. The first ones are “normal”, which are in the
textbooks, where no disorder averaging technique is discussed. A “normal” current-current correlator, e.g. gives us
information about the current fluctuatuins in one particular sample.

We are always interested also in averaging over the ensemble of samples. We calculate UCF via neglecting thermody-
namical fluctuations. And we are right to do so since conductivity has no thermodynamical fluctuations by definition.
In case of current-current correlator this depends on what we want to calculate. We may want to separate mesoscopic
fluctuations from thermodynamic; then the calculation goes like in [88] or like in case of UCF.

What type of correlator do we need when studying noise? –The complete one, including thermodynamic averaging,
since we are interested in the spin-correlations in one particular disordered sample.

8.11 Literature

См. Письма в ЖЭТФ т.49 стр. 513.

8.12 Only disorder averaging

!См. также мою дисертацию [88]. Счёт третьего момента тока, притом с учётом взаимодействия сделан в
cond-mat/0503552.

When we don’t take interaction into account, a physical system can not distinguish between the equilibrium and
non-equilibrium. In real physical systems interaction always present, but in case of equilibrium systems it sometimes
can be neglected - an approximation which is much more questionable in case of a non-equilibrium system. In [38] on
page 82 it is stated that “before relaxation processes finish” the interaction cannot be neglected, no matter how small
it is. But this was told about a non-equilibrium system relaxing into equilibrium state. Is it true for a system in a
non-equilibrium steady state? I think - yes, but I am not sure. As an example, let us study current-current correlator
without interaction between the electrons.

http://arxiv.org/abs/cond-mat/0201007
http://arxiv.org/abs/cond-mat/0503552
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8.13 Current in case of no interaction between electrons

Let us derive at first more convenient formula for the current in the coordinate space. We consider equilibrium system
without interaction between the electrons, so that we have one-particle energy spectrum; Due to this we can write

~j =
∑

n

fT(En)~jn, (8.24)

where fT(En) is the average number of particles in a state with given energy En. Now let us obtain (8.24) formally. An
arbitrary state ψ =

∑

n Cnϕn produces the current

j(r, t) ∝
∑

mn

CnC∗m(ϕn∇ϕ∗m − ϕ∗m∇ϕn). (8.25)

We want now to average (8.25) over the ensemble of the systems, that is, to use the density matrix ρ1 ≡ 〈CnC∗m〉. For
simplification we now make an unnecessary assumption that the spectrum is non-degenerate. Then the off-diagonal
elements of 〈CnC∗m〉 are zeros, which proves (8.24).

From (3.2), ([19]2.7), ([19]2.8), ([19]3.16), ([19]3.11), (13.19) and (13.25) we see that

~j = lim
~r ′→~r

[(

− ie~

2m

(

~∇~r − ~∇~r ′
)

− e2
~

2

2m
~A

)

K′(~r,~r ′; E)

]

, (8.26)

K′(~r,~r ′; E) = e−E/T J(~r,~r ′; E), J(~r,~r ′; E) =
1

2π

i

1 + e−E/T

(

GR(~r,~r ′; E) − GA(~r,~r ′; E)
)

.

!Внимание: неправильная размерность в (8.26)!
There should be no contradiction whether to define the current from K or K′ due to ([19]2.9). Note that here I did

not use the fact that we have no interaction.
Finally we have

~j(~r) =
e~

2m

∫ ∞

−∞

dE

2π
fT(E) lim

~r ′→~r
(~∇~r − ~∇~r ′ − 2ie ~A)

[

GR(~r,~r ′) − GA(~r,~r ′)
]

, fT(E) =
1

1 + eE/T
. (8.27)

From (3.30) it follows that in case of no interaction in (8.27) the integrand = 0 for E < −µ, so that we can integrate not
from −∞, but from −µ. This is essential to avoid divergences - because (3.30) is not obligatory for the approximate
GR/A which we always deal with. Surely we can do this also in the interaction case (like in sec. 10.2), but with the lower
limit slightly changed (due to the change of the lowest energy level). To avoid this, we can set a sort of a “boundary
condition”: zero of energy = place of the lowest energy level. How this would be compatible with the perturbation theory

- a nice question.!
Note also that (8.27) coincides with ([21]4.3). The difference is due to the different normalization of wave functions:

I use the normalization without summation over spins (because we have no spin effects in the whole of this text), while
in [21] spins are considered.
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Chapter 9

Keldysh technique

Correspondence between [5] and [21]: ([5]6.23)=([21]2.10), ([5]6.25)=([21]2.14), ([5]6.32)=([21]2.16). See also NLσM: [89],
[17], 9810191, [26]. See also cond-mat/0506752.

9.1 The Keldysh contour

Let us study the case of a quasi equilibrium state when an external fixed parameter is the energy distribution function
[38]. More precisely, we require that the unperturbed DM commutes with the unperturbed Hamiltonian.

Let us introduce a new time variable, which we call “Keldysh time”. While usual time is described by one continous
real variable, Keldysh time has in addition a discreete index, which can have two values: f =forward and b =backward.
In other words, while usual time is defined on R ≡ (−∞,+∞), Keldysh time is defined on (t0, t1)⊗ { f , b}, where about t0 we
speak later. There is a trivial projection rule from (t0, t1) ⊗ { f , b} to (t0, t1), which consists in removal of the discrete part
of the Keldysh time variable. Below we use only this type of projection.

In the equilibrium T = 0 diagrammatic technique [5], usual time-ordering T is used. This is just a trivial ordering
on R. Let us now define ordering on (t0, t1) ⊗ { f , b}, and call it TC.

A pictorial (=наглядный,anschaulich) way to introduce TC is using so called “Keldysh contour” depicted in fig. 9.1.
Let us define TC for the case of two operators, thus having two times to order1. The difference between usual T = 0-
technique ordering T and Tc is that while T depends only on the relation between the two times, Tc has also a selected
point t0. This is equavalent to say that in reality we have 3 times to order: two times are “external arguments” of the
Tc-operation, while the third time is fixed. This third time corresponds to some point t0 on a real time axis.

Some (half-baked) notes on the derivation on pp. [21]326-327: In ([21]2.12), there are three different Keldysh time
orderings (since they have different2 “point of return” t0). Two “inner” orderings get their t0 from the main (i.e., external)
one using projection operation (defined above). The t0 time for the main (i.e., external) ordering is given by max(t1, t′1);
however, I suspect that nothing chages if I just set t0 = +∞. In order to understand this, it would be useful to write the
analog of ([21]2.10) for u†.

The definition of the one- and two particle Green functions in Keldysh technique is analogous to that in the T = 0
technique ([5]7.1,10.12); only now instead of the usual time ordering, Keldysh ordering is used:

GC(x, x′) ≡ −i〈Tc

[

ψ(x)ψ†(x′)
]

〉, GII
C(x1, x2; x3, x4) ≡ 〈Tc

[

ψ(x1)ψ(x2)ψ†(x3)ψ†(x4)
]

〉, (9.1)

1I believe that also for TC the analogy with a usual sorting is valid: having defined the sorting rule for 2 elements we are able to generalize this it
to the arbitrary number of elements.

2I would prefer to call t0 репер(=Richtpunkt, Festpunkt) if I knew how it is translated into English.

b

f

t = t1t = t0

Figure 9.1: The finite Keldysh contour: t0 ≤ t ≤ t1. See also [9810191] and Sec. 4.1. See restrictions in (13.28).
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http://arxiv.org/abs/cond-mat/9810191
http://arxiv.org/abs/cond-mat/0506752
http://arxiv.org/abs/cond-mat/9810191
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where now all time arguments are “Keldysh times” defined on p. 78. This immediately suggests mapping of GC onto
2 × 2 matrix, and GII

C
from (9.1) — onto 4-(rank) matrix3.

9.2 One-particle quantities

One-particle quantities like, charge current, are given by GC (or by its 2 × 2 matrix mapping). One immediately notes
that we are almost always interested in the off-diagonal elements of this matrix, which gives the density matrix – like
quantities (9.4). Then using (13.24) we transform our 2 × 2 matrix4

GC ↔
(

Gff Gfb

Gbf Gbb

)

=

(

−i〈T[ψ(x)ψ†(x′)]〉 −iη〈ψ†(x′)ψ(x)〉
−i〈ψ(x)ψ†(x′)〉 −i〈T̃[ψ(x)ψ†(x′)]〉

)

=

=
1

2













G(+)
R
+ G(−)

R
− η

(

G(+)
A
− G(−)

A

)

η
[

G(+)
R
− G(−)

R
−

(

G(+)
A
− G(−)

A

)]

G(+)
R
+ G(−)

R
−

(

G(+)
A
+ G(−)

A

)

−
(

G(+)
A
+ G(−)

A

)

+ η
(

G(+)
R
− G(−)

R

)













=

=
1

2

(

GK + (GR + GA) GK − (GR − GA)
GK + (GR − GA) GK − (GR + GA)

)

≡ Γ, Lσ3ΓL
−1
=

(

GR GK

0 GA

)

, L =
σ0 − iσ2√

2
, (9.2)

where T and T̃ stand for normal and inverse time ordering; all Green functions have (x, x′) arguments. It is more

convenient to work in the representation where Green function is given by the upper triangular matrix G =

(

GR GK

0 GA

)

.

See deriveKeldysh.nb for the details of the corresponding transformation.
As far as I remember, γ-matrices ([21]2.44,45) are exchanged. The correct ones are written in diagrams.m This

corresponds to the usual “from left to right” way of thinking and drawing diagrams (which is opposite to that used in
[21], see fig. [21]6.)

With the notations (13.19) we have from ([21]2.22) (in the following, upper signs stand for bosons and the lower ones
- for fermions):

GK(λ, λ′) = −i〈[ψ(λ), ψ†(λ′)]±〉 = G(±)
R

(λ, λ′) − G(±)
A

(λ, λ′), (9.3)

Note that G(∓)
R/A

are the usual retarded and advanced Green functions (see [5]).

In order to calculate one-particle quantities (like e.g., current), we need to calculate expectation values of Gfb ∝
〈ψ†(x′)ψ(x)〉 [which has the same order of operators, as the one-particle density matrix]. One obtains that for fermions
[in (non?)equilibrium but stationary state]

∫ ∞

−∞
e−iEt/~〈ψ̂(λ, t)ψ̂†(λ′, 0)〉dt =

i

2
[GR − GA + GK] (λ, λ′; E),

∫ ∞

−∞
e−iEt′/~〈ψ̂†(λ′, t′)ψ̂(λ, 0)〉dt′ =

i

2
[GR − GA − GK] (λ, λ′; E).

〈ψ̂†(λ′, t′)ψ̂(λ, t)〉 = i

2
[GR − GA − GK] (λ, t;λ′, t′).

(9.4)

See [20] for the derivation of the Kubo conductivity formula. . . See also Yudson’s proof from my thesis [88], but it

seems to me that it is valid only for the case of constant ~A.
From ([19]2.8) and ([19]2.10) it follows that5 in equilibrium G(+) = G(−) coth E

2T , and we obtain that

GE
K = hE(GE

R − GE
A) (9.5)

with hE from (9.9). In equilibrium from (9.5) and from the usual charge current formula [20] one obtains (8.27). In our
article [91] (see sec.11) we argue (but do not prove definitely) that GR/A contain the information only about diagonal
MEs6. Thus any physical quantity defined using GR/A (like tunnel density of states) can be written in an equilibrium
form (see (8.27) as an example):

O =

∫

dE
1

1 + eE/T
O(E). (9.6)

3I mean, a matrix with four indices; each index has two possible values: f or b. In the zeroth order of the perturbation theory, two diagonal
elements GII

ffff
and GII

bbbb
will be expressed in terms of Gff and Gbb [according to ([5]10.14)].

4My notations Gff , Gfb, etc correspond to G++, G+−, etc in §[12]92. In the western literature, other notations are used, see §[90]2.1: Gfb ≡ G<.
5Out of equilibrium, e.g., see p. 26 in cond-mat/0506617.
6One can think about an analogy: in the 2 × 2 matrix Green function they stand on diagonal, so they know only about diagonal elements of the

density matrix.

http://theorie5.physik.unibas.ch/shalaev/public.html/thesis.tar.bz2
http://arxiv.org/abs/cond-mat/0506617
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I think that in equilibrium (9.6) holds for any one-particle physical quantity.
Let us consider an equilibrium of non-interacting particles in some external potential, so that λ is a conserving

quantity. From (13.29) and (13.30) we get:

G(±)(0)
R

(λ,E) =
hB/F(ξλ)

E − ξλ + iǫ
, G(±)(0)

A
(λ,E) =

hB/F(ξλ)

E − ξλ − iǫ
, ǫ = +0, (9.7)

G(0)
K

(λ,E) = hB/F(ξλ)
(

G(∓)(0)
R

(λ,E) − G(∓)(0)
A

(λ,E)
)

, (9.8)

hB(E) =















0, E < 0

coth E
2T , E ≥ 0

, hF(E) =















0, E < −EF

tanh E
2T , E ≥ −EF

. (9.9)

In the bosonic case ξλ is the energy of a boson; In the fermionic case ξλ is the energy of a fermion measured from the
Fermi energy.

We have from (9.8):
G(0)

K
(λ,E) = −2πi × hB/F(ξλ) × δ(E − ξλ),

so that (in accordance with ([21]3.21) , ([21]2.66) and (9.5))

G(0)
K

(λ,E) = hB/F(E)
(

G(∓)(0)
R

(λ,E) − G(∓)(0)
A

(λ,E)
)

. (9.10)

Let us now focus on the case of electrons. We are used to work with their Green functions averaged over the
interaction with randomly placed impurities. After the averaging we get

〈GK(~p,E)〉 = hF(E)
(〈GR(~p,E)〉 − 〈GA(~p,E)〉) , (9.11)

where GR/A are given by (1.9).

Consider a special type non-equilibrium system such that (9.5) holds with some (non-equilibrium) hE. Suppose a
physical quantity is given by a time-independent operator:

f (~r, t) = lim
~r′→~r

f̂ (~r,~r ′)〈ψ†(~r ′, t)ψ(~r, t)〉.

Then from (9.4) we get general expression for some (almost arbitrary) physical quantity W:

W(~r ) =

∫ ∞

−∞

dE

2π

1 − hE

2
W(~r,E), W(~r,E) =

∫

ddpddp′

(2π)2d
ei~r(~p−~p ′)Ŵ(~p, ~p ′)(GR − GA)(~p, ~p ′).

In particular, this holds for the current [see (8.27)] and the particle density. Without the interaction GR − GA is the
density of states, in the general case it is called tunnel density of states and manifests strong decay near the Fermi-
energy level under the influence of even small interaction (ZBA).

A common application of Keldysh technique is a steady non-equilibrium state of a system with the interaction. It

can be introduced via the ansatz for G(0)
K
= hE(G(0)

R
−G(0)

A
) with the appropriate (non-equilibrium) hE. Some one can object

that in this way we do not describe the presumed state of the system completely, because we do not insert off-diagonal
elements of the density matrix into it. However, once diagonal elements in the zeroth-order approximation are fixed,
the off-diagonal ones are completely defined by the interaction. Thus one can say that non-equilibrium steady state
can be completely characterized by its energy distribution function fE.

I think the formulas in section 3.1 are true also for GcK
from ([21]2.18). Also they should be valid for Ĝ if one

substitutes ~A by τ0 ~A - see ([21]2.41).

So, we get from ([21]4.2), (3.12) and (9.8) in accordance with (3.20) and (3.21): !to be revised because ([21]4.3) is
incorrect!

~j(q) +
Ne2

m
~A(q) =

ie2

4m2

∫

d4p

(2π)4

[

(h0(E) − h0(E − ω)) GR(p)GA(p − q) + GR(p − q)GR(p)h0(E)−

− GA(p − q)GA(p)h0(E)
]

(2~p − ~q ) ~A(q)(2~p − ~q ),

(9.12)

The lack of “ones” in ([21]4.7) is apparent; they can be added just like in sec. 3.2: because their poles are on one
side of the complex E - plane, they give zero contribution into the integral by E.

Note that formula (8.27) used in section 8.12 can be easily obtained from Keldysh technique; actually GR−GA comes
from the zeroth - order Keldysh component of Ĝ, see (9.8) and...
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9.3 Two-particle quantities, e.g. current correlator

A two-particle quantity can be calculated out of the following two particle Green function:

〈ψ̂†(~r′1, σ′1, t1)ψ̂(~r1, σ1, t1)ψ̂†(~r′2, σ
′
2, t2)ψ̂(~r2, σ2, t2)〉 (9.13)

At first I must express the correlator in terms of GII
C
defined in (9.1). The required [i.e., the same as in (9.13)] sequence

of operators can be achieved in several elements of the 4-matrix (p. 79) GII
C
. However, the best element to look at is

GII
fbfb

:

− GII
fbfb(x2, x1; x4, x3) = 〈

(

T
[

ψ(x1)ψ†(x3)
]) (

T
[

ψ(x2)ψ†(x4)
])

〉. (9.14)

We get (9.13) from (9.14) for t3 = t1 + 0, t4 = t2 + 0, ~r3 = ~r1, ′s3 = s′
1
, ~r4 = ~r′2, s4 = s′2.

Now let us derive the expression for GII
fbfb

in the external field, but without interaction. [It is now oportune to read

[5] between ([5]10.12) and ([5]10.14).] The absence of interaction must simplify perturbation theory for GII
C
down to the

perturbation theory for GC:

GII
C(x2, x1; x4, x3) = GC(x2, x4)GC(x1, x3) − GC(x2, x3)GC(x1, x4),

GII
fbfb(x2, x1; x4, x3) = Gff(x2, x4)Gbb(x1, x3) − Gfb(x2, x3)Gbf(x1, x4),

(9.15)

From the diagrammatical point of view, the first term in (9.15) is similar to the UCF-type current-current correlator
from [88] and sec. ??. However, the components involved are Gff(x1, x3) and Gbb(x2, x4), instead of Gfb(x1, x3) and Gfb(x2, x4)
[which are implied in sec. ??]. But the Keldysh components are the same in both cases, and thus I suspect that

the first term [in the second order perturbation theory in ~A] in (9.15) gives us exactly the UCF-type current-current
correlator from sec. ??. One can note that this first term will be time independent. Without disorder averaging, it gives
just the square of a curent expectation value7.

On the contrary to the first term, the second one will depend on difference of times of two current operators8. Due
to the fact, that an unperturbed Green’s function gives zero charge current, only second (exchange) terms in (9.15)
survive in the linear responce:

δGII
C(x1, x2; x3, x4) = −δGC(x1, x4)GC(x2, x3) − GC(x1, x4)δGC(x2, x3),

δGII
fbfb(x1, x2; x3, x4) = −δGfb(x1, x4)Gbf(x2, x3) − Gfb(x1, x4)δGbf(x2, x3),

(9.16)

From (9.2) we see that we need perturbation theory expressions separately for δGK and for δ (GR − GA), which I already
have, see (3.38) and (3.39).

9.4 Kinetic equation

See also: arXiv/0710.3222. See sec. 3.8.
See also p. 30-32 from cond-mat/0210125 about Eilenberger & Usadel equations; About usadel equation, see

pp. [21]352353. About Eilenberger with Keldysh & SOI see cond-mat/0601525.
Suppose we have right- and left-hand Dyson equation for the 2x2 matrix Green function with some self-energy σ

G = G(0)
+ G(0) ⊗ σ ⊗ G, G = G(0)

+ G ⊗ σ ⊗ G(0), (G(0)−1 − σ) ⊗ G = 1̂, G ⊗ (G(0)−1 − σ) = 1̂

or
(G(0)−1 − σ) ⊗ G = 1̂, G ⊗ (G(0)−1 − σ) = 1̂.

Then we subtract one equation from another. The only non-zero component of the resulting matrix equation is the
Keldysh one.

Now let us explore several different cases of σ: (i) when we have no interaction but just averaging over the disorder,
(ii) when we have a metalic strip subjected to the voltage, and (iii) when we have interaction. See dephasing.pdf for
more information.

7Since now we have two types of averaging, there are two different possibilities of defining a central moment. !ask DL: Which is the correct
one? The disorder averaging is special: we can do it only at after quantum one(s).

8It can not depend on both times, but only on difference, because we are considering steady non-equilibrium state.

http://arxiv.org/abs/0710.3222
http://arxiv.org/abs/cond-mat/0210125
http://arxiv.org/abs/cond-mat/0601525
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In Korea I asked Halperin and EM about cond-mat/0505535. EM told me that it must be possible to get the effect
of side jump9 from the kinetic equation, only one has to understand, what is the important set of diagrams. E.g., weak
localization one catches with the kinetic equation on p. [21]344.

The first non-vanishing contribution to the QKE is given by the second order (in interaction) diagrams, see
p. [12]487.

9.5 Функциональные интегралы

!Эту секцию надо будет объединить с секцией 4.

9.5.1 Введение в технику Келдыша

Обозначим: |~p 〉 = элемент линейного пространства функций, собственная функция (без указания представления)

оператора импульса ~̂p, соответствующая с.ч. ~p. 〈λ| = линейная форма, или элемент сопряжённого линейного про-
странства (вспомним начало курса линейной алгебры). Соответственно, 〈λ|~p 〉 ∈ C есть скалярное произведение.
Разумеется, численное значение 〈λ|~p 〉 зависит от λ и ~p. Напр., 〈~r|~p 〉 совпадает со значением с.ф. импульса в точке

~r: 〈~r|~p 〉 = exp[i~p~r]/
√

V.
В случае, если гамильтониан квадратично зависит от импульса, матричный элемент оператора эволюции

может быть записан в виде (см. стр. [51]61):

〈

x f

∣

∣

∣

∣

∣

exp
[

− i

~
Ĥ(~̂x, ~̂p)(t f − ti)

]

∣

∣

∣

∣

∣

xi

〉

=

∫

D[x(t)] exp
{

− i

~
S[x(t)]

}

,

S[x(t)] =

∫ t f

ti

dtL[x(t)], L[x(t)] =
mẋ2

2
− V(x).

(9.17)

В более общем случае ([51]2.48)

〈

x f

∣

∣

∣

∣

∣

exp
[

− i

~
Ĥ(~̂x, ~̂p)(t f − ti)

]

∣

∣

∣

∣

∣

xi

〉

=

∫

D[x(t)p(t)] exp
{

− i

~

[

pẋ −H(p, x)
]

}

. (9.18)

Теперь давайте вместо координат (т.е. с.ч. операторов координат) использовать пространство с.ч. операторов
уничтожения. Например, это могут быть операторы уничтожения в координатном или импульсном пространстве.
Тогда получаем10

〈

ϕ f

∣

∣

∣

∣

∣

exp
[

− i

~
Ĥ(â†, â)(t f − ti)

]

∣

∣

∣

∣

∣

ϕi

〉

=

∫

D[ϕ∗(t)ϕ(t)] exp















− i

~

∫ t f

ti

dt
∑

α

[

i~ϕ∗αϕ̇α −H(ϕ∗α, ϕα)
]















, (9.19)

2N+1
∑

α=1

[

i~ϕ∗αϕ̇α −H(ϕ∗α, ϕα)
]

=

N
∑

α=1

[

i~ϕ∗αϕ̇α −H(ϕ∗α, ϕα)
]

+

2N+1
∑

α=N+1

[

i~ϕ∗αϕ̇α −H(ϕ∗α, ϕα)
]

. (9.20)

Это очень похоже на Гамильтонову форму записи (9.18) эволюционного оператора. Координате соответствует

ϕ, а импульсу – ϕ∗. Это естественно, если вспомнить, что соотношения коммутации между операторами ~̂r и

~̂p аналогичны соотношениям коммутации между â и â†, и вообще, напр., в [68] в некоторых доказательствах
используется подстановка â† → ∂

∂â .
Матрица ([26]5) учитывает доп. эксп. множитель в ([51]2.62a), а также обращение времени в центре времен-

ного интервала.11 Элемент в верхнем правом углу соединяет начало контура с его концом, подчёркивая, что
интегрирование проходит по замкнутому контуру. В этом элементе содержится ρ(ω0), т.к. оператор ρ0 в ([26]2)

9See p. ?? for my new ideas about side jump.
10В дискретных обозначениях ϕα есть значение ϕ в момент времени tα. Следует однако же помнить, что ∀α ϕα – бесконечномерный (и не

обязательно счётный) массив комплексных чисел; разные числа соответствуют различным операторам уничтожения, напр., ψ̂~r1
(tα) и ψ̂~r2

(tα).

11Замечу, что матричные элементы в верхних правых углах матриц ([26]5) и [более поздней] ([50]10) отличаются. !Странно, не правда
ли?

http://faculty.physics.ta\protect $\relax \mu $.edu/sinova/SHE_workshop_APCTP\protect $\relax _0$5.html
http://theorie5.physik.unibas.ch/shalaev/public.html/31-05-2005.pdf
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относится именно к начальному моменту времени ti ≡ t1 ≡ t2N+1 ≡ t f . Итак, переписываем действие ([26]4) в явном
виде: S = limN→∞ SN, где

iδtSN[ϕ∗, ϕ] = ϕ∗1
[

(1 − δtiω0)ϕ2N+1ρ(ω0) − ϕ1
]

+

N
∑

α=1

ϕ∗α+1

[

(1 − δtiω0)ϕα − ϕα+1
]

+

+

2N+1
∑

α=N+1

ϕ∗α+1

[

(1 + δtiω0)ϕα − ϕα+1
]

.

(9.21)

При α = 1 . . .N выражения величина tα+1 − tα = δt > 0, в то время как ∀α = N . . . 2N + 1 tα+1 − tα = −δt < 0, что привело к
изменению знака перед δt в последнем слагаемом.

Следующий шаг: вместо (ϕ1 . . . ϕ2N+1) вводим двухкомпонентное поле (Φ1 . . .ΦN). А именно ∀i = 1 . . .N величина Φi

имеет две компоненты, обозначаемые индексами f и b: Φi f ≡ ϕi и Φib ≡ ϕN+1+i. !Получается, что из расмотрения
выпадает “поворотный” элемент ϕN+1. Аналогично переходим от ϕ∗ к Φ∗. В новых обозначениях

lim
N→∞

δt

N
∑

α=1

ϕ∗α+1

[ϕα − ϕα+1

δt
− iωϕα

]

=

∫ ∞

−∞
Φ
∗
f

(

−Φ̇ f − iωΦ f

)

dt,

lim
N→∞

δt

2N+1
∑

α=N+1

ϕ∗α+1

[ϕα − ϕα+1

δt
+ iωϕα

]

=

∫ ∞

−∞
Φ
∗
b

(

Φ̇b + iωΦb

)

dt,

(9.22)

так что в непрерывных обозначениях (9.21) м.б. переписано следующим образом:

iS[Φ∗,Φ] = Φ∗Ĝ−1
0 Φ, Φ

∗
= (Φ∗f ,Φ

∗
b), Φ =

(

Φ f

Φb

)

, Ĝ−1
0 ≡ ♣

(

i ∂∂t + iω 0

0 −i ∂∂t − iω

)

. (9.23)

Непрерывная форма записи (9.23) содержит меньше информации, чем (9.21), причём эта недостающая инфор-
мация важна. Нам же хочется забыть про дискретную форму записи и впредь пользоваться только непрерывной
формой. Я привык к записи ГФ в форме (9.1), а теперь мне придётся привыкать к форме ([26]8). Следует пони-
мать, что средние 〈. . .〉 в (9.1) и ([26]8) – разные: (9.1) усредняется согласно (13.20) и (13.21), в то время как

〈ΦiΦ
∗
j〉 =

∫

D[Φ∗(t)Φ(t)]ΦiΦ
∗
j exp

{

− i

~
S[Φ∗,Φ]

}

, i, j ∈ {

f , b
}

. (9.24)

Для перехода между представлением чисел заполнения и когерентными состояниями теоретически можно ис-
пользовать матр. элемент 〈n|ϕ〉 ([51]1.114,1.139). Строгого доказательства того, почему эти два средних совпадают,
я не знаю. В ([51]2.67b) соответствующий переход делается тихонечко, без шума и пыли, и вообще – не заостряя
внимание.

Нам хочется забыть навсегда о дискретных обозначениях. Для этого мы разделяем поля ϕ и ϕ∗ на “квантовые” и

“классические” согласно ([26]10). Если мы теперь будем иметь в ввиду, что величина
[

G−1
]−1

в ([50]32) не равна ну-

лю (но есть беск. малое ǫ), то матрица G у нас теперь обратима, и мы можем отныне пользоваться непрерывными
обозначениями, лишь в минуту душевной невзгоды вспоминая про дискретизацию. Наше квадратичное действие
однозначно определяется средними значениями ([26]11). Таким образом, нам становится понятным ([26]19).

Дальше танцуем от начала секции [50]6. Преобразование Хаббарда-Стратоновича фактически имеет смысл
Фурье-преобразования. Действительно, нам не нравится U- представление тем, что U(r) в нём – очень сильно
осциллирующая функция. И тогда мы переходим в (сопряжённое ему) Q- представление.12

9.5.2 Вспоминаем о беспорядке

В системе с беспорядком действие записывается в форме ([52]4):

S[ψ̄, ψ] =

∮

dt

∫

ddrψ̄(~r, t)
[

G−1
0 −Udis(~r )

]

ψ(~r, t), G−1
0 ≡ i

∂

∂t
+
∇2

r

2m
, ψ̄ ≡ {ϕ∗α}, ψ ≡ {ϕα}.

12Интересно проверить: приводится ли действие в исходное состояние двукратным преобр. Хаббарда-Стратоновича?
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Чтобы забыть про сложную структуру матрицы ([26]5), давайте введём вместо ψ двухкомпонентное фермионное
поле Ψ (ну и заодно – усреднение по беспорядку) так, что ([52]7a,b)

Z = Ñ
∫

D[ΨΨ]

∫

DUdis exp

{

−πντ
∫

drU2
dis(r)

}

exp
{

i Sp
[

Ψ

(

Ĝ−1
0 −Udisσ3

)

Ψ

]}

,

Ψ =

(

ψ1

ψ2

)

, Ĝ−1
0 ≡













i ∂∂t +
∇2

r

2m 0

0 −i ∂∂t −
∇2

r

2m













.

Берём (квадратичный) интеграл по переменной Udis (для 2D случая):
∫

D[Udis] exp

{

−πντ
∫

d2rU2(~r ) − i Sp [ΨUσ3Ψ]

}

=

= lim
N→∞

N
∏

i, j=1

∫ ∞

−∞
dUi j exp

[

−πντδ2
r U2

i j − iUi j

(

ψ f i jψ̄ f i j − ψbi jψ̄bi j

)]

=

= lim
N→∞

N
∏

i, j=1

(

1

ντδ2
r

)N2/2

exp



















−
(

ψ f i jψ̄ f i j − ψbi jψ̄bi j

)2

πντδ2
r



















.

(9.25)

После деления на нормализационный множитель

∫

D[Udis] exp

[

−πντ
∫

d2rU2(~r )

]

= lim
N→∞

N
∏

i, j=1

(

1

ντδ2
r

)N/2

результат интегрирования по U становится конечным ([50]154). После перехода к квантовым и классическим
полям, см. секцию [50]5.3, мы видим, что к новым Грассмановым переменным потенциал беспорядка цепляется
через единичную матрицу, на через σ3, как в (154[50]) – через σ0. Т.к. мы имеем дело с Грассмановыми перемен-

ными,
(

ψ f i jψ̄ f i j

)2
= 0 и

(

ψbi jψ̄bi j

)2
= 0.

Теперь пришло время откатываться назад (т.е. делать Хаббарда-Стратоновича), вводя матричное поле Q.
Если предположить, что все элементы матрицы Q – абсолютно независимы, то я не представляю, как можно
было бы посчитать правую часть ([50]155). Совсем другое дело, если предположить, что матрица Q – эрмитова
[см. между ([52]11b) и ([52]12)]. То есть

Sp Q2
=

∑

i, j≥1

Qi jQ ji =

∑

i, j≥1

(a2
i j + b2

i j), Qi j ≡ ai j + ibi j, ai j, bi j ∈ R.

Следующая ступенька – понимание параметризации ([50]162): почему G−1
0

инвариантна отн. преобразования
подобия ([50]162)? Свёртка во временном пространстве соответствует произведению в частотном пространстве.
Но из-за временной однородности все матрицы в ([50]162) диагональны в частотном пространстве, а значит,
коммутируют. Матрица ([50]161) тоже диагональна в частотном пространстве (т.к. мы интересуемся только
стационарными распределениями энергий), но недиагональна в келдышевском – у неё на диагонали стоит 2Fǫ,
см. ([50]161). Поэтому при фиксированной Λ но различных T в правой части ([50]162) мы получаем различные
матрицы Q.

Как известно из метода стационарной фазы, наибольший вклад в наш интеграл даёт такая (или такие) окрест-
ность матричного поля Q(t, t′), что функциональная производная от действия ([52]21b) по Q(t, t′) равна нулю. При-
ятно, что это приводит нас к SCBA ([52]23). А вот и первый бонус, который мы получаем из-за использования
техники Келдыша вместо Мацубары: результат ([52]23) верен в том числе и для неравновесных функций распре-
деления.

Уравнение SCBA ([52]23) соблюдается при любых Q(t, t′) не зависящих от импульса, а также удовлетворяющих

условию ([17]30-31) Q2 = 1 (где возведение в квадрат подразумевает также свёртку по времени). !Интересно
понять, так ли это для нашего сильно анизотропного случая.

9.6 Screening

In this section all the calculations are done for the case of small q. To consider the case of large q one should know the
dependence of energy on momentum (which we actually never know). However, one can suppose E(p) = p2/(2m) and do
this (quite long) calculation. It must be just this is the way it is done on pp. [92]158-163.
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Figure 9.2: Screening in RPA (=приближение хаотических фаз) approximation (wavy lines stand for bare interaction,
dashed ones - for the impurity averaging lines composing diffuson). The possibility of connecting of bubbles with
“external” green function lines should not be considered here, for it is taken into account when considering diagrams
with higher order on interaction. Studying these higher order diagrams, one can detect some other (like RPA or the
renormalization in Cooper channel) essential infinite sequence of diagrams. The same is true for the lines connecting
different bubbles.

Because of the long-range character of Coulomb interaction, it must not be considered in the first several orders of
the perturbation theory. Instead, screening must be taken into account, which is technically done by summation of
infinite number of diagrams.

9.6.1 Usual calculation

Let us calculate a bubble from Fig. 9.2:

∫

dd+1p

(2π)d+1
G(0)(p)G(0)(p − q) = i

∫

( p>pF
|~p−~q|<pF

)

ddp

(2π)d















1

ω +
(

ξ~p − ξ~p−~q
)

− 2iδ
− 1

ω −
(

ξ~p − ξ~p−~q
)

+ 2iδ















. (9.26)

Let us consider the case of zero-frequency ω = 0 and of small q, so that ξ~p − ξ~p−~q = ~vF~q. We see that (9.26) reduces to

2i
vF

∫

( p>pF
|~p−~q|<pF

)
ddp

(2π)d
1
~n~q
, which, using the argumentation from [93], p. 198, is equal to:

2i

vF

∫

( p>pF
|~p−~q|<pF

)

ddp

(2π)d

1

~n~q
=



















i
πvF
, in 1D

im
2π , in 2D
ipFm

2π2 , in 3D

From here we see that screening exists in all dimensions. In 3D and 2D cases we have

U(q) =
4πe2

q2 + q∗2
, U(q) =

2πe2

q + q∗
(9.27)

with different q∗ for 2D and 3D (as for the 1D case, Fourier integral for the Coulomb potential diverges).

9.6.2 Calculation by means of Keldysh technique

The renormalized interaction matrix is defined by

Ũ(q) =
U(q)

1 −
p

p−q

=
U(q)

1 −Π(q)U(q)
(9.28)

The first and the second diagrams (their matrix kk′ components) in fig. 9.2 are respectively equal to Vδ~q,~q′U(q)τ0
kk′

and

−iU(q)U(q′) Sp

















1

V2

∑

p,p′

∫ ∞

−∞

dE

2π
γkĜ(~p, ~p ′; E)γ̃k′Ĝ(~p ′ − ~q ′, ~p − ~q; E − ω)

















.

The polarization thus is given by

Vδ~q,~q′Π(q) = −i〈Sp

















1

V2

∑

p,p′

∫ ∞

−∞

dE

2π
γkĜ(~p, ~p ′; E)γ̃k′Ĝ(~p ′ − ~q ′, ~p − ~q; E − ω)

















〉. (9.29)
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From (9.29) and (9.5) it follows that (see (2.8) for D)

Vδ~q,~q′ΠR(q) = − i

2

1

V2

∑

p,p′

∫ ∞

−∞

dE

2π

{

D
~p,~p ′;E
~p−~q,~p ′−~q ′;E−ω(hE − hE−ω)+

+ V2δ~p,~p ′δ~q,~q ′
[

GR(p)GR(p − q)hE−ω − GA(p)GA(p − q)hE)
]

}

, (9.30)

Vδ~q,~q′ΠA(q) = − i

2

1

V2

∑

p,p′

∫ ∞

−∞

dE

2π

{

−D
~p ′−~q ′,~p−~q;E−ω
~p ′,~p;E

(hE − hE−ω)+

+ V2δ~p,~p ′δ~q,~q ′
[

GR(p)GR(p − q)hE − GA(p)GA(p − q)hE−ω
]

}

, (9.31)

Vδ~q,~q′ΠK(q) = − i

2

1

V2

∑

p,p′

∫ ∞

−∞

dE

2π

{[

D
~p,~p ′;E
~p−~q,~p ′−~q ′;E−ω +D

~p ′−~q ′,~p−~q;E−ω
~p ′,~p;E

]

(1 − hEhE−ω)+

+ V2δ~p,~p ′δ~q,~q ′
[

GR(p)GR(p − q) + GA(p)GA(p − q)
]

hEhE−ω
}

. (9.32)

From the conservation of total number of particles (see VII, 51) one realizes that

for ~q = 0 and ∀ω ΠR/A(~q, ω) = 0. (9.33)

From (9.30), (9.31) and (9.32) we realize that if one ignores effects due to the E – dependence of the density of
states or in the equilibrium (9.5) holds exactly13 for the polarization and hence for the renormalized potential. In
the equilibrium case using (13.32) one recovers (9.9).

One can see that14

Supp
[

1 − hE+ω/2hE−ω/2
]

= Supp
[

hE+ω/2 − hE−ω/2
]

=

{

E : |E| . max

(

T̃

2
,
ω

2

)}

,

so that in (9.32) energy integration is limited in the zone where we can use (1.19). It also means that in (9.30), (9.31)
and (9.32), we can

• considering non-pole contributions – to substitute hE ↔ hE−ω and hEhE−ω ↔ 1.

• considering pole contributions having (hE − hE−ω) and (1 − hEhE−ω) multipliers – to substitute 1
V

∑

~p~n
→

∫

dξν(ξ)
with weak ν(ξ) dependence (1.19) and to integrate over ξ before integrating over energy.

So we see that (due to
∫ ∞
−∞

dE
2π ) non-pole terms give zero contribution to (9.32).

Let us introduce a quantity

ν̃(q) =
i

2

1

V

∑

~p~n

∫ ∞

−∞

dE

2π
hE

[

GR(p)GR(p − q) − GA(p)GA(p − q)
] ∈ R,

If ν is a constant, then ν̃(q) = ν̃(0) = ν0

∫

dEh′E/2 = ν0.

1

V2

∑

p,p′
D
~p,~p ′;E
~p−~q,~p ′−~q ′;E−ω = 2πν0τ̃

(

1

1 − X(q)
− 1

)

Vδ~q,~q′ ,
1

V2

∑

p,p′
D
~p ′−~q ′,~p−~q;E−ω
~p ′,~p;E

= 2πν0τ̃

(

1

1 − X∗(q)
− 1

)

Vδ~q,~q′ , (9.34)

where X(q) is given by (13.1).

ΠR(q) = Π∗A(q) = − iν0τ̃

2

∫

dE
X(q)(hE − hE−ω)

1 − X(q)
− ν̃(q),

ΠK(q) = − iν0τ̃

2

∫

dE

[

X(q)

1 − X(q)
+

X∗(q)

1 − X∗(q)

]

(1 − hEhE−ω) ∈ ℑ. (9.35)

13The question is if (9.5) holds always or only when these conditions do hold. If it represents a general rule, the first variant of our paper [91] is
correct. No, this is not true. In [91] from the formal point of view the mistake was that we thought that the functional derivative δ

δD(E′) UV = V δ
δD(E′) U.

As for VK, he says (9.5) holds always. And what about other properties: U∗
R

(ω) = UR(−ω) = UA(ω)? Does it hold always?
14Подозреваю, что max

(

T̃
2 ,

ω
2

)

� T̃ω -см. также IX, 40.
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Note that in general case ΠK is not proportional to ΠR −ΠA, so that (9.5) does not hold.
The simplest form the interaction has for large values of momentum ∼ pF. From (13.4) we deduce that in this case

UK = 0, UR = UA =
1

ν̃
≡ Λ
ν0
, ν̃

df
= lim

q→∞
ν̃(q), Λ

df
=
ν0

ν̃
. (9.36)

What is the order of magnitude of ν0/ν̃? VK: let us substitute in the fine structure constant α = e2

~c =
1

137 sppeed of light
with the Fermi speed. Then we get approximately 100 times larger quantity = 1/rs ∼ 0.2 − 0.3 – for good metals like Cu
or Ag, see p. [8]270.

Without taking into account νE - dependence, the polarization simplifies substantially:

ΠR(q) = Π∗A(q) = −ν0

[

1 + iωτ̃
X(q)

1 − X(q)

]

, ΠK(q) = −2iν0τ̃T̃ω

[

X(q)

1 − X(q)
+

X∗(q)

1 − X∗(q)

]

, (9.37)

where

T̃ ≡T̃0; T̃ω = T̃−ω =
1

4

∫ ∞

−∞
dE (1 − hEhE−ω) ≡

≡
∫ ∞

−∞
dE

(

fE + fE−ω
2

− fE fE−ω

)

= in equilibrium =
ω

2
coth

ω

2T
−→
ω→0

T.

(9.38)

In the particular case15, when a quasi 1D system is subjected to a voltage at T = 0,

hE =
x

L
sign

[

E − eU

2

]

+

[

1 − x

L

]

sign
[

E +
eU

2

]

, T̃ = eU
x

L

[

1 − x

L

]

. (9.39)

In the middle of the sample x = L/2 and

hE =
sign(E − eU/2) + sign(E + eU/2)

2
, T̃ω =

{

(eU + |ω|)/4, |ω| < eU,
|ω|/2, |ω| ≥ eU.

(9.40)

For T , 0, the width of the “transition region” at |ω| = eU in (9.40) becomes finite (of the order of T) between T̃ω becomes
smooth: T̃ω ∈ C2. After studying two simple cases (9.38) and (9.40), I suspect that, at sufficiently high frequencies,
frequency dependence of T̃ω is universal, T̃ω ≈ |ω|/2.

From (9.37) for arbitrary X(q) we arrive to

∀ω ∈ C ŨK =
2T̃ω
ω

(

ŨR − ŨA

)

; ∀ω ∈ R ŨR(q) = ŨA
∗
(q).

In 2D u−1(q) ∝ ν0qrB; in 3D u−1(q) ∝ ν0(qrB)2. Обычно ряды по q - степенные, а значит, сходящиеся при q ∼ 1/L; так
что в уравнении Дайсона (9.28) можно принебречь u−1(q). В результате UR/A/K перестают зависеть от исходного,
неэкранированного потенциала u−1(q). Боря: такая ситуация называется унитарным пределом. for |ΠR/A| ≫ rB/L
the difference [ŨR(ω) − ŨA(ω)] does not depend on the original (unscreened) potential u(q).

In the diffusion approximation

ΠR/A(q) = − ν0Dq2

Dq2 ∓ iω
, ΠK(q) = −4ν0iDq2T̃ω

D2q4 + ω2
. (9.41)

One can note that for all values of q diagonal elements in (9.41) give correct poles in ω - complex plane for the
renormalized Coulomb interaction defined by (9.28). In 2D case, where U(q) = 2πe2/q we have

˜UR/A(q) =
2πe2

q
− 4π2e4Dν0

Dq(q + 2πe2ν0) ∓ iω
=

1

ν0

1
q

2πν0e2 +
Dq2

Dq2∓iω

,

ŨK(q) = − 16iπ2e4Dν0T̃ω
D2q2(q + 2πe2ν0)2 + ω2

= −4T̃ω
Dq2
· iν0
(

q

2πe2 + ν0

)2
+

(

ω
2πe2Dq

)2
.

(9.42)

15In principle, when a current flows through a metal, quasiclassical distribution function f (~p,~r ) of electrons become anisotropic, see (3.47) and
p. [48]347. On the other hand, we know [21], that elastic scattering off impurities wants to make it isotropic. So we conclude [PRB524740] that
in case of strong impurity scattering, the distribution function becomes isotropic in momentum f (~p,~r ) ≈ f (p,~r ) ≡ fE(~r ). Note that Apparently, there
is a clever way [cond-mat/0406063] to understand it in Keldysh technique, which I don’t know. Better see PRB64033301 and PRB524740. My
understanding is more primitive, see pp. [94]65-66.

http://theorie5.physik.unibas.ch/shalaev/public.html/08-02-2005.pdf
http://arxiv.org/abs/cond-mat/0406063
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In 2D 1
2πe2ν0

∼ π
e2ν0
= rB = Bohr radius. Substituting ω = 0 in (9.42), we see that q∗ from (9.27) is equal to 4π2

rB
∼ pF.

Like in [39], we want to neglect
q

2πe2 in the denominator of (9.42). We can do it in case

ω≪ Dq/rB ≪ D/r2
B (9.43)

and obtain16

˜UR/A(q) ≈ 1

ν0

(

1 ∓ iω

Dq2

)

, ŨK(q) ≈ −4iT̃ω
ν0Dq2

. (9.44)

The last inequivalence in (9.43) holds always; as for the first one, we must see if there are any diagrams for which
this condition violates. Particularly, it holds in the diffusion regime, when Dq2 ∼ |ω|. Note that always due to the
screening of the atomic lattice U(q = 0) = 0, so that we don’t have any divergence.

Let us now go out of the diffusion approximation: still q≪ pF but ql≫ 1. Then

ΠR/A(q) = −ν0

[

1 ± iωτ

lq

]

, ΠK(q) = −4iν0τ

lq
T̃ω,

so that

ŨR/A(q) =
1

ν0

(

1 ± iωτ
lq

) , ŨK(q) =
1

ν0

4iT̃ωτ

lq

1

1 +
(

ωτ
lq

)2
. (9.45)

From (13.1), (9.38), (9.44), (9.45) and (13.4) one can say that for Dq≫ |ω| the potential does not depend on q.
In two types of Ambegaokar & Eckern diagrams in [95] large values of q (∼ pF) are important, so that ǫq > ω ∼ T. This

leads to a simplification: Ũ(q) ≈ U0

(

1 0
0 1

)

. If I understood correctly VK, U0 ∼ e2

~vF

1
2ν0

.!Проблемы с размерностью в

e2

~vF
: как мы можем преобразовать Кулоны в сантиметры? - см. estimates.nb и uebung3.nb. Such simplified short range

potential is used both in [39] and in [95].

16Note that (9.44) is correct in arbitrary dimension.



Chapter 10

The steady state

10.1 Calculating mean values of physical quantities

In the steady state1 the energy DM of a system does not depend on time. Usually the stability of a steady state is
achieved by putting the considered system in a contact with a reservoir - another system which is big enough so that
its characteristics can not be modified by the considered system. The reservoir adds a compensating term into the von
Neumann equation for the DM of the system:2

d ˆ̺

dt
=
∂ ˆ̺

∂t

∣

∣

∣

∣

∣

int
+
∂ ˆ̺

∂t

∣

∣

∣

∣

∣

ext
=

i

~

[

ˆ̺, Ĥ
]

+
∂ ˆ̺

∂t

∣

∣

∣

∣

∣

ext
= 0. (10.1)

In (10.1),
∂ ˆ̺

∂t

∣

∣

∣

∣

ext
characterizes the power of the connection of the system to the reservoir, necessary to maintain non-

equilibrium steady state with a given energy distribution. This power can be estimated as (T̃ − T)/tr, where T and T̃ are
the minimal and the maximal scale of the energy distribution function fE, and tr is the time the system needs to reach
equilibrium due to the relaxation, if left alone.3 As it is known [38], tr ∝ Λ−2, Λ being the dimensionless parameter

characterizing the smallness of the interaction in the system. In our case Λ ∼ U(pF)/ν(0)
2D
= . . .

The average value of an arbitrary physical quantity Ô can be written in the form

O = Sp
[

ˆ̺Ô
]

= Sp
[

ˆ̺′Ô′
]

+ Sp
[

ˆ̺′′Ô′′
]

= O′ +O′′, (10.2)

where ˆ̺′ = P ˆ̺ is the diagonal part of the DM ˆ̺, and ˆ̺′′ = (1 − P) ˆ̺ is the off-diagonal part; P is the projector extracting
the diagonal part of an operator. Analogously, Ô′ = PÔ and Ô′′ = (1 − P)Ô.

ˆ̺′ represents quasiequilibrium part [38] of the complete DM ˆ̺. It has the maximal entropy possible for the given en-
ergy distribution fE. With ˆ̺′ one can formally calculate thermodynamic functions like grand thermodynamic potential
Ω and use usual thermodynamic formulas for the calculation of physical quantities. This is the reason why one can

call the term O′ = Sp
[

ˆ̺′Ô′
]

in (10.2) quasiequilibrium one. E.g., for quasiequilibrium part of the current we would have

~j′ = Sp
[

ˆ̺′~̂j′
]

= −∂Ω
∂ ~A

. (10.3)

In equilibrium only diagonal matrix elements of a physical quantity enter into the expression for its average value,
and quasiequilibrium part of a physical quantity is equal to its real value.

10.2 Thermodynamic current: when interaction is taken into account

About persistent current: cond-mat/0512044, 0706.3369, 0704.1264, 0804.0702.

1См. также условие стационарности на стр. [96]47.
2For any Hamiltonian, there are infinitely many examples of non-equilibrium but stationary DM: in the SQ, let ˆ̺ = f (Ĥ), where f is an arbitrary

function. Then
[

ˆ̺, Ĥ
]

= 0. (©DL.)
3Возражение ВК: Из того, что в рассматриваемой функции распределения энергии есть только 1 масштаб, не значит, что она равновесна.

Но возражение это спустя 5 лет представляется мне формальным. Моё же предположение о нескольких масштабах напротив, вполне логично
и обосновано. На мой взгляд, ВК просто si stava aggrappando allo specchio, как говорят итальянцы. Возможная причина – аллергия на школу
Боголюбова и Бонч-Бруевича у школы Ландау.
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http://arxiv.org/abs/cond-mat/0512044
http://arxiv.org/abs/0706.3369
http://arxiv.org/abs/0704.1264
http://arxiv.org/abs/0804.0702
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The quasi-equilibrium current studied in this section is calculated in [95] using (10.3). !Для равновесного
тока без взаимодействия есть простое качественное объяснение persistent current в терминах одночастичных
энергетических уровней: внешнее поле B , 0 расщепляет уровни, делая различной энергию электронов с разными
Lz, так что остаётся один нескомпенсированный уровень. Неплохо-бы придумать что-нибудь вроде этого для
рассмотренного в этой секции случая со взаимодействием.

In this section we use Poisson summation with the same notations as in sec. 8.12. The summation itself is omitted,
only Poisson amplitudes (numbered with ~n) are calculated and discussed. The methods used here are the same as in
sec. 8.12, but explained more briefly. By the word “conjugation” I mean the following substitutions: R↔A, UK → −UK,

while cooperons and diffusons change the frequency sign. For convenience, all the
(

2πν0τ2
)−1

coming from cooperons

and diffusons are included in vertices.
The Hartree and Fock diagrams are given by the following expressions (correspondingly4):

−i
∑

kk′

Ukk′ (0)G(p)γ̃kG(p) Sp

[∫

ddqG(q)γk′
]

, i
∑

kk′

∫

ddqUkk′ (q)G(p)γ̃kG(p − q)γk′G(p).

With the help of Mathematica5 we are able to generate and to select diagrams automatically, see sec. 12.

!По всему тексту выражать ток в импульсном пространстве через оператор тока. – Боюсь, из-за этого я в
этой секции потерял двойку.

Here I just like in sec. 8.12, I tend to treat cooperons and diffusons in time representation. When holds (9.5) with
some arbitrary hE,

~j(~r ) =

∫

dE fT(E)~j(~r,E), fT(E) =
1 − hE

2
, (10.4)

~j(~r,E) =
e~

2m
lim
~r ′→~r

(~∇~r − ~∇~r ′ − 2ie ~A) [GR − GA] (~r,~r ′; E). (10.5)

When G depends only on the difference of its coordinates, (10.5) simplifies to6

~j(~r,E) = ~j(E) = ie~
1

V

∑

~pn

~v
[

GR(~pn,E) − GA(~pn,E)
]

= − 1

V

∑

~pn

~̂j(~p )
[

GR(~pn,E) − GA(~pn,E)
]

. (10.6)

Out of the equilibrium, together with (10.4), also the contribution (11.8) has to be considered. In equilibrium fT(E) is
just a Fermi distribution function, see (8.27). We have

∫

dE~j(~r,E) = 0, (10.7)

due to the fact that
∫

dEδGR/A(E) = 0 which in its turn follows from the statement that δGR/A have retarded/advanced
analytical structure and that corresponding integrals do converge (unlike those for GR/A).

For GR − GA we have 4 initial diagrams (+4 conjugated ones). Two of them contain only GR or only GA so that one

can not insert cooperon or diffuson lines in them. Due to this fact they can not depend on ~A and thus cannot give any
contribution to the current. Then we have 1 Hartree and 1 Fock diagram left.

One can note that major part of the diagrams (after adding cooperon and diffuson lines) is given by the Fock
diagrams.

We have 14 diagrams with the number of cooperon and diffuson loops ≤ 1. According to the estimates (see
estimates.nb), main contribution is given by diagrams of Ambegaokar & Eckern (2 Hartree and 2 Fock type ones)
and the one we suspect to be next most important, see fig. 10.1.

In this section we use (8.27) for calculations.

10.3 The renormalization of the potential in the Cooper channel

See also [97]. What we consider here is actually the Cooper channel, see sec. ??.

4Note that Sp is taken also on spin degree of freedom.
5See files getAvrgdDiags.nb, tunDensity.nb and diagrams.m
6Take a look on general expression for the universal current in [20].
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ωA,E
−
ω

A,E − ω

R,E
R,ER,E

~k, ω

~k, ωR,E
R,E R,EA,E−

ω
A,E − ω

A,E
−
ωR,E

(a) Ambegaokar & Eckern Hartree diagrams with the coefficient
ihE−ωUR(0).

R,E R,E
ωA,E

−
ω

R,E A,E −
ω

~k, ω

~k, ω R,ER,E
R,E R,EA

,E − ω
A,E−

ω

A,E − ω
(b) Ambegaokar & Eckern Fock diagrams with the coeficient
−ihE−ωUR(ω)/2. One can note that (if the momentum transfered
via the interaction line is large) they are equal to the ones from
fig. 10.1(a).

~k, ω

~k, ω

R,ER,E
R,E A,E −

ω

A,E −
ω

R,E
A,E−

ω

~q, ω
A,E − ω

R,E
(c) Next important diagram with the coefi-
cient −ihE−ωUR(ω)/2.

Figure 10.1: The calculated diagrams for the current. The triangulars are = −4πνDτ3~k/l. Every diagram has its complex
conjugated “sister” with the opposite sign.

Consider diagrams on the right in fig. 10.1(a) and 10.1(b). Together with them we can (and must!) consider more
complicated diagrams obtained by inserting interaction between impurity lines of a cooperon many times.

So, strictly speaking, we thus insert between the cooperons one term from the first order perturbation theory
expression for GG. Why we insert only this particular term? VK: because other terms manifest themselves in the
appearance of the dephasing time τϕ in the denominator of the cooperon. This additional term in 2D is small like
T/g, so that the effects of these terms can be ignored here. The considered term is selected by the fact that for large
frequencies Ω, due to the presence of hΩ in the numerator (together with a Cooperon in the denominator) it goes like
1/|Ω|, so that we get logarithm which is big because large values of Ω are important in

∫

dΩ. Other terms do not have
this hΩ and hence are much smaller. More precisely: there can be 2 types of elementary “bricks” composing the ladder:
without switching,

( R,E→R,E−ω
A,E′→A,E′+ω

) ∝ hE − hE′+ω and with switching,
( R,E→A,E−ω

A,E′→R,E′+ω

) ∝ hE − hE−ω.

TF ∼ 3 × 104K, Dp2
F ∼ 6 × 106K, ~/τ ∼ 800K, T ∼ 0.01K. (10.8)

We will have different renormalization for Hartree and Fock cases. See fig. 10.2 and VI, pp. 65-68 for the details.

A

R

A

R

R

A

A

R

A

R

A

R

a) b)

A

ω3ω2ω1

ω3ω2ω1

E ′

E

Figure 10.2: Two types of the renor-
malization in Cooper channel: a)
Hartree and b) Fock. Ω12 are sup-
posed to be large and δE ≡ E − E′ –
small. On a)Ω3 ≡ δE−Ω1 −Ω2; on b)
Ω3 ≡ −(Ω1 +Ω2).

The key steps for the calculation are:

• Every interaction line carries large values of momentum ∼ pF. Together with
(10.8) this means that we can put UR/A = 1/ν0 and UK = 0.

• In both Hartree and Fock cases we have the integration over “number of
interaction lines”-1 frequencies. On the right side we have the same GR(E)
and GA(E − ω), as on the left side. During the calculation, these our fixed
energies are considered to be small in comparison to large Ω: E, ω≪ Ω.

• an example: a diagram without GR/A switching (see above) with 3 interaction
lines:

1

iδE +Dk2

hE′ − hE−Ω1

i(δE − 2Ω1) +Dk2

hE′+Ω1
− hE−(Ω1+Ω2)

i[δE − 2(Ω1 +Ω2)] +Dk2

hE′+(Ω1+Ω2) − hE

iδE +Dk2
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We have to perform integration on (Ω1 + Ω2) and Ω1 leaving only terms that
∼ 1/|Ω| for large Ω.

• an example: a diagram with GR/A switching (see above) with 3 interaction
lines:

1

−iδE +Dk2

hE − hE−Ω1

−i(δE − 2Ω1) +Dk2

hE′+Ω1
− hE′+(Ω1+Ω2)

−i[δE − 2(Ω1 +Ω2)] +Dk2

hE−(Ω1+Ω2) − hE′

−iδE +Dk2

• In the Fock case the calculation of jth self energy depends on

the parity of j, however the result is j - independent.

The result is the same for Hartree and Fock diagrams (see renormCooperon.nb): a diagram must be multiplied by
[

1 + 1
2 ln 1

Tτ

]−1
- just as if we had a renormalization of all the components of our (already RPA-renormalized) potential -

the suspected reason for the above-mentioned jargon.
The difference from [10] and from what VK has told is that in my case the upper cut-off is Ωmax = 1/τ (for bigger Ω

the vertex and components of the interaction potential begin to depend on it) and not Fermi energy. ВК: всё дело в том,
что на больших импульсах мы выходим за пределы диффузионного приближения, поэтому τ появиться не может
в любом случае: вместо него имеем Fermi energy. И даже возможно, что (так как это всё - чисто кулоновские дела)
– там стоит циклотронная частота вместо фермиевской энергии.

Note also that our calculations are correct in case if

! ω,E,D(~k + ~A)2 . (Ωi)min = T.

It means that A should not be very big. But we now that we have a periodicity in A so that we can always say that

AL ≤ ϕ0. So if we want our result to hold for all ~A, we can just say that the relation D(π/L)2 . T should hold. For
L = 5µm we get T & 0.03K.

Note that there is another cause that diminishes the potential constant, see the end of Sec. 9.6.2.

10.4 Calculation of diagrams

From (13.10) and (13.15) follows the recipe of the calculation:

• Use the expressions for Green functions and for the current vertex as if ~A = 0.

• In general non-equilibrium case [keeping in mind (1.5) and [20]]:

~j(~r, t) =
1

2

∫ ∞

−∞

dE

2π

∫

ddp

(2π)d
~̂j(~p )GK(~p,E). (10.9)

In equilibrium case one uses (10.4) with

~j(~r,E) = −
∫

ddp

(2π)d
~̂j(~p )

[

GR(~p,E) − GA(~p,E)
]

. (10.10)

10.4.1 Hartree diagram

The current density is equal to

j =

∫ ∞

−∞

dEdω

(2π)2
fE

1

V

∑

~k′n

(iev)2iℑihE−ω
Λ

ν
(−4πνDτ3~k′/l)

(2πντ)2

(2πντ2)2

1

(Dk
′2
n − iω)2

=

=

∫ ∞

−∞

dEdω

(2π)2
fE

1

V

∑

~k′n

2evhE−ω(4πνDτk′/l)
Λ

ν
ℑi

1

D2(k
′2
n + L−2

ω )2
,
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where Lω =
1+i signω√

2

√

D
|ω| , and fE = (1 − hE)/2 is the energy distribution function. Now we introduce Poisson summation

(for our quasi1D case):

1

V

∑

~k′n

k′n
(k
′2
n + L−2

ω )2
= − L

V

∑

n∈Z
exp

[

2πin
Φ

Φ0

]

∫

dk

2π

exp [iknL] k

k2 + L−2
ω

=
2L

S

∑

n>0

sin
[

2πn
Φ

Φ0

]

∫

dk

2π

sin [knL] k

(k2 + L−2
ω )2

,

where
∫

dk

2π

sin [knL] k

(k2 + L−2
ω )2
=

LωnL

4
exp

[

−nL

Lω

]

.

j =

∫ ∞

−∞

dEdω

(2π)2
fE8πνevhE−ω

Dτ

l

Λ

νD2
ℑi

2

S

∑

n>0

sin
[

2πn
Φ

Φ0

]

LωnL

4
exp

[

−nL

Lω

]

=

= −
∑

n>0

sin
[

2πn
Φ

Φ0

]

4πeΛnL

DS
ℑi

∫ ∞

−∞

dE

2π
fE

∫ ∞

0

dω

2π















hE−ω
1 + i√

2

√

D

ω
exp

[

−nL
1 − i√

2

√

ω

D

]

+

+hE+ω
1 − i√

2

√

D

ω
exp

[

−nL
1 + i√

2

√

ω

D

]















.

ℜ{. . .} =
√

D

2ω
exp

[

− nL√
2

√

ω

D

]

(hE−ω + hE+ω)

[

cos

(

nL√
2

√

ω

D

)

− sin

(

nL√
2

√

ω

D

)]

=

= (hE−ω + hE+ω)

√

D

2ω
(ℜ + ℑ) exp

[

−nL
1 + i√

2

√

ω

D

]

.

We have problems with
∫

dE. To resolve them, we remember that Keldysh technique often produces diagrams that
should be completed by adding terms = 0 due to analytic properties.

In case of diagrams in fig. 10.1, we can change their coefficients from ihE−ωUR(0) and −ihE−ωUR(ω)/2 to i(hE−ω − 1)UR(0)
and i(1 − hE−ω)UR(ω)/2. This will secure convergence of

∫

dE. As a consequence, in our expressions
∫

dE fE (hE−ω + hE+ω)
gets substituted with

1

2

∫

dE [(1 − hEhE−ω) + (1 − hEhE+ω) + (hE−ω + hE+ω − 2hE)] = 4T̃ω.

I = jS = −
∑

n>0

sin
[

2πn
Φ

Φ0

]

8eΛnL

D

∫ ∞

0

dω

2π
T̃ω

√

D

2ω
(ℜ + ℑ) exp

[

−nL
1 + i√

2

√

ω

D

]

, (10.11)

For similarity with the paper [95] one can perform variable change ω→ z = L
√

ω
2D :

I = jS = −
∑

n>0

sin
[

2πn
Φ

Φ0

]

8eΛn

π

∫ ∞

0

dzT̃z (ℜ + ℑ) exp [−nz(1 + i)] , (10.12)

When one sees (10.12) - like integral, he/she probably immediately says that it does not decay exponentially with
temperature. This would be true if T̃ω would not approach constant = T̃ when ω → 0. The reason is that
∫ ∞

0
dz (ℜ + ℑ) exp [−nz(1 + i)] = 0, so that only the vicinity of z = 1 gives contribution to the integral.
Let T be the smallest scale of function hE. In equilibrium T is the temperature. Then δ = T/ET is the scale of function

T̃z. When δ is large, we can approximate T̃z with its expansion over z/δ hoping to obtain the AE for the integral. These

attempts fail because ∀n,m ∈ N
∫ ∞

0
dzz4m (ℜ + ℑ) exp [−nz(1 + i)] = 0. We conclude that the temperature-dependence of

the AE-current is non-analytic. As it was numerically shown in [95] for the equilibrium case, it is very similar to
exponential with the characteristic scale given by the Thouless energy.

Let us use model distribution function hE =
1
2

[

tanh E+V/2
2T + tanh E−V/2

2T

]

to study properties of thermodynamic current

out of equilibrium. When T→ 0, the effective temperature is given by (9.40), and thermodynamic current remains finite
no matter how much we increase T̃. This is the illustration of the fact that it is the smallest scale of the distribution
function that governs the decay of the thermodynamic current.
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Non-equilibrium: off-diagonal current terms

Take a look on: arXiv/0704.1704.
В случае рассматриваемого двухступенчатого распределения, точно ли не изменятся выражения для GR/A? In

this section we study essentially non-equilibrium part of the current ~j′′. See also [91, 88]. This is the simpliest case of
a non-equilibrium steady state, since the (quasiclassical) distribution function f = (1 − h)/2 is spatially homogeneous.
Does this automatically implies that f is isotropic in the momentum space? I think not, otherwise the current would be
zero. On the other hand, in our calculation we ignore the momentum-anisotropy of f (see a nice picture on p. [48]347).
How can we then be sure that we get the correct result? We know that the final result must homogeneous due to the
current conservation. And we get a homogeneous result. Someone might argue that we have missed an additional
contribution comming from the momentum-anisotropy of f . But as it is argued in [98] and in sec. ??, this additional
contribution disappears, after we integrate the result over the volume of the sample. The latter we are allowed to do
because of the current conservation. So, I think the result of this section is correct, as well as [91, 88].

11.1 Calculating diagrams from singlet and triplet channels

!Another example of extraction of singlet and triplet channel out of the general Coulomb interaction: arXiv/0801.2139.
Здесь мы использовали формулы для диффузона, полученные с учётом первого члена разложения. The principal
differences from the above-considered Ambegaokar-Eckern diagrams are:

• In Ambegaokar-Eckern diagrams, large values of momentum were important; this guaranteed their significance.

• Ambegaokar-Eckern diagrams essentially do not have zero-frequency cooperon. The consequences of this formal
difference are discussed later on.

Идея ВК: Величины, вычисленные с учётом зависимости νE, можно получить заменой τ, D и т. п. на τE, DE. Таким
образом, нам не нужно предположение о малости x.

11.1.1 Singlet channel

Наша исходная диаграмма на рис. 11.1 на первый взгляд кажется диаграммрй нулевого порядка по взаимодей-
ствию, т. к. взаимодействие там – на малых импульсах, то есть оно – экранированное и от (малой) константы
взаимодействия не зависит. Но когда мы смотрим на коэффициент при этой диаграмме, видим, что на самом
деле при UR = UA и UK = 0 он равен нулю. Эти равенства нарушаются лишь начиная со второго порядка, и потому
наряду с этой нашей первоначальной диаграммой мы должны рассмотреть все возможные диаграммы вплоть до
второго порядка по взаимодействию включительно.

!А что мешает одеть второй конец вершины взаимодействием вместе с диффузоном? –Ничего! Получу ли
я тогда результат, больший, чем на рис. 11.1? Комментарий ВК: ℜU не может переключить тип гриновской
функции, а ℑU для нас плох, так как он нам испортит мнимую часть. Да и вообще – рассматривать такие
диаграммы – значит идти по порочному пути Амбегаокара и Экерна. The singlet channel is represented by the
diagram in fig. 11.1 with a coefficient

K =
i

2
{(hE − hE−ω) UK(ω) − (1 − hEhE−ω) [UR(ω) −UA(ω)]} . (11.1)

94

http://arxiv.org/abs/0704.1704
http://arxiv.org/abs/0801.2139
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A, ER, E − ω

R, EA, E
A, E R, E~q, ω~q,−ω

~k,−ω

~k + ~q,0
R, E

−
ωR, E − ω A,E

Figure 11.1: A non-equilibrium diagram (singlet channel) for the

current with a coefficient given by (11.1). Hikami box= 4πiνDτ4~q/l.

ℜiδE

ℑ(−iδE)

bran
h
utℑ
δE

ℜ
δE ℑiδE

ℜ(−iδE)

Figure 11.2: The frequency integral in the
complex plane.

Note that K changes sign when subjected to the transformation: E→ E +ω and then ω→ −ω; this is also confirmed by

(11.4) and (11.5). Our general statement is that only off-diagonal elements of the current operator ~̂j give contribution

to the answer.1 This means that if we substitute ~̂j with any diagonal operator, we should get zero result. We are able

to prove this in case of ~̂j → 1̂. After this substitution, let us use Lehmann representation for GR/A on the ends of

our diagram (before the averaging). One can see that
∫

dyGR(x, y)GA(y, z) ∝ GR(x, z) − GA(x, z). Together with the Green
function from the Fock self energy (remember that before the averaging we have two diagrams with that Green function
is GR or GA) it constitutes the expression, which is invariant to the exchange E↔ E − ω. However, the coefficient K (see
above) changes sign, so that the result should be zero.

If (9.5) holded for the components of the potential, the coefficient of the diagram on fig. 11.1 would reduce to
K = i

2 g(E, ω) [UR(ω) −UA(ω)] with

g(E, ω) = 2T̃(ω)
hE − hE−ω

ω
− (1 − hEhE−ω) −→

ω≪T̃
4

[

T̃
h′

E

2
−

1 − h2
E

4

]

,

∀ω g(E,−ω) = g(E + ω,ω),

∫ ∞

−∞

dE

2π
g(E, ω) = 0, (11.2)

with T̃(ω) defined in (9.38). However, it results that this is not the case [i.e. (9.5) does not hold]. To evaluate (11.1) we
use the relations

UR/A =
πA/R

πRπA
, UK = −

πK

πRπA
. (11.3)

An important issue is that we can substitute (11.3) to (11.1) with the denominator evaluated without taking into account
νE - dependence, and thus calculated using simple expressions (9.41). This is due to the fact (see the calculations below)
that πRπA (see (9.35)) are E and E′ - independent, so that we can rearrange our energy integrals in the manner

∫

dω
1

πRπA

∫

dEdE′Rω(E,E′) . . .

If one neglects νE - dependence under
∫

dEdE′, Rω(E,E′) will rest the only quantity depending on E and E′; then from

(11.6) and (11.2) we see that
∫

dEdE′Rω(E,E′) = 0. So we deduce that the correction to πRπA in the denominator of (11.3),
due to the dependence of νE , const, lies out of the considered precision. With this argument, using (9.35) and (9.41),

1In this sence, the non-equilibrium first-moment of the current is similar to the equilibrium second-moment, where also off-diagonal elements

of the current operator participate, see sec. ??.!Note 17.01.2008: See sec. 8.1: I can not give a reliable definition for the off-diagonal MEs of the
current operator in coordinate representation (FQ); the situation in the particle-number representation is better, see (8.1),8.2.
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we get:

K =
1

2ν0D0q2

∫ ∞

−∞
dE′Rω(E,E′)

(D0q2)2 + ω2

(DE′q2)2 + ω2
, (11.4)

Rω(E,E′) = (hE − hE−ω)(1 − hE′hE′−ω) − (hE′ − hE′−ω)(1 − hEhE−ω), (11.5)

Rω(E,E′) = −Rω(E′,E), Rω(E)
df
=

∫

dE′Rω(E,E′) =
g(E, ω)

2ω
. (11.6)

The function Rω(E,E′) from (11.5) is the same as in the kinetic equation [21], where it plays a role of a driving force
guiding system to equilibrium - the same what is done in Liuville equation by off-diagonal elements of the density
matrix. This is another way to conclude that the contribution we study is given exclusively by off-diagonal elements
of both density matrix and current operator. Note that the symmetry group of Rω(E,E′) is given by 2 generators: (a)
Rω(E,E′) is invariant under transformation ω→ −ω, E→ E′ − ω, E′ → E − ω; (b) it changes sign with E′ ↔ E. For singlet
channel any of them leads to zero result in case of constant ν; for other diagrams (see fig. 11.3 and 11.4) only (a)
proves this statement. The second symmetry (b) leads to

∫

dEdE′Rω(E,E′) = 0, providing energy conservation (that is,
∫

dE ∂
∂t hE = 0) in the kinetic equation [21].

Using (1.16) and (13.36) we obtain the vertex2:

(−iev

2

)

(

4πiνEDEτ
4
E~q/lE

) 1

(2πνEτ2
E
)3

(2πν0τ0)
[

2πiνEτ
2
E

]

= ieDE~q, (11.7)

!Я подозреваю, что в статье [91] я провёл расчёты, подставляя (−iev) вместо
(

−iev
2

)

в (11.7), потеряв таким образом
двойку.

Note that for conjugated diagram K will change sign, while the vertex (11.7) will be the same, so that my “conjugation”
in this case has usual (complex-variable) sense. И отсюда сразу следует, что (11.8) есть действительная величина.

Using (9.30), (9.34) and (13.1), we deduce that the contribution to the current from the diagram from fig. 11.1 is
equal to

S

∫ ∞

−∞

dE

2π

dω

2π

ievlE
2ν0dD0

× 1

V

∑

~m∈Zd\{~0}

~q~m
q2
~m

∫ ∞

−∞
dE′Rω(E,E′)

(D0q2
~m

)2 + ω2

(DE′q
2
~m

)2 + ω2
×

1

DEq2
~m
− iω

× 1

V

∑

~n+
~Φ
−Φ0
∈Zd

1

DEk2
~n
− iω

· 1

DE(~k~n + ~q~m)2
+ c.c. (11.8)

We proceed making calculations for quasi one-dimensional case3, i.e. for the thin ring. Use (13.15), notice that from
both exponents exp [i . . .] that appear only their imaginary part i sin [. . .] survives

j = −
∑

n≥1

sin
[

2πn
Φ

−Φ0

]

I(S)
n , Lω

df
=

√

DE/(−iω))⇒ L−ω = L∗ω, (11.9)

I(S)
n = −

∫ ∞

−∞

dE

2π

evlE
ν0dD0

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dE′Rω(E,E′) · 2ℑ1

L

∑

m≥1

1 − e−nL/Lω

(

DEq2
m − iω

)3
· (D0q2

m)2 + ω2

(DE′q
2
m)2 + ω2

. (11.10)

Note that
∑

n diverges.!4 VK: this is due to the failure of the loop expansion in case of small Φ (small Φ correspond to
large n). In fact, the expansion parameter is5 σ0

iω+DA2 . If ω = 0 and A is small, we thus have problems. In case of A → 0
one should use non-perturbative methods of calculation.

2Note that in (11.7) one can substitute ν0τ0 → νEτE, see (1.22).
3Note that the physical dimension is 2 or 3, so one should use 2D or 3D values for physical quantities, like νE and DE. Thus the part “quasi” of

the word “quasionedimensionality” means that I perform integrations over “small” momenta (that is, momenta of CD lines and of some interaction
lines) as 1D, while I still have to integrate over other momenta (basically, over the “main” momentum of bubbles triangles and Hikami boxes, mostly
denoted as p) in 2D or 3D. Another subtle issue here is that in principle for a ring made on a 2D nanostructure (that is, for a strip), BC in the
transverse direction are not periodic. This leads to the absence of mode with qy = 0. This is a subtle question, which is discussed in: D. L. Maslov,
D. Loss and D. P. Vincenzo, “Conductance fluctuations in the metallic phase of the quantum Hall effect”, proceedings of the 22nd int. conference
on The Physics of Semiconductors, vol. 2, Vancouver, Canada, August 15-19, 1994. I can’t think about this now, I will use quasi-one dimensional
model with qy = 0, since cool mesoscopic guys like VK do it. I will think about it later.

4Чего-то по происшествии 4 лет из-за этой расходимости появились у меня большие сомнения в правильности (11.10) и объяснения ВК.
5Уточнить размерность и как это соотносится с (3.37).
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Consider the contribution of small ω . ET ≪ T to
∫

dω.

Rω(E,E′) ≈ ω
(

∂Rω(E,E′)

∂ω

∣

∣

∣

∣

∣

ω=0

)

. (11.11)

As one can see from (11.12), the expansion of R in (11.11) in ω/T implies the expansion of the final result in ET/T.

ℑ
∫ ∞

−∞

dω

2π
ω

1 − e−nL/Lω

(

DEq2
m − iω

)3
·

D2
0
q4 + ω2

D2
E′q

4 + ω2
=

D2
0
−D2

E′

(DE +DE′ )
3
× 1 − e

−nL|q|
√

DE′
DE

2q2
. (11.12)

In (11.12) we get zero in case of D0 = DE′ ; this means that in (11.10) we can neglect E-dependence of all the coefficients

to the left from
∫ ∞
−∞

dω
2π , because it will result in higher order corrections in δνE/νE; the same is true for the contribution

of ω & ET: it leads to corrections6 of the order of
√

ET/T.
Let us define

Cn =
6

π2

∑

m≥1

1 − exp [−2πmn]

m2
, n > 0, C∞ = 1. (11.13)

I(S)
n = Cn

e

48g

∫ ∞

−∞

dEdE′

2π

∂Rω(E,E′)

∂ω

∣

∣

∣

∣

∣

ω=0

δDE

D0
, g = νDS/L. (11.14)

Хотел включить сюда уже проделанные расчёты для двухступенчатого температурного распределения, см.
q9p41.nb, да нельзя: ведь выражения для CD линии и Hikami box справедливы лишь при условии, что ω ∼ ET ≪ T,
то есть мы не можем устремлять температуру к нулю.

В вычислениях можно продвинуться дальше (11.14), подставив

∂Rω(E,E′)

∂ω

∣

∣

∣

∣

∣

ω=0
=

(

1 − h2
E′

)

h′E − (. . .E↔ E′ . . .).

∂Rǫ(δE, ω)

∂δE

∣

∣

∣

∣

∣

δE=0
=

(

1 − h2
ǫ− ω2

)

h′ǫ+ ω2
− (. . . ω→ −ω . . .),

и посчитав один из энергетических интегралов:

I(S)
n = −Cn

e

6g

∫ ∞

−∞

dE

2π

δDE

D0













T̃h′
E

2
−

1 − h2
E

4













=
e

6gν0

∫ ∞

−∞

dE

2π
νE

[

T̃ f ′E + fE(1 − fE)
]

, (11.15)

where fE = (1 − hE)/2 is the energy distribution function. The term fE(1 − fE) can be considered as virtual process: a
simultaneous birth of a particle and a hole at the same energy level. It is a limit of the composition of generation and
recombination processes = 1

2 [ fE(1 − fE−ω) + fE−ω(1 − fE)], ω→ 0
Ещё есть соблазн переписать вычисления в этой секции в тех же энергетических переменных, что и в следую-

щей. Не уверен, что это можно сделать; пока привожу лишь аналогии между переменными в этих двух секциях:
ω↔ δE, E′ ↔ ǫ − ω/2, E↔ ǫ + ω/2.

11.1.2 Вопросы от Лосса

• Что будет, если мы заменим полярность напряжения на полоске? Изменит ли ток знак? Лосс: “Да, вроде
как изменит.”

• Заходит ли ток из полоски в кольцо? Он - равновесный или неравновесный?

• Моя электронно-дырочная интерпретация ПОНРАВИЛАСЬ.

6См. первичную версию нашей статьи и [91].
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11.1.3 Singlet channel in case of a short-range interaction

The short range interaction has no effect if one does not take spin into account. One could see it in section 10.2, and
we must be sure that this happens also out of equilibrium. The expression for the triplet channel would be the same,
as in the case of Coulomb interaction, see sec. 11.1.4. The result for the singlet channel will be different:

U(0)(q)
df
=
λ

ν0
, U(q) =

λ2

ν2
0

π(q),

K =
λ2τ0

4ν0

∫

dE′Rω(E,E′)
[

X

1 − X
+

X∗

1 − X∗

]

=
λ2

2ν0

∫

dE′Rω(E,E′)
D0q2

(DE′q2)2 + ω2
.

Note that (in contrast to (11.4), also for DE′ = D0 K has a pole at ω = iDE′q
2. Using (11.7), we write the expression for the

current:

~I = S
1

V

∑

q

∫

dEdE′dω

(2π)2
2ℜieDE~q · K ·

1

DEq2 − iω

1

V

∑

k′

1

D2
E
(k + q)2

1

k2 + L−2
ω

,

1

V

∑

k′

= −2

S

∑

n>0

sin
[

2πn
Φ

−Φ0

]

q
1 − exp [−nL/Lω]

(DEq2 − iω)2
, (11.16)

so that

I = −
∑

n>0

sin
[

2πn
Φ

−Φ0

]

I(S)
n , I(S)

n = −
∫

dEdE′

2π
4e
λ2

ν0
×

× 1

V

∑

q>0

ℑ
∫

dω

2π
Rω(E,E′)

D0DEq4

(DE′q2)2 + ω2

1 − exp [−nL/Lω]

(DEq2 − iω)3
.

ℑ
∫

dω

2π
=

(

∂Rω(E,E′)

∂ω

∣

∣

∣

∣

∣

ω=0

)

D0DE

(DE′ +DE)3

1 − exp
[

−2πmn
√

DE′
DE

]

2(2πm/L)2
,

Expanding D
2(D+D′)3 and anti-symmetrizing it by ω, we get − δD−δD′

16D3
0

instead.

I(S)
n = −

eλ2

12g

∫

dEdE′

2π

(

∂Rω(E,E′)

∂ω

∣

∣

∣

∣

∣

ω=0

)

D2
0
DE

(DE +DE′ )3
Cn = −λ2 e

6gν0

∫

dE

2π
νE













T̃h′
E

2
−

1 − h2
E

4













. (11.17)

11.1.4 Aleiner’s diagrams

In section 11.1.1 at first glance it seems that all the diagrams beginning from the first order of the interaction were
studied (the interaction line in fig. 11.1 means complete RPA series). However, because the coefficient for the diagram
in fig. 11.1 approaches zero for the unscreened Coulomb interaction (for which UR = UA and UK = 0), really that series of
diagrams start from the second order of the interaction. That is why one has to search for important dressed diagrams
not only in the first but also in the second order of perturbation. This is the essence of Aleiner’s objection, see fig. 11.3.

Without taking ν(ξ) dependence into account all three (superconducting, triplet and mixed) channels give zero
result, and the reasoning follows:

• It is convenient to change variables from {E,E′, ω} to {ǫ, δE, ω}, where δE = E − E′ and ǫ = E+E′−ω
2 .

• In these new variables the coefficient Rǫ(δE, ω) (defined in (11.5)) is odd both in δE and ω:

Rǫ(δE, ω) =
(

hǫ+ δE+ω
2
− hǫ+ δE−ω

2

) (

1 − hǫ− δE+ω
2

hǫ− δE−ω
2

)

− (δE→ −δE) , (11.18)

so that also the expression for the diagrams is to be antisymmetrized in δE and ω.

• In addition to that antisymmetrization, we must take 2ℑ of the diagrams. For constant density of states ν(E) = const
this is equivalent to
[(. . .) − (. . . ω→ −ω, δE→ −δE . . .)]. Together with antisymmetric properties of (11.18) this leads to conclusion that
ALL Aleiner’s diagrams = 0 in case of constant density of states. This statement is still true if diffusion coefficients
depend only on ǫ.
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(a) Superconducting channel (a cooperon between 2 interactions). V.K.:“The superconducting

channel is a subject for the renormalization in Cooper channel, so that it is diminished by

ln2 EF/T.” Hikami boxes= − 4πiν0D0τ
4
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, triangulars= −2πiν0τ0(τE − ix/2).
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(b) Triplet channel (a diffuson between 2 interactions). Hikami boxes= 4πiνDτ4~q/l,

triangulars= −2πiντ2.

Figure 11.3: Aleiner’s diagrams with large momentum transfer through the interaction. The coefficient is λ2

4ν2
0

Rω(E,E′),

see (11.5) and (9.36). For each diagram there is another complex conjugate one (if we assume that vertex is real - e.g.,

~n (not ~̂j(~p ))), which coefficient has the opposite sign. In both channels differences between neighbouring diagrams are

highlighted . В выражении для Hikami box появляется τ̃ из-за пунктирных линий, см. (1.10),1.4. В треугольнике

пунктирных линий быть не может, а потому нет и τ̃.
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Figure 11.4: Aleiner’s “mixed” diagrams. The coefficient is λ2
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R,E A,E
R,E ′ − ω

R,E ′

A,E − ω

Figure 11.5: The first diagram from Fig. 11.3(b).

In our energy integrals, energy variables can be confined by two energy scales: ET ∼ 10mK or T ≫ ET. We will call
such energy variables correspondingly “small” and “large”. As for ǫ, it is surely a large variable, because diffusons and
cooperons do not have poles on it. From this we conclude that the integration area where both δE, ω ≪ T give zero
contribution to the result (because in this case δE, ω≪ ǫ ∼ T so that Dǫ±δE ≈ Dǫ±ω ≈ Dǫ).

Note that since at the moment we do not have reliable method for calculating Hikami boxes in the general case
when it is not true that |E − E′| ≪ |E + E′|, we are able to calculate only triplet channel. Other diagrams can only be
estimated and fortunately they give minor contributions.

In the superconducting channel the main contribution origins from the zero frequency cooperon, and both frequen-
cies appear to be large. The contribution of the zone with one small frequency is small just because the measure of
this zone is small compared with that of the main contribution.

Mixed diagrams from fig. 11.4 are estimated to be (ET/T)3 and superconducting ones - (ET/T)2 smaller then those
from the triplet channel. In addition to this smallness the superconducting channel fig. 11.3(a) acquires additional one
due to the renormalization of the potential (see sec. 10.3).

The triplet channel is special because it has three CD lines with the same energy ±δE.
The vertex:

(

− iev

2

) (4πiνEDEτ4
E
~q/lE)(−2πiνEτ2

E
)(2πν0τ0)3

(2πνEτ2
E
)3(2πνE−ωτ2

E−ω)
= −2πieνE−ωDE~q.

~I = S
1

V

∑

q

∫

dEdE′dω

(2π)3
2ℜ(−2πieνE−ωDEq)

λ2

ν2
0

× 1

DEq2 + iδE

[

1

DE−ωq2 + iδE
+ c.c.

]

× 1

V

∑

k′

1

D2
E
(k + q)2

1

k2 + L−2
δE

,

where LδE =
√

DE/(iδE). The sum 1
V

∑

k′ is given by (11.16) with ω changed to −δE, so that we can write our current in a
usual form (11.9) with

I(T)
n =

4

V

∑

q>0

∫

dǫdω

2π
eν0

λ2

ν2
0

ℑ
∫

dδE

2π
Rǫ(δE, ω)

D0DEq4

(DE−ωq2)2 + δE2

1 − exp [−nL/LδE]

(DEq2 + iδE)3
. (11.19)

We close the integration path, avoiding crossing the branchcut (see fig. 11.2), and the result is given, as usually by the
poles in the region −π2 < arg iδE < π

2 . Since exp [−2π] < 0.002 we neglect the exponential term in (11.19):

ℑ
∫

dδE

2π
=

D0DE

2(DE +DE−ω)3
· L2

(2π)2
· π

2

6

(

∂Rǫ(δE, ω)

∂δE

∣

∣

∣

∣

∣

δE=0

)

,

I(T)
n =

eλ2D2
0

6g

∫

dǫdω

2π

DE

2(DE +DE−ω)3

(

∂Rǫ(δE, ω)

∂δE

∣

∣

∣

∣

∣

δE=0

)

.

Then let us substitute E = ǫ + ω
2 +

δE
2 ≈ ǫ + ω

2 and E − ω ≈ ǫ − ω
2 . This approximation is valid because the region

{δE, ω|δE, ω . ET ≪ T} is negligibly small in our whole integration space so that we can drop δE from the expressions for
E and E − ω. Then we perform variable change: ǫ + ω

2 → E, ǫ − ω
2 → E′. Expanding D

2(D+D′)3 and antisymmetrizing it by ω,

we get − δD−δD′

16D3
0

instead, so that

I(T)
n = −

eλ2

48g

∫

dEdE′
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(
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∣
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. (11.20)
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The second part of (11.20) has the same structure as singlet channel (11.14); however, it has different sign (see (11.10).
In case of short range potential (11.20) is cancelled by (11.17), and this is the manifestation of the fact that short range
interaction gives zero effect for fermions if one does not take spin into account.

11.2 Final result for the non-equilibrium current

j′′ = −
∑

n≥1

sin
[

2πn
Φ

−Φ0

]

In, (11.21)

In = I(S)
n + I(T)

n =

(

1 − λ2
) eT̃

6gν0

∫ ∞

−∞

dE

2π
νE

[

fE(1 − fE)

T̃
+
∂ fE

∂E

]

, (11.22)

where fE = (1 − hE)/2 is the energy distribution function.
The result (11.22) is valid for spinless electrons. In case when electrons have spin, λ2 must be substituted with

3λ2; see the presentation of my thesis [88]. The reason is that when we apply (13.37) to the ladder-like diagram of
the triplet channel, we get 4 terms. From these four three give each equal contribution ∝ λ2, and the last contributes
to the singlet channel. However, in the singlet channel it is small compared to the main contribution calculated in
sec. 11.1.1, where Coulomb interaction transfers small momentum. So taking into account spin does not change the
expression for the singlet channel, but triplicates the expression for the triplet channel.

Notice that in our case the role of νE dependence is not to break the electron-hole symmetry (like in case of ther-
moelectric/acoustic effects and Coulomb drag): also with an even νE dependence (11.22) gives non-zero result. Added
18.08.2005: We thought about two possible sources of νE: ZBA (which we did not like) and Kondo effect. However, I
think that what we need is actually τE dependence, which exists anyway according to p. [48]439. So may be we don’t
need Kondo?

If someone (nor myself nor VK) just sets interaction to zero in (11.22), he does not get zero. But on the other
hand, if he looks to the beginning of the calculation, he notices that all my diagrams on fig. 11.1 and fig. 11.3 contain
interaction lines, and thus are inexistent in case when there is no interaction! Thus the current is a non-analytical
function of the interaction strength. This point is already very interesting. It questions the results which are obtained
for the disordered systems, without taking interaction into account. In particular, see sec. ??.

Herebeneath follows my interpretation based on my understanding of [38] and hardly criticised by V.K.:

The result (11.22) for j′′ can be interpreted as follows: On time scales greater than the synchronization time ts = r0/vF

(where r0 is the screening radius of the interaction) the considered non-equilibrium system can be described using
quasi-equilibrium momentum distribution function f~p.

Among all the possible excitation processes that govern the evolution of f~p, in the thermodynamic limit the main
ones are virtual transitions of particles between the same values of momentum – the so-called diagonal singularity

property. One can see that these processes are described by the first term in the right part of (11.22):
∫ ∞
−∞ dEνE fE(1− fE) =

1
V

∑

~p f~p(1 − f~p). The second term is (for weak νE - dependence) almost independent of fE; it compensates the first one in
equilibrium. While in equilibrium the two terms in the square brackets of (11.22) cancel each other for any fixed energy
E, in a steady state with a constant density of states we would have this cancellation after integrating over energy. In
other words, in case of constant density of states j′′ = 0, so that we have to take into account the effect of its energy
dependence.

Возражения ВК:

1. Нельзя говорить, что в нашей системе сначала релаксирует импульс, а затем – энергия, ибо система у нам
– неоднородная, так что в ней нарушены все возможные симметрии, за исключением обращения времени –
симметрии, которая в нашем случае тоже нарушена приложением магнитного поля.

2. Реально диагональной сингулярности в квантовом случае нет (ошибка в [38]): при переходе к термодина-
мическому пределу остаются не только диагональные элементы Ĥ2, но и над- и поддиагональные элементы
(т.к. такие, у которых одна из частиц переходит в другое состояние – я уже неточно это помню).

http://theorie5.physik.unibas.ch/shalaev/public.html/pThesisX.pdf
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11.3 Possible realization

!Про яму в плотности состояний из-за взаимодействия – см. cond-mat/0310448, 9810191.
Как показала Швейцария, народ может начать цепляться за эту картинку. Надо это дело расширить и углубить.

V B

E

hE

Consider a metallic strip with negligibly small interaction be-
tween the electrons placed between two electrodes under some
voltage, as it is shown in fig. a). This system is in a steady non-
equilibrium state with a diagonal density matrix, and it’s en-
ergy distribution is shown in fig. b) [99]. Attached to a meso-
scopic ring, it can be considered as a “non-equilibrium reser-
voir” that exports its diagonal density matrix into the ring,
where the interaction produces off-diagonal MEs. We assume
that there is no electric field in the ring; this corresponds to
U ≡ 0 in the kinetic equation ([21]2.80), from where we con-

clude that the distribution function is momentum-isotropic. If there were no energy relaxation processes, the momen-
tum symmetric part of the DF inside the ring has to be the same, as in the middle of the strip. This uniquely defines
DF, as the momentum-isotropic part of (3.47). In reality we have interaction in the ring, but we assume that it will not
change our energy distribution drastically. (though, e.g., interaction will make DF inhomogeneous)

In reality we calculate the current that would arise in a hypothetical situation, when at some moment we switch on
interaction in the ring. Whether it is switched also in the rest of the system or not – not so important: the interaction
in the strip would slightly reshape its non-equilibrium energy distribution function, leaving it inhomogeneous as
before. Once the interaction being switched on in the ring, homogeneous energy distribution in it is no more stable:
everywhere in the strip the effective temperature T̃ decreases, and further we are from the contact (and, the weaker
the contact with the strip is), the stronger is its decrease. The contact with the strip should not be too strong in order
not to increase τϕ in the ring. This sort of a relaxation finishes with a non-homogeneous non-equilibrium steady state
that we (for simplicity) describe as homogeneous.

11.4 To be finished

R,E − ω − ω′

A,E −
ω
′

A,ER,E
A,E

−
ω

Figure 11.6: One of diagrams from
fig. ??i.

Я уверен, что при постоянной плотности состояний зануляются все диаграм-
мы, кроме рис. ??i. После перехода к новым энергетическим переменным

2ǫ = 2E−ω−ω′, E = ǫ+ω/2+ω′/2, E−ω = ǫ−ω/2+ω′/2, E−ω′ = ǫ+ω/2−ω′/2
коэффициент диаграммы на рис. 11.6 запишется в виде

− 1

4
Uω′

A

{(

hǫ+ ω2 − ω
′

2
− hǫ− ω2 − ω

′
2

) [(

Uω
R −Uω

A

) (

1 − hǫ+ ω2 +
ω′
2

hǫ− ω2 + ω
′

2

)

Uω
K

(

hǫ+ ω2 +
ω′
2
− hǫ− ω2 + ω

′
2

)]

−

Uω
R

[(

hǫ+ ω2 − ω
′

2
− hǫ− ω2 − ω

′
2

) (

1 − hǫ+ ω2 +
ω′
2

hǫ− ω2 + ω
′

2

)

−
(

hǫ+ ω2 − ω
′

2
− hǫ− ω2 − ω

′
2

) (

1 − hǫ+ ω2 +
ω′
2

hǫ− ω2 + ω
′

2

)]}

– to be corrected. . .

11.5 Estimates

We have chosen Kondo effect7 to be the source of τE dependence. There are other
sources, see sec. 11.2. D ∼ vFl. В длину свободного пробега дают вклад 2
механизма рассеяния: обычный 1/l0 = nσ0 и кондовский δ(1/l) = nKλ2

F
:

1

l
= nσ0 + nKλ

2
F, nK ≪ n0.

Всегда σ0 < λF
df
=“unitary limit”. Кондовская примесь достигает максимального

сечения рассеяния λ2
F
при T = TK.

δD

D
∼ δl

l
∼ nKλ

2
Fl =

nK

n0

l

λF
,

7See, e.g., УФН 17825 (2008).

http://arxiv.org/abs/cond-mat/0310448
http://arxiv.org/abs/cond-mat/9810191
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Figure 11.7: Simplified fE and νE depen-
dences. The width of νE peaks is ∼ TK.

to be revised (sign changes!)
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Figure 11.8: Temperature dependence of
j′ and j′′.
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Figure 11.9: Известный результат для мезоскопических флуктуаций плотности состояний.

где n0 = λ−3
F

– концентрация электронов ≈ концентрация узлов решётки.

1V ∼ 104K, частота: 1K ∼ 1011s−1, типичная величина persistent current∼ 0.1nA;
типичное значение V ∼ 10K, L ∼ 10µm, ET ∼ 10mK, l ∼ 100λF

I ∼ e

g

(

eV

h

)

δD

D
.

Получается, что для того, чтобы иметь I ∼ 0.1nA, надо nK/n0 ∼ 10−3 = 1000ppm. Больше, чем 1000ppm, всобачить
трудно. Если специально не чистить материал, обычно концентрация примесей порядка 30 − 50ppm.

Равновесный persistent current (Ambegaokar-Eckern) при T = 0 по мак-
симуму даёт ∼ 0.1nA (без учёта ренормализации в куперовском канале∼
ln−1

(

EF

max(T,ET)

)

∼ 12). Наш неравновесный ток сравнивается с равновесным при
концентрации примесей∼ 100ppm.

11.5.1 Оценка для мезоскопического эффекта.

Зависимость νE есть и так, эффект Кондо не нужен. Неусреднённая за-
висимость νE сильно осциллирует; ширина пиков – порядка ET, их высота
δν/ν ∼ 1/g. Оцениваем интеграл

∫

dE ∼ V. Из рис. 11.9 следует, что в оценке

тока для мезоскопического эффекта вместо δD/D будет стоять
√

VET/g2 (это

следует из (〈
∫

V
dEδνE/ν〉)2 =

∫

dEdE′δνEδν′E/ν
2). То есть отношение среднего тока

к мезоскопическому есть

g
(

nK

n0

)

l

λF

√

V

ET
∼ 105 nK

n0
.
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То есть если примесей больше, чем 10ppm, то среднее становится больше
флуктуаций. Предел очистки ∼ 1 − 2ppm.

11.5.2 Dephasing in the ring

See also: arXiv/0612118, PRBv77125312 (antilocalization + τϕ). The dephasing
time is given by the equation [28]:

1

τϕ
=

T̃

Sν
√

D

∫ T̃

0

dω

ω3/2
. (11.23)

The integral in (11.23) diverges when ω→ 0, so that a cut-off has to be introduced.
While for the case of a strip the cut-off is 1/τϕ, in case of a ring it must be ET, due
to the (unpublished in 2003) argument of A. D. Mirlin. Thus for a ring we have:

1

τϕ
=

T̃

Sν
√

DET

=
T̃

g
, g =

νDS

L
.

In the diffusion regime Lϕ =
√

Dτϕ, so that

L

Lϕ
=

1
√

ETτϕ
=

√

T̃

gET
.

См. также §[9]11.4; при T = 100mK 1/τϕ ∼ 10−19s−1; 1/τϕ ∼ T2/3. В неравновесном случае вместо T следует подставлять

T̃ ∼ V. 1/τϕ ∼ 109
(

V
100mK

)2/3 ∼ 1010s−1; Lϕ ∼
√

Dτϕ; D ∼ 100, l ∼ 100Å, vF ∼ 108cm, так что при T = 10K Lϕ ∼ 1µm, что
ещё приемлемо, то есть нет опасности, что если я слишком увеличу напряжение, то из-за малости Lϕ всё умрёт.
Надо помнить, что все эти оценки справедливы лишь для V < TK. При T > 1K просыпаются фононы и зависимость
τϕ становится другой. g ∼ 400, gET ∼ 6K – очень много. При V > TK зависимость νE – слишком размыта, так что
рабочая зона есть V < TK. Other literature about dephasing: cond-mat/9712160. Experiment: 0803.0568.

11.6 Cooper channel

It has 4 diagrams: a pair from each of diagrams number 9 and 10. Diagrams

number 10: triangle = −2πν0τ0i(1 + 5
2
δνE

ν0
+

1
2
δνE′−ω
ν0

).

http://arxiv.org/abs/0612118
http://arxiv.org/abs/cond-mat/9712160
http://arxiv.org/abs/0803.0568
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Chapter 12

A program for generating and manipulating
diagrams

!For the spinfull case with SOI but without interaction, the program is rewritten in maxima and strongly improved;
now it is really a powerful calculation tool [20]. During my Ph.D. thesis I wrote a program in Mathematica for generating
and manipulating diagrams. It is a part of the thesis and can be downloaded from my home page. Several years later
(in spring 2007) I rewrote the program in maxima. Now it not only generates diagrams, but calculates them as well.1

General statements:

1. The number of loops in a diagram equals to the number of CD lines minus the number of vertices (like bubbles
or Hikami boxes) plus the number of disconnected components of a diagram. The latter is usually one unless we
consider correlators or another stuff like that. One can say that every CD line contributes to a smallness, while
every vertex leads to a largeness.

The fact that CD line carry small momentum k ≪ 1/l is important from two points of view. First, it means, that
if we have 2 diagrams with the same number of loops, the largest is the one having more CD lines. Second, if
k ∼ 1/l, then a Hikami box, from which such a CD line comes out, splits into 2 bubbles. Thus it becomes large,
but this is compensated by the fact that CD-line, is small ∼ 1/(pFl), when it transferes large momentum k ∼ pF.
I need to think more about this. For the moment I am not completely sure, that diagrams with 2 CD-loops are
always smaller than the ones with only one CD-loop.

2. An addition of an extra cooperon or diffuson can not decrease the number of loops.

3. (see X, 21-24) Suppose we added N cooperon and/or diffuson lines (≡ CD - lines) to some initial diagram in all
the possible ways, and we realize that all the (produced in this way) diagrams have “tails” (see fig. 12.1(a)). This
means that no matter how many CD - lines we will add more and in what way we do it - any resulting diagram will
be with “tails” except for the the only special (not always possible; see fig. 12.1(b)) way of inserting CD - lines. This

way permits obtaining a no - “tail” diagram, which however will have two extra loops.!Утверждение проверено
для диффузонов, разъяснить случай куперонов, а также смешанный случай.

4. Suppose the initial diagram has two disconnected components2. Connecting them with a CD - line results in an
addition of exactly one loop to the entire diagram.

5. Suppose we have a connected diagram with a tail. This tail can be eliminated by a subsequent addition of a CD -
line; such elimination results in incrementing of the loops number exactly by 1.

Using the program, I perform the following steps (on the example of the SOI-dependent corrections to the charge
conductivity from sec. 8):

1. From the original, unaveraged, diagram (bubble), by a subsequent addition of cooperons and diffusons in all
possible ways, I produce all different diagrams with the required number of loops.

1Some functions from the old program are absent in the new one, in particular, the code for handling cumulants.
2The statement is obviously generalized to N disconnected components.
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(a) A tail.

not yet drawn
(b) Special way of inserting
diffusons.

Figure 12.1: The calculated diagrams for the current.

2. We realize that some diagrams may have common parts. [E.g., for convenience I suppose that a cooperon sequence
starts with one IAL. This first term is the same for both cooperon and diffuson series, and should not be taken
into account more than once.] In this way I get an additional list of the diagrams which should be subtracted.from
the main contribution.

3. The next step is to connect GFs of the same type with IALs inside HBs in the way, that the principal contribution
of all resulting diagrams does not gain additional smallness of the order of (pFl)−1. (Such smallness could occur,
e.g., due to the crossing of IALs.)

12.1 Calculation of cumulants

• generalized for the calculation of any quantities which are represented by disconnected diagrams before the end
of the averaging procedure.

• the introduction of the group of specific symmetries greatly decreases the number of analyzed expressions. (see
3sigmaSDC1 and 3sigmaDDC2).

• Inserting firstly the internal CD lines (i.e. those in the same disconnected components), I enormously shorten the
amount of programs work, because during this first step I can leave only the diagrams with the number of loops
≤maximal number of loops minus number of disconnected components+1.

The calculation of the 3rd central conductivity moment in the second loop thus proceed in the following way:

1. The first step: filling the diagram with internal CD - lines so that the the number of loops would not be more that
2−2 = 0. (because we know that it is impossible to obtain a connected diagram without adding another two loops)

2. The second step. The minimum number of external CD - lines necessary to obtain a connected diagram is two.
So I add 2 external CD - lines in all the possible ways and then drop all the disconnected diagrams. It is not
necessary to calculate the number of loops during this step.

3. The last step: adding external CD - lines in all the possible ways until it is possible to obtain a diagram with the
number of loops ≤ the maximal one (which is 2).

Other ways to reduce the computation time:

• One can make the work of Union sufficiently faster by applying it to the diagrams divided in several classes, so
that the diagrams from different classes are surely different. Possible characteristics of a class: number of Green
functions, CD - lines, loops, Hikami boxes.

The time for generating the 2nd loop diagrams for the 3rd conductivity moment without interaction is 4 hours on
Pentium 4 1900 MHz.

!Добавить сюда доказательства того, что:

• Обувание вершины / взаимодействия увеличивает диаграмму.

• Другие соображения от Лернера, см. #10, стр.. 44.
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12.1.1 Additional remarks about interaction.

For n-th order of the perturbation theory, let us draw n+1 Green function’s lines. Connect then these lines with n
interaction lines - and we get a n + 1 - particle Green function. Then just produce one - particle Green function from
it, connecting 2n Green function’s ends in all possible ways. This way is convenient if there is a simple algorithm that
would give the sign for every such connection.



Chapter 13

Useful relations

In the diffusion approximation we have1 for dimension d

∫

dΩ

Ω0
nin j =

δi j

d
.

Let us introduce quantity

X(q; E,E′)
df
=

1

2πν0τ̃

1

V

∑

~n

GR(~p~n,E)GA(~p~n − ~q~m,E′), X(q) ≡ X(~q, ω) = X(q; E,E − ω) (13.1)

From (1.16) we conclude that X(~0, 0) = 1. From explicit expressions below we see that this is true in 1D, 2D and 3D.

X(~q, ω) =

∫

dΩ

Ω0

1

1 − i(ω − ~v~q )τ
, q≪ pF.

In 2D

∫ 2π

0

dϕ

2π

1

1 + a cosϕ
=

1√
1 − a2

, X(~q, ω) =
1

√

(1 − iωτ)2 + q2l2
. (13.2)

In 3D X(~q, ω) =
1

2ilq
ln

1 − iωτ + ilq

1 − iωτ − ilq
, (13.3)

similar to ([21]4.17).
For q & pF, the AE would depend on the particular dispersion law, but there should be a general rule X(~q, ω) must

decrease while q enlarges, and
lim
q→∞

X(~q, ω) = 0. (13.4)

In the diffusion approximation using2 (1.16), (1.19) and (1.22) we have

X(~q; E,E′) = 1 − τετ0/τ̃ ×
[

Dεq
2 − iω

]

≈x→0 1 − τ
(

Dq2 − iω
)

, ε =
E + E′

2
,

ν(ξ) ≈ ν0(1 + xξ), τE ≡ τ(E) ≈ τ0 (1 − xE) , lE = vτE, DE =
l2
E

dτE
.

(13.5)

Note that E-dependent corrections of (13.5) make sense if (in case of Cooperon/diffuson) we are near enough to the
pole. More precisely, a condition ω(ω + 3D0q2)τ0 ≪ xε[2D0q2 − iω] must hold; otherwise we go under the precision of the

diffusion approximation. In particular, everything is o.k. when Dq2 ∼ ω ≪ xε/τ0. !Замечание ВК: нехорошо здесь
сравнивать мнимые величины с действительными.

The result (13.5) is consistent with the general requirement: cooperon’s diffusion coefficient is a symmetric function
of E and E′; this becomes clear if one considers cooperon plus its complex conjugate (which should certainly be a real
quantity).

1It can be calculated in the following manner: without loss of generality ~q = (q, 0 . . . 0), so (~q~̂n)2 = n̂2
1
. Due to the symmetry 〈n̂2

1
〉 = 1

d

∑d
i=1〈n̂2

i
〉 =

1
d 〈‖~̂n‖2〉 = 1

d .
2To obtain (13.5), I at first expanded GA(~p−~q,E−ω) in ~q, ω; then used (1.16) for the zeroth-order term, then substituted (1.19) and at last integrated

by dξ dΩ
Ω0

.
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In 3D
∫

dΩ

Ω0
n2

i n2
j =

1 + 2δi j

15
.

∫ π

0

dϕ

π
eiz cosϕ

= J0(z), J′0(z) = −J1(z). (13.6)

A property of the Laplace transformation (DL):

lim
ω→0

ω j(ω) = lim
t→∞

j(t) if both limits exist. (13.7)

The expression for the current of arbitrary particles3 and its operator with charge e (see ([60]115.4) and ([60]115.6)):

~j(x) =
ie~

2m

[

(∇ψ∗(x))ψ(x) − ψ∗(x)(∇ψ(x))
] − e2

mc
~A(x)ψ∗(x)ψ(x) +

µc

s
rot

[

ψ∗(x)~̂sψ(x)
]

, (13.8)

In a many particle system, WF ψ(x) must be normalized to the number of particles.

~jab(x) =
ie~

2m

[

(∇ψ∗a(x))ψb(x) − ψ∗a(x)(∇ψb(x))
] − e2

mc
~A(x)ψ∗a(x)ψb(x) +

µc

s
rot

[

ψ∗a(x)~̂sψb(x)
]

. (13.9)

Due to the application of a constant vector potential Green function changes like (see [101])

G(~r, ~A) = G(~r, ~A = 0)eie ~A~r. (13.10)

At the Fermi energy (E = 0) DoS is given by4:

in 1D ν0 =
m

2πpF
, in 2D ν0 =

m

2π~
, in 3D ν0 =

mpF

2π2~2
, =⇒ ∀d ν0 ∼

m

2π~nd−2
, n =

~

pF
, (13.11)

where in 1D and in 2D the relation “∼” may be substituted with “=”. Note: the averaged DoS is not necessary equal

to the DoS of the free EG. E.g., the averaged DoS in the 2D is energy dependent, contrary to the case of the free EG.5

GR(~r, t) = − i

V
ϑ(t)

∑

p

ei~p~r−iε(p)t,

GR(0, t) = − i

V
ϑ(t)

∫

ddp

(2π)d
e−iε(p)t

=

∫ ∞

−∞
dΓEe−iEt

= in 2D = −iϑ(t)
m

2π

∫ ∞

0

dEe−iEt
=

m

2
δ(t).

δ(~r ) =
1

(d − 1)!

1

Ωd
lim
l→0

e−r/l

ld
, Ωd =

2πd/2

Γ(d/2)
. (13.12)

∑

n∈Z
δ(x − n) =

∑

m∈Z
e2πimx

=⇒
∑

n∈Z
f (n + ξ) =

∑

m∈Z
e−2πimξ ×

∫

e2πimx f (x)dx. (13.13)

!Установить этот факт наверняка! I am sure that (13.13) can be generalized for d dimensions:

∑

~n∈Zd

f
(

~n + ~ξ
)

=

∑

~m∈Zd

e−2πi~m~ξ ×
∫

e2πi~m~x f (~x)ddx. (13.14)

3For the case of electrons, (13.8) is obtained in the classical (with 1st-order corrections in expansion in 1/c) limit from the Dirac current, see
problem [100]15.31. The last term in (13.8) is e~

2mc rotψ∗~σψ, µ = e~
2mc (for electrons). At first I thought that in gauge (13.8) is valid only in gauge with

scalar potential = 0, but now I think it is general. !Since div rot ≡ 0, rotor is insignificant in the current conservation relation. I have seen this
term coming in the non-relativistic limit of Dirac equation.

4The density of states without taking spin into account, see p. 21. Note that these formulas do not coincide with two books: p. [46]44 and [102].
Later comment: the reason for this might be that my definition (1.13) might differ by ~ from the most common one.

5This dependence can be ignored in most cases, but sometimes it is important. If this dependence was absent, the identity Sp Ĝ2
R
= 0 would

exactly hold.
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Using (13.13), we arrive to a useful relation6:

1

V

∑

~n∈Zd

f
(

~q~n −
2e

c
~A
)

=

∑

~n∈Zd

exp

[

2πi~n
~ϕ

ϕ0

e

|e|

]

×
∫

ddq

(2π~)d
exp

[

i

~
~q
(

~n ◦~L
)

]

f
(

~q
)

,

~L =
(

Lx,Ly, . . .
)T
, ~q~n =

2π~~n

~L
, ~ϕ =

~A ◦~L
c

, ϕ0 =
π~

|e| =
h

2e
.

(13.15)

For functions of 2 coordinate variables, sometimes it makes sence to work in the mixed momentum-coordinate
(Wigner) representation:

A(x, y) =

∫

dp

2π
eip(x−y)A

(x + y

2
, p

)

, A
(

R, p
)

=

∫

dre−iprA
(

R +
r

2
,R − r

2

)

. (13.16)

Green′s formula :

∫

Ω

(UδV − VδU)dΩ =

∫

∂Ω

(

U
∂

∂~n
V − V

∂

∂~n
U

)

d~S. (13.17)

∫ ∞

−∞
ei~p~z(2~p − ~q )αβ exp

[

−p2x2 − y2(~p − ~q )2
]

d2p = π
2(x2 + y2)δαβ +

[

~q(x2 − y2) − i~z
]

αβ

(x2 + y2)3
exp

[

−x2y2q2 + z2/4

x2 + y2

]

exp

[

iy2~z~q

x2 + y2

]

=

=
2π

τ2
1

exp













−
(

τ1~q − i~z
)2

4τ1













exp

[

− z2

2τ1

]

×
(

δαβ +
1

2τ1

[

τ2~q − i~z
]

αβ

)

exp

[

τ2
2
q2 − 2iτ2~z~q

4τ1

]

,

where x2
+ y2

= τ1, x2 − y2
= τ2, x2

=
τ1 + τ2

2
, y2

=
τ1 − τ2

2
.

∫

ddk

(2π)d
~k exp

[

i
(

~L ◦ ~m
)

~k −Dtk2
]

=
i~L ◦ ~m
2Dt

(4πDt)−d/2 exp













− (~L ◦ ~m)2

4Dt













, (13.18)

∫

ddk

(2π)d
exp

[

i
(

~L ◦ ~m
)

~k −Dtk2
]

= (4πDt)−d/2 exp













− (~L ◦ ~m)2

4Dt













A tetrahedron with a unity edge has height 1/
√

3; the area of its side is
√

3/4. The площадь поверхности of an

n-dimensional sphere is equal to Sn = 2π
n+1

2 rn/Γ
(

n+1
2

)

; S1 = 2πr.

Let us use some definitions in Heisenberg (i.e. time) representation from [19] (however, changing signs in them
order to have correspondence with [5]):

G(±)
R

(x, x′) ≡ −K(±)
R

(x, x′) = −iϑ(t − t′)〈[ψ̂(x), ψ̂†(x′)]±〉, G(±)
A

(x, x′) ≡ −K(±)
A

(x, x′) = iϑ(t′ − t)〈[ψ̂(x), ψ̂†(x′)]±〉, (13.19)

G̃R/A(x, x′) ≡ −KR/A(x, x′) = ∓iϑ [±(t − t′)] 〈ψ̂(x)ψ̂†(x′)〉, G(x, x′) ≡ −KC(x, x′) = −i〈T[ψ̂(x)ψ̂†(x′)]〉.

The “bra”-“kets” 〈. . .〉 in the above definitions of GFs mean averaging over the unperturbed (though, probably, non-
equilibrium) DM:

〈. . .〉 ≡ Sp
SQ

[

ρ̂(0) . . .
]

, (13.20)

where SpSQ is the SQ trace. The latter is explicitly written below in the expression (13.21) for the OP-DM ([19]1.9):7

ρ1(λ, λ′) =
∑

(n1 ,n2 ...≥0

n′
1
,n′

2
...≥0

)

〈n1,n2 . . . |ρ̂| . . . n′2,n′1〉〈n′1,n′2 . . . |ψ̂†(λ, t)ψ̂(λ′, t)| . . . n2,n1〉 = iη lim
t′→t

Gfb(~r ′, t′;~r, t), (13.21)

6The usual flux quantum is hc/|e| = 4.14 × 10−7G · cm2 = 2ϕ0, see ([3]1.1).
7Note: ([19]1.9) is nothing but the expression of the OP DM in the FQ representation [see (13.21)] through the elements of the DM в представлении

чисел заполнения. It is important (in Keldysh technique) that in the interaction picture (the unperturbed parts of) both ρ̂ and ρ(λ, λ′) are time-
independent, see the comment after ([19]6.8a).
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where Gfb is defined in (9.2), and 〈~n|ρ̂(t)|~n ′〉 are MEs of the DM in the SQ picture [these MEs decay when max(
∑

i ni,
∑

i n′
i
)→

∞, so that (13.21) converges]. From (13.34) we conclude that our OP DM is normalized by the concentration (without
spin):8

Spρ1 ≡
∫

dλρ1(λ, λ) = n. (13.22)

From the FQ-OP-DM (13.21) one could try to define a SQ-OP-DM; however I don’t know if this is possible in a
general (non-equilibrium) case: The resulting SQ-OP-DM should decay when the number of particles infinitely grows;
however, the FQ-OP-DM (13.21) does not contain information about such decay.

An important example is when unperturbed system is in equilibrium, so that

ρ̂(0)
= exp

[

−(Ĥ0 − µN̂)/T
]

/ Sp exp
[

−(Ĥ0 − µN̂)/T
]

. (13.23)

It is important that DM in (13.19),13.20 is time-independent.9 In the simplest case ρ̂ is an equilibrium matrix (13.23);
however, it is also possible that ρ̂ describes a non-equilibrium steady state – see Sec. 10.1.

Next,
G(+)

R/A
+ G(−)

R/A
= 2G̃R/A, GC = G̃R − ηG̃A, (13.24)

where η = ±1 for the case of bosons and fermions respectively.

Connection between [19] and [5] in energy representation: KR/A(E) = − 1

2π
GR/A(E). (13.25)

For fermions, GR/A ≡ G(+)
R/A

(and for bosons GR/A ≡ G(−)
R/A

) obey the simplest equations, and this must be the reason

why just they are usually considered, see ([19]6.2-4). In equilibrium any Green function can be obtained from any
other one using spectral function [19].

In a disordered electron system without interaction,

ĤII ≡ T̂II + ÛII =

∫

dλdλ′ε(λ, λ′)ψ̂†(λ, t)ψ̂(λ′, t), ε∗(λ, λ′) = ε(λ′, λ)

where the time t can be chosen freely, see the note after ([19]6.8a). From here I get an equation of motion for GR

[ĤII, ψ̂
†(λ, t)] = −[ĤII, ψ̂(λ, t)]† =

∫

dλ′ψ̂†(λ′, t)ε(λ′, λ),

i
∂

∂t′
GR(λ, t;λ′, t′) +

∫

dλ′′GR(λ, t;λ′′, t′)ε(λ′′, λ′) = −δ(t − t′)δ(λ − λ′),

(E + iδ)GE
R(λ, λ′) −

∫

dλ′′GE
R(λ, λ′′)ε(λ′′, λ′) = δ(λ − λ′).

(13.26)

Infinitesimal δ may be important because of the singularity of GE
R
. We get it because the Fourier transformation used

in (13.26) is non-standard:
∫ ∞
−∞ exp[(iE − δ)t]. Eq. (13.26) [and analogous for GA] can be rewritten in the operator form

(ready for bra-ket notation):

∂ĜR/A(t, t′)

∂t′
= iδ(t − t′) +

i

~
ĜR/A(t, t′)Ĥ.

In case when λ is a coordinate, all integrations
∫

dλ ≡
∫

ddr must be performed in the volume of the system.
Certainly, then all coordinates must be than also restricted within this volume. There is no problem, if this volume is
finite, because {|~r〉}~r∈Ω form a complete ortogonal basis for the Hilbert space of functions, defined within Ω.

If I then define a Green function operator in time domain according to 〈λ|ĜR(t, t′)|λ′〉 df
=GR(λ, t;λ′, t′), then I rewrite

(13.26) in an operator form as

i
∂

∂t′
ĜR(t, t′) + ĜR(T̂I + ÛI) = −δ(t − t′), ĜE

R[E − T̂I − ÛI] = 1 (13.27)

8Eq. (13.22) defines the chemical potential µ. For free EG at T = 0 it can be calculated (so that we know the dependence µ(n)). However, because
of the frequency-dependence of τ, even for T = 0 it is hard (if possible) to calculate (13.22) for the disordered EG (expressing the DM via the averaged
GFs). See Sec. 1.5.

9If DM ρ̂ would be time dependent, a GF would have an additional time argument. Alternatively, one could assign to the DM the time of the
operator being averaged. In case of a GF the averaged operator has two times: t and t′, so it is unclear which of them would we want to assign to
the DM.
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where T̂ and Û are operators of kinetic and potential (due to the disorder) energy of an electron. ĜE
R
is the Fourier

image of ĜR(t, t′).
If DM is diagonal in the same (SQ) representation, as the Hamiltonian:

〈n1 . . . nN |ρ̂(t)|n′N . . . n′1〉 ∝ δn1,n′1
. . . δnN ,n′N

, 〈n1 . . . nN |Ĥ|n′N . . . n′1〉 ∝ δn1,n′1
. . . δnN ,n′N

, (13.28)

then10

G(+)(0)
R/A

(λ) =
1

E − ε (λ) ± iδ
, G(0)

R/A
(λ) =

1 − nλ
E − ε (λ) ± iδ

, δ = +0, (13.29)

where nλ is an average occupation number (which is just a Fermi function in equilibrium). For convenience11 we

subtract µ = µ(T) from both E and ε in (13.29), see ([19]6.6); then in equilibrium nλ ≡ nE =

(

1 − tanh E
2T

)

/2.
Analogously one obtains for non-interacting bosons in equilibrium:

G(−)(0)
R/A

(λ) =
1

E − ε (λ) ± iδ
, G(0)

R/A
(λ) =

1 + nB

E − ε (λ) ± iδ
, δ = +0. (13.30)

In these relations nB/F =

(

eε/T ∓ 1
)−1

are Bose and Fermi distributions. !I want to check them for non-equilibrium

stationary state! Eqs. (13.29),13.30 are written for the case when both WF and DM are normalized to unity, see
p. [19]18-19,45. If I want (13.8) to give me the total current density from all electrons in the system, and (3.22) –
the complete conductivity and not just mobility, then I need to normalize WF and DM to the number of particles, see
sec. 14.2.

resx→x0
f (x) =

1

(n − 1)!
lim
x→x0

(

dn−1

dxn−1
(x − x0)n f (x)

)

. (13.31)

Useful identities for Fermi distribution fE:

∀E, ω,T (hE − hE−ω) cth
ω

2T
= 1 − hEhE−ω, hE ≡ tanh

E

2T
≡ 1 − 2 fE, fE fE−ω =

fE + fE−ω
2

+
fE − fE−ω

2
coth

ω

2T
. (13.32)

In (13.32) we used (13.11) and (??). Moreover, for any hE and fE ≡ (1 − hE)/2 (i.e. also for out-of-equilibrium systems)

∫

+∞

−∞
dE (hE − hE−ω) = 2ω,

∫

+∞

−∞
dE (hE − hE−ω) E = ω2

+ non − universal corrections in case hE + h−E , 0. (13.33)

The relation between concentration and density of states is given by (without spin)

∀ fE

∫ ∞

−EF

νE fEdE =

∫ 0

−EF

νEdE = n =
N

V
, fE ≡ (1 − hE)/2. (13.34)

In equilibrium, (13.34) gives an indirect equation for the function µ(T); at T = 0 one obtains µ|T=0 ≡ EF =
1

2m

(

3π2N
V

)2/3
.

Otherwise (13.34) is just a sum rule, cf. p. [58]322.

~q,−ω

~q,−ω

~k,−ω

A, E
~k,−ωR,

E
−
ω

R,
E
−
ω

A, E
= 4πν0τ

4
[

iω +D
(

k2
+ q2

)]

. (13.35)

~k′ − ~k, ω

~k′, 0

~n

A,
E

A,
E

R, E

~k,−ω

R, E −
ω

= −
4πiν0τ3

E
D0τ0

l0

(

~k′ −~k
)

= −4πiν0τ
3
E

(

~k′ −~k
) l0

d
. (13.36)

10Eq. (13.28), IMHO, is one of the restrictions to the validity of the Keldysh technique. Note that this is more than just a requirement that
[

ρ̂(0), Ĥ(0)
]

= 0. DL: it is interesting if this is sufficient for the validity of the Wick theorem.
11This makes sense also in a non-equilibrium problem if fE is not so far from equilibrium.
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∫ ∞

−∞

dp

2π

sin(pnL)

[L−2
ω + (p − q)2][p2 + δ2]

=

2e−nLδL4
ωq − e−nL/LωL3

ω

{

2Lωq cos(qnL) +
[

1 − L2
ω(q2 + δ2)

]

sin(qnL)
}

2
[

1 + 2L2
ω(q2 − δ2) + L4

ω(q2 + δ2)2
] .

The last equation leads to:

v.p.

∫ ∞

−∞

dk

2π

sin knL

(k + q)2(k2 + L−2
ω )
= q

1 − exp[−nL/Lω]

(q2 + L−2
ω )2

, q = 2πn/L, n ∈ Z, ℜLω > 0.

Pauli matrices: [σ1, σ2] = 2σ1σ2 = 2iσ3, [σ1, σ3] = −2iσ2, [σ2, σ3] = 2iσ1.

One12 useful identity for Pauli matrices [105]:

2δs1s2
δs3s4
=

3
∑

α=0

σ̂s1s3
α σ̂s4s2

α =

3
∑

α=0

σ̄s1s3
α

(

σ̄†α
)s4s2

, σ̄α ≡ σ2σα, (13.37)

Note that, unlike σ, matrices σ̄ do not form an orthogonal basis.
If I turn the CS13 counterclockwise by angle ϕ in (x, y) plane, then coordinates of a particle in the new CS ~r ′ will be

related to it’s coordinates in the original CS ~r as ~r ′ = R~r.
In case the rotation occurs in the (x, y) plane, the R is given by

R
y
ϕ = (R

y
−ϕ)−1

= (R
y
−ϕ)T

=

















cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

















, Rz
ϕ =

















cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

















. (13.38)

The connection between rotations in real and spinor spaces is defined in such a way that the magnetic term ∝ ~̂s~B
in the Hamiltonian remains invariant, see p. [106]29. The rotation matrix R ∈ SO(3) in the usual 3D space can be
straightforwardly generated from the rotation matrix U ∈ SU(2) in the spinor space:14

~r ′ = R~r, ξ′ = Uξ, (R)i j =
1

2
Sp(σiUσ jU

†), (13.39)

(where ξ is a spinor) which uniquely defines rotation operator in real space R based on given rotation operator in spinor
space U. The inverse relation is not unique: for a given R, both U and −U are o.k., see p. [106]30. Using ([106]2.23),
one obtains the inverse of (13.39) for the special case (13.38):

±Uϕ = σ0 cos
ϕ

2
+ iσ3 sin

ϕ

2
, U−1

ϕ = U†ϕ, (Rϕ~σ)i = U†ϕσiUϕ, i = 1, 2, 3, (13.40)

where I’ve assumed the rotation in the (x, y)-plane with the rotation matrix Rϕ defined in (13.38). According to [104]15

the sign “+” is standard in (13.40), see ([104]1.5.33). The last relation in (13.40) is related with two possible ways
of transforming a spinful Hamiltonian like (6.1) together with the rotation of the CS. At first, I can consider the
Hamiltonian in the initial CS as a function of spin operator(s): H1(~p,~r,~s), and rotate the spin operator just like any other
vector:

H1(~p,~r,~s) = H1(R−ϕ~p
′,R−ϕ~r

′,R−ϕ~s
′)

df
=H2(~p ′,~r ′,~s ′). (13.41)

Or instead I could consider the Hamiltonian as a 2 × 2-matrix [using the last identity from (13.40)]

H1(~p,~r ) −→ UϕH1(R−ϕ~p
′,R−ϕ~r

′)U†ϕ
df
=H2(~p ′,~r ′), ψ2(~r ) = Uϕψ1(R−1

ϕ ~r ). (13.42)

The last way is better16, because it is compatible with the spinor theory [106].

∀ϕ ∈
(

−π
2
,
π

2

)

cos2 ϕ

2
=

1

2























1 +
1

√

1 + tg2 ϕ























, sin2 ϕ

2
=

1

2























1 − 1
√

1 + tg2 ϕ























.

12Some other cool identities for Pauli matrices can be found in the appendix of [103]. See also [104].
13We follow the s.c. “passive” (see p. [106]21) point of view for rotations: the CS is (counterclockwise) rotated, and, consequently, coordinates of all

particles are changed:
~r→ ~r ′ = R~r, ~r→ ~r ′ = R~r, ~r→ ~p ′ = R~p, ~p→ ~p ′ = R~p.

14Красиво это объяснено на стр. [107]38-39. См. также про спинорные представления стр. [107]181-182.
15Note that signℑUϕ in (13.40) is the opposite from the one in ([104]1.5.33), despite that, apparently, also [104] rotates the SC just like me. I have

checked that (13.40) coincides with (13.39). However, (13.40) coincides with ([60]58.2) which is nice.
16I wonder how this coincides with ([104]1.5.28).
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√
1 + iα −

√
1 − iα = i

√
2

√√
1 + α2 − 1.

arctg x =
1

2i
ln

1 + ix

1 − ix
. (13.43)

13.1 О линеаризации спектра

См. в промежутке между ([50]163-164), а также между ([17]34-35): ошибочность утверждения p2/(2m)−µ ≈ vF~n~p ≡ vFp
очевидна при p = pF и µ = p2

F
/(2m). В частном случае

G0
(

~r
)

=

∫

ddp

(2π)d
f (Ω) exp

[

i~p~r
]

δ
(

p − pF
)

=⇒ −δG0
(

~r
)

= p2
FG0

(

~r
)

. (13.44)

В более общем случае мы предполагаем, что δ-функция в (13.44) имеет конечную ширину ∼ 1/l, так что (13.44)
выполняется лишь приближённо; будем считать его приближением нулевого порядка

− δG0(~r ) ≈ [−δG0(~r )
](0) ≡ p2

FG0(~r ). (13.45)

Приближение (13.45) для нас является слишком грубым; давайте найдём поправку следующего (первого) порядка:

[−δG0(~r )
](1) ≈ − δG0(~r ) − [−δG0(~r )

](0)
=

∫

ddp

(2π)d

(

p2 − p2
F

)

G0(~p ) exp
[

i~p~r
] ≈ 2mvF

∫

ddp

(2π)d

(

p − pF
)

G0(~p ) exp
[

i~p~r
]

=⇒

=⇒− δG0(~r ) ≈ [−δG0(~r )
](0)
+

[−δG0(~r )
](1)
= pF

∫

ddp

(2π)d

[

2p − pF
]

G0(~p ) exp
[

i~p~r
]

, =⇒ p2

2m
≈ vF

(

p − pF

2

)

. (13.46)

Т.к. я не умею записывать оператор p (модуль импульса) в координатном пространстве, использование приближе-
ния (13.46) фактически обрекает меня на проведение всех последующих вычислений в импульсном пространстве.

13.2 Asymptotics of small-momenta integrals

Based on sec. 3.6, one of important assumptions of the loop expansion is that integrals by CD-momenta converge
on the scale ql . x ≪ 1, where, x is some small parameter. E.g., x = l/L, where L is the system size (e.g., ring’s

circumference in sec. 10.2 and 11), or x =
√

x2
a + x2

b
– the SOI amplitude from sec. 6. However, our expressions can

be sometimes splited into “normal” and “defective” parts, where CD-integrals converge on the scale ql . x and ql . 1
correspondingly. These “defective” parts must be somehow cancelled, otherwise the theory becomes inconsistent. Let
us study some examples (everywhere ql = xQ):

x

∫ ∞

0

d(ql)

x2 + q2l2 + q4l4
=

∫ ∞

0

dQ

1 +Q2
− x

∫ ∞

0

d(ql)

1 + q2l2
,

Note that the “normal” term is always the leading one. It will be the same, e.g., in x
∫ ∞

0

d(ql)

x2+q2l2(1+x2)+q4l4
.

Let h(kl) be an expression for some GFB, e.g., for a HB. We want to calculate the asymptotic expansion for several
integrals, and the first one is

I0n(x) =

∫ ∞

0

dk
hn(kl)

x2 + k2l2
, x≪ 1 =⇒ I0n(x) = hn(0)

∫ ∞

0

dk
1

x2 + k2l2
+ In,

where

In(x) =

∫ ∞

0

dk
hn(kl) − hn(0)

x2 + k2l2
, x≪ 1, hn(kl) ≈ hn(0) + c(kl)n, kl≪ 1, c = const , 0.

In reality we are interested only in n ≤ 2. We can not just expand the hn(kl) in the integrand in Taylor series since it
spoils the convergence. The case n = 1 is somewhat similar to the WL: in the large interval x/l ≪ k ≪ 1/l the integrand
is ∼ 1/k, that is,

I1(x) ≈
∫ 1/l

x/l

c

kl
= −c

l
log x.
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Next,

I2(x) =

∫ ∞

0

dkg(kl) − x2

∫ ∞

0

dk
g(kl)

x2 + k2l2
, g(kl)

df
=

hn(kl) − hn(0)

(kl)n
, g(kl≪ 1) ≈ c , 0.

The first integral converges on lk ∼ 1, while the second one converges on lk ∼ x ≪ 1. We see that the second integral is

basically I0n(x) with new hn(kl) = g(kl). The only difficulty might be calculating
∫ ∞

0
dkg(kl), however, it is x-independent, so

might be not important. Following this prescription, one can build asymptotic of arbitrary length for a typical integral
over a small CD momenta.

13.2.1 The same using dimensionless variables

In problems with SOI, we have a mass x ≪ 1 defined in (6.3). It makes sense to introduce the dimensionless variable
Q = lq/x, so that

∫

dQ converges on the scale Q ∼ 1. Now let us assume that h − h0 ∼ c(kl)2 = c(xK)2 and introduce g(K),
so that

∫ ∞

0

h − h0

1 + K2
dK = cx

∫ ∞

0

h − h0

c(lk)2
d(lk) − cx2

∫ ∞

0

dK

1 + K2
g(K), g(K)

df
=

h(K) − h0

c(xK)2
, g(0) = 1.

The first integral has no convergence scale, or, from the numerical point of view, it converges on lq ∼ 1. The second
integral has usual “diffusive” convergence on the scale K ∼ 1. Now let us generalize:

∫ ∞

0

C(X,Y)

Z(K,Q)
dKdQ =

∫ ∞

0

g(K,Q)dKdQ −
∫ ∞

0

dKdQ

Z(K,Q)
g(K,Q), g(K,Q)

df
=

C(X,Y)

Z(K,Q) − 1
, (13.47)

and we supposed that g(K,Q) is a regular function in the neighborhood of the point (K = 0,Q = 0). One can ask a

question: Who is Who in (13.47)? !For the moment this is all imprecise, living example required! Let us answer on
the example of sec. 8.4: C(X,Y) = x2(X,Y)2 comes the product of left and right HBs, and Z(K,Q) comes from the product
of three diffusons. [K and Q are dimensionless variables; each HB is divided by x, and each diffuson is multiplied by

x2, so that Z(0, 0) = 1 + (xa, xb)2.] More precisely, C(X,Y) comes from [LR − (LR
∣

∣

∣

∣

K=Q=0
)]/x2. Here I say “comes from” instead

of “equal” because (13.47) appears after the angular integration, when all integrals are done except for
∫ ∞

0
dKdQ. I

think that g(0, 0)
∣

∣

∣

∣

x=0
=const. I think, that the SOI-dependent part of (13.47) can be calculated up to the arbitrary

order of (xa, xb): in fact, based on the родство(=familiarity?) of Z with the quantity Y form Sec. 6.8, we assume that
Z(K,Q) − 1 = (xa, xb)2(K,Q)2(1 + Z̃(K,Q)), so for both terms in the lhs of (13.47) we can define new quantities C̃ and Z̃ and
then repeat the whole procedure for them.



Chapter 14

Density matrix with spin

Following the statistical approach [108], the complete density matrix of a many-particle system is defined as an av-
erage over an ensemble of the systems. Each system in the ensemble is identical in the sence that it has the same
Hamiltonian, number of particles, size, etc. The number of systems in the ensemble is infinite. Every single system is
characterized by its wavefunction ψα. Introducing the probability (a usual statistical one) Pα, we define the complete
density matrix as

〈λ|ρ|λ′〉 =
∫

ψ(λ)ψ†(λ′)P[ψ]D[ψ],

where the functional integration is restricted to normalized WF ψ. The true (=explicit) sence of the functional integral
comes out after we express ψα via the linear combination of the eigenfunctions ϕn:

〈λ|ρ|λ′〉 =
∫

dα1dα2 . . .dβ1dβ2 . . .P[{αn}n≥1, {βm}m≥1]
∑

m,n≥1

αnβ
∗
mϕn(λ)ϕ†m(λ′),

which I was writing before as

〈λ|ρ|λ′〉 =
∑

nm

Wnmϕn(λ)ϕ∗m(λ′), Wnm =

∑

α

PαCαmCα∗n , ψα(λ) =
∑

n

Cαnϕn(λ). (14.1)

The off-diagonal elements Wnm in (14.1) would oscillate like cos(En−Em)t. Consider the case when Wnm is a slowly varying
function of n,m. Then a sum of all these cosines will be a function, that decays in time on a characteristic scale of the
mean level spacing δ ∼ ν/Ld, where d is the dimension. We usually have d = 2; then L2 is just a surface area. So, for a
large system on a large time scale, only diagonal elements survive in (14.1):

〈λ|ρ|λ′〉 ≈
∑

n

Wnnϕn(λ)ϕ∗n(λ′). (14.2)

Another case when (14.2) is correct, is equilibrium. In fact, the expectation of a time-independent quantity, calculated
with (14.2), will be time independent, like this should be in equilibrium, when all the relaxation procecces in the
system are finished. Then Wnn = exp[−En/T]/Z, where En is the eigenenergy and Z is the statistical sum.

Now let us consider the opposite situation in (14.1), when Wnm ∝ δn,m + δn,m±l, or δ (according to estimates.nb, for
a mesoscopic ring 1/δ ∼ 10−7sec ≫ τ ∼ 10−14sec) is large (like e.g. in a quantum dot). Then off-diagonal term gives us
single-standing oscillating contribution, and we have to live with it. Then (14.2) may be not a nice approximation.

In conclusion I suspect that (14.2) is strictly true only in equilibrium; out of equilibrium it is an approximation
which can be used for times & 1/δ. Thus it should work, e.g., for an ordinary-size (not small) piece of metal, when
current flows, so that it is not in equilibrium. This brings me back to an argument of VK, who claimed that our
non-equilibrium current from sec. 11. BTW, a nice article on density matrix, recomended by [19] and available online:
[108].

In [19], (14.2)=([19]1.1) is claimed to be true in the most general case of an arbitrary system. However, I suspect
that the authors implied equilibrium.

118
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14.1 In the first quantization

In equilibrium1 we use the expression (14.2), ([19]1.1) for the density matrix of a N-particle system

〈

~λ|ρN |~λ′
〉

=

∑

~n

′W~nψ~n(~λ)ψ∗~n(~λ′),
∑

~n

′W~n = 1, ~λ ≡ (λ1 . . . λN), (14.3)

Ĥ(~λ)ψ~n(~λ) = E~nψ~n(~λ),
∑

~λ

ψ∗~n(~λ)ψ~n′ (~λ) = δ~n~n′ , (14.4)

where
∑′
~n denotes the sum over all distinct N-particle states. We will assume that λi ≡ (~ri, di), where di ∈ (↑, ↓) is the

z-spin projection of an electron; that is, we have
∫

dλ1 . . .dλN and δ(~n − ~n′) instead of
∑

~λ
and δ~n~n′ in (14.4).

In the absence of interaction,

Ĥ(~λ) =

N
∑

i=1

h(λi), ψ~n(~λ) =
1√
N!

∑

τ∈SN

ϕτn1
(λ1) . . . ϕτnN

(λN) sign τ,

h(λ)ϕm(λ) = εmϕm(λ),
∑

λ

ϕ∗m(λ)ϕm′ (λ) = δmm′

∑

~n

′
=

∑

n1<...<nN

,

where SN is the perµtation group of order N. Then an expectation value of a single-particle operator is

Anm =

∑

d,d′=↑,↓

∫

ddrϕn(~r, d)〈d|Â(~r )|d′〉ϕm(~r, d′). (14.5)

From ([19]1.8a) and (14.17) we get

〈

λ1|ρ1|λ′1
〉

= N Sp
2...N

〈

~λ|ρN |~λ′
〉

=
1

(N − 1)!

∑

n1<...<nN

W~n

∑

τ,τ′∈SN

ϕnτ1
(λ1)ϕ∗nτ′

1

(λ′1)×

× Sp
2...N

ϕnτ2
(λ2)ϕ∗nτ′

2

(λ′2) . . . ϕnτN
(λN)ϕ∗nτ′

N

(λ′N) sign τ sign τ′ =

=
1

(N − 1)!

∑

n1<...<nN

W~n

∑

τ∈SN

ϕnτ1
(λ1)ϕ∗nτ1

(λ′1) =

=

∑

n1<...<nN

W~n

N
∑

i=1

ϕni
(λ1)ϕ∗ni

(λ′1) =
∑

n1,...,nN

W~n

N!

N
∑

i=1

ϕni
(λ1)ϕ∗ni

(λ′1),

where we used that

∀i = 2 . . .N Sp
i

[

ϕnτi
(λi)ϕnτ′

i
(λi)

]

= δτiτ′i
,

given that there are no equal numbers among n2 . . . nN.
Now let us put N = 2. Then

∑

n

wnϕn(λ)ϕ∗n(λ′) =
〈

λ|ρ1|λ′
〉

=

∑

n

ϕn(λ)ϕ∗n(λ′)
∑

{n′ |n′,n}
W(nn′), W(nn′) ≡W~n. (14.6)

In equilibrium wn is given by (14.5) with Â = exp[−βĤ]/z:

wn ≡ wnn =
1

z

∑

d,d′=↑,↓

∫

ddrϕn(~r, d)〈d| exp[−βĤ(~r )]|d′〉ϕn(~r, d′) =
1

z
exp[−βεn],

W(nn′) =
1

Z
exp[−β(εn + εn′ )] =

z2

Z
wnwn′ , (14.7)

where z and Z are statistical sums for ρ1 and ρ2. Thus in equilibrium the probability W(nn′) is factorized. By writing
(14.7) we fixed the value of W(nn) , 0, which could be arbitrary chosen2 until now.

1See sec. 14
2For example, we could postulate ∀nW(nn) = 0; this would simplify (14.6).
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In order to get the expression for ρ2, now imagine we have two particles in our non-interacting system: The eigenstate
ϕ(nn′)(~r1,~r2) of the two-particle Hamiltonian H(~r1) +H(~r2) is a four-component wave-function. Its components are3

ϕ(nn′)(~r1,~r2;µ) = −ϕ(n′n)(~r2,~r1;µ) =
1√
2

[

ϕn(~r1, d1)ϕn′ (~r2, d2) − ϕn(~r2, d2)ϕn′ (~r1, d1)
]

,

d, d′ ∈ ud, µ = d1d2, µ = d2d1, µ ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

According to (14.3)

〈~r1~r2;µ|ρ2|~r2
′~r1
′; ν〉 =

∑

n<n′
W(nn′)ϕ(nn′)(~r1,~r2;µ)ϕ∗(nn′)(~r1

′,~r2
′; ν) = (14.8)

=

∑

n,n′

W(nn′)

2
ϕ(nn′)(~r1,~r2;µ)ϕ∗(nn′)(~r1

′,~r2
′; ν),

∑

n<n′
W(nn′) = 1, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

Z

z2
〈~r1~r2;µ|ρ2|~r2

′~r1
′; ν〉 = 〈~r1, d1|ρ1|~r1

′, d′1〉〈~r2, d2|ρ1|~r2
′, d′2〉− (14.9)

−〈~r1, d1|ρ1|~r2
′, d′2〉〈~r2, d2|ρ1|~r1

′, d′1〉, µ = d1d2, ν = d′1d′2, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

This coincides(check it!) with the result ([108]5.30) for a system composed of N non-interacting electrons4: !I
don’t trust this result completely, since I suspect [108] to use a different normalization; ask DL how to prove it in SQ.

N(N − 1)〈~r1~r2;µ|ρ2|~r2
′~r1
′; ν〉 = 〈~r1, d1|ρ1|~r1

′, d′1〉〈~r2, d2|ρ1|~r2
′, d′2〉− (14.10)

−〈~r1, d1|ρ1|~r2
′, d′2〉〈~r2, d2|ρ1|~r1

′, d′1〉, µ = d1d2, ν = d′1d′2, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

Note the similarity with the analogous expression (which follows from Wick’s theorem) for the two-particle Green
function ([5]10.14). However, (14.10) is not the same, as Wick’s theorem5. An idea for the future: the measure of
entanglement should be similar to that of polarization of light in [108]. Also in [109] the spin polarization is discussed.

Let us now change spin basis in (14.8) by introducing new states: Its basis is composed by four second-rank spinors
(each has 4 components, see [60], §56, p. 253)

ψS
(nn′)(~r1,~r2) =

1√
2

[

ϕ(nn′)(~r1 ↑,~r2 ↓) − ϕ(nn′)(~r1 ↓,~r2 ↑)
]

,

ψT0

(nn′)(~r1,~r2) =
1√
2

[

ϕ(nn′)(~r1 ↑,~r2 ↓) + ϕ(nn′)(~r1 ↓,~r2 ↑)
]

,
(14.11)

ψT−

(nn′)(~r1,~r2) = ϕ(nn′)(~r1 ↓,~r2 ↓), ψT+

(nn′)(~r1,~r2) = ϕ(nn′)(~r1 ↑,~r2 ↑), (14.12)

so that

ϕ(nn′)(~r1 ↓,~r2 ↑) =
1√
2

[

ψT0

(nn′)(~r1,~r2) − ψS
(nn′)(~r1,~r2)

]

,

ϕ(nn′)(~r1 ↑,~r2 ↓) =
1√
2

[

ψT0

(nn′)(~r1,~r2) + ψS
(nn′)(~r1,~r2)

]

.
(14.13)

Using (14.12) and (14.13), we express ϕ(nn′) in terms of ψα
(nn′). We introduce

{ϕµ}3α=0 = {↓↓, ↓↑, ↑↓, ↑↑}, {ψα}3µ=0 = {S,T−,T0,T+}.
3By µ = d1d2 I mean that, e.g., if d1 =↓ and d2 =↑, then µ =↓↑. The spirit is that of a diadic.
4Eq. (14.10) has been checked for the simpliest case of pure state of a two-particle system.
5This is better seen in the SQ representation of the DM, see sec. 14.2. Then (14.10) is just a T , 0 Wick’s theorem which is proven on p. [51]76

using path integration.
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Now let us rewrite (14.11) and (14.12) in matrix notation:

ψα = Aαβϕβ, ϕµ = A−1
µαψ

α,
A−1 = AT, det A = 1,

A =





























0 − 1√
2

1√
2

0

1 0 0 0
0 1√

2

1√
2

0

0 0 0 1





























. (14.14)

Let us denorte with ρST matrix components of ρ2 in the {S,T−,T0,T+} basis. One obtains ρST by substituting (14.14) into
the right-hand side of (14.8):

〈~r1,~r2;µ|ρ2|~r1
′,~r2

′; ν〉 =
∑

α,β

A−1
µαA−1

νβ 〈~r1,~r2;α|ρST|~r1
′,~r2

′; β〉,

〈~r1,~r2;α|ρST|~r1
′,~r2

′; β〉 =
∑

µ,ν

AαµAβν〈~r1,~r2;µ|ρ2|~r1
′,~r2

′; ν〉,

α, β ∈ {S,T−,T0,T+}, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}.
In particular, for the singlet we get (omitting coordinates)

2〈S|ρST|S〉 = 〈↓↑ |ρ2| ↓↑〉 + 〈↑↓ |ρ2| ↑↓〉 − 〈↓↑ |ρ2| ↑↓〉 − 〈↑↓ |ρ2| ↓↑〉. (14.15)

One can consider ρ2 as a 4 × 4 matrix in its spin indices. Then it is possible to rewrite (14.15) in the nice form

〈S|ρ2|S〉 = Sp[ρ2Ŝ], where the 4 × 4 matrix Ŝ it is natural to call “singlet density”. Analogously this could be done for
triplet components.

We are interested in the the situation, when singlet (or triplet) is formed by two electrons with coordinates ~r1 and ~r2.
That is, our density matrix is diagonal in coordinate space:

〈λ1λ2|ρ2|λ′2λ′1〉 = 〈a∗λ′
1
a∗λ′

2
aλ2

aλ1
〉 = 〈~r1,~r2;µ|ρ2|~r1,~r2; ν〉, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

Thus the first term in (14.10) is just density-density correlations, while the diagram for the second term is just a bubble
(like Drude conductivity, only with different vertices).

One may ask: Why had I no term, analogous to the second term in (14.10), when I was calculating curren-current
correlator in my thesis [88]? Apparently, current-current correlator should be calculated with the same diagrams,
as the density-density correlator, and the latter seems to be almost the same as our 2-particle density matrix. . .
The answer: however, they are not the same. See the note about different averages on p. 75.

14.2 In SQ

I want to erase the previous section. The only problem I have, is to express ρ2 via ρ1 in the SQ formalism. It looks very
much like Wick theorem. . .

Since there is no clear standart in definition of the density matrix (e.g. about its normalization), let me write it from
scratch. One- and twoparticle operators are written for the N-particle system as ([60]64.1) and ([60]64.14):

AN(~r1 . . .~rN) =
∑

1≤a≤N

A1(~ra), BN(~r1 . . .~rN) =
∑

1≤a<b≤N

B2(~ra,~rb). (14.16)

Their average values are calculated through one- and twoparticle density matrices ρ1 and ρ2 as6

A = Sp[ρNAN] = N Sp[ρNA1]
df
= Sp[ρ1A1] =⇒ ρ1 = N Sp

2...N
ρN,

B = Sp[ρNBN] =
N(N − 1)

2
Sp[ρNB2]

df
= Sp[ρ2B2] =⇒ ρ2 =

N(N − 1)

2
Sp
3...N

ρN.
(14.17)

Already from here we get Spρ1 and Spρ2, but let us also calculate it in another way:

Spρ1 =

∑

λλ′

〈λ|ρ1|λ′〉δλ′λ = Sp[ρ1ô1], δλλ′ = 〈λ|ô|λ′〉 =⇒ ô1 = 1 =⇒ oN(~r1 . . .~rN) =

N
∑

a=1

1 = N.

6Note that 1/2 from ([19]1.10) is missing in (14.17). I and Sigi suspect that this 1/2 is taken from ([60]64.15) – that is, from the expression for B
in the upper line of (14.17); see also p. [51]18 where ([60]64.15) is properly explained. However, I can not rely on [19] since (i) I’ve found important
mistake there (see p. ??), and (ii) they use the normalization Spρ = 1, while I need Spρ1 = N.
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Thus ô is just an operator of the number of particles. This means its average (for a system with fixed N) is7

Sp[ρNoN] = N Sp[ρ1o1] = N, so that Spρ1 = N. (14.18)

Analogously, for ρ2 we also can introduce another operator o:

Spρ2 =

∑

λ1λ′1λ2λ′2

〈λ1λ2|ρ2|λ′2λ′1〉δλ′1λ1
δλ′

2
λ2
= Sp[ρ2ô2], δλ′

1
λ1
δλ′

2
λ2
= 〈λ1λ2|ô2|λ′2λ′1〉 =⇒

=⇒ ô = 1 =⇒ oN(~r1 . . .~rN) =
∑

1≤a<b≤N

1 =
N(N − 1)

2
=⇒ Spρ2 =

N(N − 1)

2
. (14.19)

When calculating “mixed” averages like A + B, where A and B are one- and two-particle operators, we use ρ2 and

A + B = Sp[(A2 + B2)ρ2] = A + B,

where A2 is obtained from A1 using (14.16).
Let us now move to the SQ representation, where operators A and B are given by the same formulas, no matter how

many particles are in the system. That’s why we ommit indices 1, 2,N for A and B:

A =
∑

αβ

〈α|A1|β〉a†αaβ, B =
1

2

∑

λµνκ

〈λµ|B2|νκ〉a†λa†µaνaκ. (14.20)

Like I do it with A and B in (14.20). I can generate N-particle density matrix operator in SQ from its MEs
〈λN . . . λ1|ρ̂N |λ1 . . . λN〉 (which I now in the FQ) according to

ρ̂N
df
=

1

N!

∑

(λ1 ...λN
λ′

1
...λ′

N
)

〈λN . . . λ1|ρ̂N |λ1 . . . λN〉a†λN
. . . a†λ1

aλ1
. . . aλN

. (14.21)

By analogy it would be nice do define!DL: (14.22) is wrong!

ρ̂1
df
=

∑

λ,λ′

〈λ|ρ̂1|λ′〉a†λaλ′ , ρ̂2
df
=

1

2

∑

(λ1 ,λ2
λ′

1
,λ′

2
)

〈λ2λ1|ρ̂2|λ1λ2〉a†λ2
a†λ1

aλ′
1
aλ′

2
. (14.22)

I can use eqs. (14.21) and (14.22) as definitions of ρ̂1,2,N in the SQ, if I check, keeping in mind (14.20) and (14.24), that

the following relations, analogous to (14.17) do hold (assuming that Ô is some N-particle operator):

O = Sp[ρ̂NÔ], A = Sp[ρ̂NÂ] = Sp[ρ̂1Â], B = Sp[ρ̂NB̂] = Sp[ρ̂2B̂]. (14.23)

The symbol Sp in (14.23) stands for the trace in the second qantization, and is not the same, as Sp in (14.17); So let us
at first precise what we mean by Sp in SQ. We assume that our states are oredered by energy, so that εn > εm ⇐⇒ n > m.

Then for arbitrary operator Ô

Sp Ô =

1
∑

n1,n2,...n∞=0

〈. . . n2,n1|Ô|n1,n2, . . .〉,

|n1,n2, . . .〉 df
=(a†1)n1 (a†2)n2 . . . |0102 . . . 0∞〉 df

=(〈. . . n2,n1|)†.

(14.24)

!Check (14.23)! In the following, by 〈. . .〉 we are going to imply not only quantummechanical, but also statistical

average, so that 〈. . .〉 = Sp[ρN . . .].

〈α|ρ1|β〉 = 〈a†αaβ〉, 〈λµ|ρ2|νκ〉 = 〈a†λa†µaνaκ〉, (14.25)

7The normalization of the DM (14.18) is connected with the normalization of the WF and GR/A. I have a mess about this in these notes: my
(standart) GR/A correspond to the normalization by unity, see the note after (13.30).
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The advantage of writing ρ2 in the SQ form (14.25) is that it shows us straightforward connection with the Keldysh-
Green function via (9.4). Also it is easy to write ρ2 in the singlet-triplet representation. To do it, let us at first introduce
two-particle operators (from now on we separate spin indices from spatial coordinates)

aµ(~r1,~r2)
df
= ad2

(~r2)ad1
(~r1)

⇐⇒ a†µ(~r1,~r2) = a†
d1

(~r1)a†
d2

(~r2)















, µ = d1d2, d12 ∈ ud, µ ∈ {↑↑, ↑↓, ↓↑, ↓↓}.

This last equation maps ρ2 onto 4 × 4-matrix (in spin space):

〈~r1,~r2;µ|ρ|~r2,~r1; ν〉 = 〈a†µ(~r1,~r2)aν(~r1
′,~r2

′ )〉, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}. (14.26)

We are interested in the density correlator; that is, we want to take diagonal (in coordinate space) elements of (14.26),
which have a symmetry

〈~r1,~r2;µ|ρ2|~r2,~r1; ν〉 = 〈~r1,~r2; ν|ρ†2|~r2,~r1;µ〉.
We call (14.26) the standart representation for ρ2. By default, when speaking about two-particle density matrix, we
assume its form (or representation) (14.26).

Then we define anihilation and creation operators in the singlet-triplet representation:

aS(~r1,~r2) =
1√
2

[a↑↓(~r1,~r2) − a↓↑(~r1,~r2)], aT+ (~r1,~r2) = a↑↑(~r1,~r2),

aT0 (~r1,~r2) =
1√
2

[a↑↓(~r1,~r2) + a↓↑(~r1,~r2)], aT− (~r1,~r2) = a↓↓(~r1,~r2),

or, in matrix form,
























aS

aT+

aT0

aT−

























=





























0 1√
2
− 1√

2
0

1 0 0 0
0 1√

2

1√
2

0

0 0 0 1





















































a↑↑
a↑↓
a↓↑
a↓↓

























. (14.27)

For example the singlet density will be 〈~r1,~r2; S|ρST|~r2,~r1; S〉 = 〈a†
S
(~r1,~r2)aS(~r1,~r2)〉. From the practical point of view, instead

of calculating ρ2 directly in one of these representations, it is more convenient to calculate an object8

〈~r1,~r2; σα|ρσ|~r2,~r1; σβ〉 df
=

∑

i jkl∈ud

σ
i j
ασ

kl
β 〈a†j (~r1)a†

l
(~r2)ak(~r2)ai(~r1)〉 =

= 〈b†α(~r1,~r2)bβ(~r1,~r2)〉 − δ(~r1 − ~r2)
∑

jk∈ud

[σβσα]kj〈a†j ak〉, α, β = 0 . . . 3,

b†α(~r1,~r2) =
∑

i j∈ud

σ
i j
αa†j (~r2)ai(~r1), bβ(~r1,~r2) =

∑

kl∈ud

σkl
β a†l (~r1)ak(~r2),

a†j (~r2)ai(~r1) =
∑

α

σ
ji
αb†α(~r1,~r2), a†l (~r1)ak(~r2) =

∑

β

σlk
β bβ(~r1,~r2)

(14.28)

Let us call ρσ “two-particle density matrix in σ-representation”. The inverse to (14.28) transformation9 one gets with
the help of (13.37):

〈µ|ρ2|ν〉 =
1

4

3
∑

α,β=0

σ
d1d′

1
α σ

d2d′
2

β 〈σα|ρσ|σβ〉, µ = d1d2, ν = d′1d′2, µ, ν ∈ {↑↑, ↑↓, ↓↑, ↓↓}. (14.29)

where we’ve omited coordinates.
Both ρ in (14.26) and ρσ in (14.28) are 4 × 4 matrices. Each element of ρσ is a linear combination of four elements

of ρ in (14.26). Thus the complete linear transformation between ρ in (14.26) and ρσ may contain 16 × 4 = 64 non-zero
coefficients10. The number of non-zero coefficients may be further reduced by the above-mentioned symmetry of ρ; In

8I’ve defined operators b in (14.28) hoping to obtain smth like (14.27); however finally I don’t see any use for them.
9Note similarity between (14.29) and (6.27).

10Thus my initial idea, that one could somehow write this transformation with a 4 × 4 matrix was wrong.
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the best case we could get rid of another 16 × 2 = 32 coefficients. In reality this number is lower, because in case of
diagonal elements of ρ this symmetry does not lead to the reduction of the number of coefficients in the transformation.

At first I wanted to derive direct transformation between ρσ and ρST; something clear and simple, like (14.27).
However, I had to leave my hopes to do it. Instead, at first I calculate ρσ; then with the help of Mathematica transform
it into ρ in the form (14.26). I will use (14.10), checking its coefficient from the comparison with the normalization
(14.17). At last, I come to ρST using (14.27).
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