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Why cannot we write the entire 24 volumes of the Encyclopedia

Brittanica on the head of a pin?

—Richard Feynman, There is plenty of room at the bottom

1 Introduction

Over the last decades, the ongoing miniaturisation of electronic circuits has been
the principal driving force behind the technological progress. Indeed we have been
witnessing an even exponential decrease of the typical structure sizes of integrated
circuits with time, just as has already been predicted by Gordon E. Moore in the mid
’60s of the last century [1]. According to the current roadmap of the semiconductor
industry [2], this trend should last for at least one more decade with the current silicon
semiconductor-based technology. Interestingly enough, the miniaturisation process
will most probably not be limited by the laws of physics but by the fact—known as
Rock’s law—that the cost of capital equipment for the fabrication of semiconductors
doubles every four years. By contrast, from a physical point of view, there is still
“plenty of room at the bottom”, to quote from the title of Richard Feynman’s visionary
lecture, which already in 1959 anticipated a new era of nanotechnology [3]. In his
lecture, Feynman asked the “final question, whether, ultimately—in the great future—
we can arrange atoms the way we want; the very atoms, all the way down!” But it
should take about a quarter of a century, until this question was answered positively.
Then, using the scanning tunnelling microscope (STM) technique [4], for the first
time the selective manipulation of matter at the nanoscale was demonstrated in an
experiment [5].

Feynman pointed out another important fact, namely that “atoms on a small scale
behave like nothing on a large scale, for they satisfy the laws of quantum mechanics.” A
particularly prominent example for this is the discreteness of the energy of electronic
levels in molecules. The intriguing idea to use this fact for the realisation of an
electronic device came up in 1974, when Aviram and Ratner proposed to build a
diode from an individual organic molecule [6]. Since then, the vision of completely
molecule-based electronic circuits (“molecular electronics”) has inspired a huge body
of scientific research [7, 8, 9].

Starting from 1997, first experimental results for the measurement of electrical cur-
rents across one or a few organic molecules have been reported. The typical setup
consists of a self-assembled monolayer (SAM) formed by the molecules binding to a
gold surface via thiol end-groups. The contact to the other end of the molecule can
then either be formed by an STM tip [10,11] or by another gold surface. In the latter
case, a mechanically controllable break-junction technique [12], known from atomic
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1 Introduction

point contact experiments [13,14,15], is used to control the distance between the two
metal surfaces. As a third possibility, a small patch of molecules may be created in a
nanopore [16]. All these early experiments shared the problem that it was not clear
whether only one single molecule—as opposed to a few ones—had been contacted. In
order to definitely measure the conductance of individual molecules, it was necessary
to dilute the concentration of conducting molecules on the surface, either by using
a sub-monolayer coverage of the metal surface or by attaching the conducting thiol
end-groups to only a small fraction of the molecules. For the first convincing realisa-
tion of the former variant, the break-junction technique was used [17, 18]. At about
the same time, an experiment based upon the latter method was carried through [19].
Thereby, the contact on the top-side of the SAM was established indirectly via pre-
viously applied gold nanoparticles, which then have been addressed by a gold-coated
atomic force microscope (AFM) tip. In the experiment, one then observes an ensem-
ble of current voltage curves, which turn out to be quantised as integer multiples of a
fundamental curve, corresponding to single-molecule conductance.

Both from an experimental and a practical point of view, it would be desirable to
have an additional handle on the molecule. Since the typical electronic excitation
energies of molecules are of the order of an eV, corresponding to light quanta from
the optical and infrared spectral range, it is conceivable to act upon the molecules by
optical means. This would be especially favourable, because most of today’s lasers op-
erate in this very spectral regime. Optimally, a selective laser control of the electronic
currents through single molecules would then be possible. That there exist indeed
prospects for the practical realisation of such a setup, was shown very recently for the
transport through a quantum dot, i.e., an artificial molecule, which was irradiated by
a pulsed laser [20]. The measured photocurrent in this system showed the signatures
of a coherent Rabi oscillation induced in the two-level system by the external laser
field. A further promising candidate for quantum control is the so-called coherent de-
struction of tunnelling (CDT), i.e., the dynamical suppression of the tunnelling effect
in an isolated bistable potential under the influence of a strong time-periodic external
bias [21,22,23,24,25,26].

A different, widely studied phenomenon in strongly driven systems, is the so-called
ratchet effect [27,28,29,30,31,32], i.e., the emergence of directed transport even though
the net bias of all external forces vanishes. This effect, originally discovered for the
overdamped classical Brownian motion in spatially periodic, but asymmetric systems
far from thermal equilibrium, subsequently has also been put forward for dissipative,
incoherent quantum Brownian motion [33,34,35,36]. In particular, an inversion of the
ratchet current upon changing the temperature was predicted [33] and later on ex-
perimentally verified using semiconductor superlattices in GaAs-AlGaAs heterostruc-
tures [37]. More recently, the appearance of a ratchet current was also discussed in
the opposite limit of a purely coherent, Hamiltonian dynamics [38,39,40]. Related to
ratchets, which require a periodic potential, are electron pumps [41, 42, 43, 44], which
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in fact may be regarded as a localised version of a ratchet.
The theoretical description of transport through nanosystems commonly relies on

a scattering approach, which views conductance as transmission [45, 46, 47]. This ini-
tially purely phenomenological picture, known as Landauer formula, was subsequently
derived from first principles in the linear-response regime [48]. In its original form,
the Landauer formula is only applicable to transport in a static case. The extension
of the formalism to the transport in the presence of oscillating fields was not obvious,
although quite general results have already been obtained [49,50,51]. Not making use
of Floquet theory, their practical relevance was, however, rather limited. On the other
hand, the usefulness of the Floquet picture in the context of laser assisted molecu-
lar conduction has been realised for instance in the recent works [52, 53, 54]. Yet, by
calculating the current through the system via an ad hoc extension of the Landauer
formula, the theoretical basis of these approaches remained rather weak. Furthermore,
the corresponding results are only valid in the linear-response regime; either implicitly
in Refs. [52, 53] due to the use of an “independent channel approximation” or explic-
itly in Ref. [54]. A completely different description of the driven transport problem
is possible in a situation with a weak wire-lead coupling. Then, the system dynamics
can very efficiently be described within a master equation formalism [55, 56]. In this
thesis, we will put forward a generalisation of this approach.

The outline of this thesis is as follows. In Chapter 2, we introduce basic concepts
of the description of time-periodically driven systems within a Floquet theory—the
theoretical groundwork for the rest of this work. Included is a discussion of symmetries
occurring in driven systems and some remarks on the numerical methods, that have
been employed. As an exemplary application serves the driven two-level system, to
which we shall come back in the sequel of this work. In Chapter 3, we extend the
description of the wire dynamics by taking into account the contact between the
molecular environment consisting of macroscopic electronic leads and phonon modes
of the surroundings. In a weak-coupling limit, this will lead to a description in terms of
a kinetic equation. In the presence of electron-phonon coupling, this kinetic equation
no longer assumes a linear form but, within a mean-field approximation, acquires non-
linear terms. Chapter 4 concludes the formal part of this thesis. Based upon the
results from Chapters 2 and 3, we develop explicit formulae for the current flowing
across the different molecule-lead contacts.

The application of the general formalism is demonstrated in Chapter 5 for three
qualitatively different situations: (i) The resonant amplification of a small current
flowing through the molecule when a small voltage between the leads is applied. (ii)
The generation of a directed current in the absence of an external bias, i.e., a molecular
ratchet or pump. (iii) The externally controllable switching and routing of currents
in two- and three-terminal devices, based on the coherent control of the tunnelling
dynamics, discussed above. Concluding remarks and perspectives for further work are
given in Chapter 6. Finally, the appendices collect some more technical points.
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2 Floquet theory

In this work, we investigate molecules that are under the influence of a strong external
laser field. Within a semiclassical approximation for the laser field, its action can
be described by a periodic time-dependence in the molecular Hamiltonian H(t) =
H(t+T ), where T is the driving period [57]. Then, the standard way for the solution
of the corresponding Schrödinger equation

i~
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 (2.1)

via the separation ansatz |Ψ(t)〉= exp(−iEt/~)|Φ〉, where E is the eigenenergy of a
state |Φ〉, is no longer applicable. Moreover, we will consider below field strengths for
which a perturbative treatment of the time-dependence is ruled out. Yet, the time-
periodicity of the Hamiltonian allows to apply Floquet theory, a powerful tool, which
we briefly review in the present chapter.

2.1 Floquet’s theorem and basic observations

The basis of Floquet theory consists in the observation that for a time-periodic Hamil-
tonian, H(t) =H(t+ T ), there exists a complete set {|Ψα(t)〉} of solutions of the
Schrödinger equation (2.1) of the form

|Ψα(t)〉 = e−iεαt/~ |Φα(t)〉 , |Φα(t)〉 = |Φα(t+ T )〉 . (2.2)

The time-periodic functions |Φα(t)〉 are called Floquet modes or Floquet states and
the quantities εα are referred to as quasienergies. As one can verify by insertion of the
ansatz (2.2) into (2.1), they obey the eigenvalue equation(

H(t)− i~
d

dt

)
|Φα(t)〉 = εα|Φα(t)〉 . (2.3)

Different methods can be used to prove Floquet’s theorem. Here, we present a con-
structive argument. Diagonalising the one-period propagator U(T,0), where U(t,t′)
is the time-evolution operator corresponding to the Schrödinger equation (2.1), we
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2 Floquet theory

obtain
U(T, 0)|Φα(0)〉 = e−iεαT/~ |Φα(0)〉 . (2.4)

Here, we have used that all eigenvalues of a unitary operator have unit modulus and
hence can be written in the given form for some real εα. Next, we use the eigen-
states |Φα(0)〉 as initial states for the quantum mechanical time-evolution according
to Eq. (2.1), yielding the solutions |Ψα(t)〉= U(t,0)|Φα(0)〉 of the Schrödinger equa-
tion (2.1). This allows us to define the Floquet modes |Φα(t)〉 := exp(iεαt/~)|Ψα(t)〉,
which are indeed T -periodic functions:

|Φα(t+T )〉= eiεα(t+T )/~U(t+T,0)|Φα(0)〉
= eiεα(t+T )/~U(t,0)U(T,0)|Φα(0)〉
= eiεαt/~ |Ψα(t)〉= |Φα(t)〉 .

(2.5)

In the second line, we have used that owing to the time-periodicity of the Hamilto-
nian, the relation U(t+T,T ) = U(t,0) holds true for arbitrary times t. Finally, the
completeness of the set of solutions |Ψα(t)〉 follows, if we assume the completeness of
the eigenstates of U(T,0).

It is worthwhile to remark that the conceptual importance of Floquet theory
lies in the fact that it allows to separate the long-time dynamics, governed by the
quasienergies εα, from the dynamics within one driving period, determined by Floquet
modes |Φα(t)〉 [cf. Eq. (2.2)]. Note also that the quasienergies and the Floquet states
in Eq. (2.2) are not uniquely defined. In fact, the replacement

εα → εα + kα~Ω , |Φα(t)〉 → eikαΩt |Φα(t)〉 , (2.6)

where Ω := 2π/T is the angular frequency of the driving and {kα} is an arbitrary
sequence of integers, yields a new set of quasienergies and Floquet states corresponding
to the same solution |Ψα(t)〉 of the Schrödinger equation (2.1). In other words, the
quasienergies and Floquet modes come in classes, out of which one is allowed to select a
single representative, usually with quasienergy in a single “Brillouin zone” E−~Ω/2≤
εα <E+~Ω/2, where E is an arbitrary but fixed energy.1

2.2 Sambe space

2.2.1 Definition

According to the basic postulates of quantum mechanics, the state of a system is
described by a vector |ψ〉 in a Hilbert space R equipped with a inner product 〈ψ′|ψ〉.
1 The term “Brillouin zone” is borrowed from the theory of electrons moving in a periodic poten-

tial [58]. There, Bloch’s theorem, the spatial analogue of Floquet’s theorem, facilitates an efficient
description by reducing the problem to one Brillouin zone.
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2.2 Sambe space

Let us assume without restriction of the generality that there exists a countable,
complete set {|n〉} of orthonormal states, i.e.,

〈n|n′〉 = δnn′ ,
∑

n

|n〉〈n| = 1 . (2.7)

Here, δnn′ is the Kronecker delta and 1 is the unity operator in the space R.

Well known from the mathematical theory is the Hilbert space T of all T -periodic,
complex valued functions with inner product

(u, v) :=
1

T

∫ T

0

dt u∗(t)v(t) . (2.8)

The functions exp(ikΩt) with k= 0,±1,±2,... form a complete, orthonormal set in this
Hilbert space. The decomposition of an arbitrary T -periodic, complex-valued function
in this basis yields the standard Fourier series.

As first noted by Sambe [59], the time-periodicity of the Floquet modes suggests
their description in the composite Hilbert space R⊗T . Its elements, for which we
adopt the notation |Φ〉〉 [59], are the T -periodic state vectors |Φ(t)〉= |Φ(t+T )〉. In-
troducing the inner product in this space in the canonical way via

〈〈Φ′|Φ〉〉 :=
1

T

∫ T

0

dt 〈Φ′(t)|Φ(t)〉 , (2.9)

an orthonormal basis of R⊗T is given by the set of states {|Φk
n〉〉} defined by

|Φk
n(t)〉 := eikΩt |n〉 . (2.10)

The arbitrary integer k is sometimes called the sideband index.

2.2.2 Floquet theory in Sambe space

The usefulness of Sambe space for the present problem lies in the fact that the so-called
Floquet Hamiltonian

H(t) := H(t)− i~
d

dt
(2.11)

is a Hermitian operator in the vector space R⊗T . Consequently, in the composite
Hilbert space, Eq. (2.3) corresponds to the formally “time-independent”, Hermitian
eigenvalue problem

H(t)|Φα〉〉 = εα|Φα〉〉 . (2.12)

Note that, as above, there exists for each Floquet mode |Φα〉〉 with quasienergy εα an
equivalent mode

|Φk
α(t)〉 := eikΩt |Φα(t)〉 (2.13)

7



2 Floquet theory

with quasienergy
εα,k := εα + k~Ω . (2.14)

Thus, we can restrict ourselves to states with eigenvalues in one Brillouin zone, E−
~Ω/2≤ εα <E+~Ω/2.

Eigenstates belonging to the same Brillouin zone obey the following useful relation:

〈Φα(t)|Φβ(t)〉 = 〈〈Φα|Φβ〉〉 . (2.15)

In particular, orthonormalisation in R⊗T implies orthonormalisation in R at equal
times. For the proof of Eq. (2.15), we first note that 〈Φα(t)|Φβ(t)〉 is at most a periodic
function of the time t. Moreover, it satisfies

1

T

∫ T

0

dt eikΩt 〈Φα(t)|Φβ(t)〉 =
1

T

∫ T

0

dt 〈Φα(t)|Φk
β(t)〉 = 〈〈Φα|Φk

β〉〉 (2.16)

for an arbitrary integer k. Since the Floquet modes |Φα〉〉 and |Φβ〉〉 are by construction
from the same Brillouin zone, the right-hand side of the last equation vanishes for all
k 6= 0. This means that 〈Φα(t)|Φβ(t)〉 is in fact time-independent and we can carry out
the integral on the left-hand side of Eq. (2.16) to eventually obtain relation (2.15).

For later use, we introduce the decomposition of the time-dependence of a Floquet
mode |Φα〉〉 in terms of the functions exp(ikΩt), i.e., the Fourier representation

|Φα(t)〉=
∑

k

e−ikΩt |Φk〉 ,

|Φα,k〉 :=
1

T

∫ T

0

dteikΩt |Φ(t)〉 .
(2.17)

It is important, however, to always keep in mind that the states |Φα,k〉 are not or-
thonormal, because the Floquet modes are only mutually orthogonal at equal times
[cf. Eq. (2.15)].

2.3 Numerical methods

In literature, many different computational methods for the determination of Floquet
modes and quasienergies have been described. The basic idea behind one class of meth-
ods follows directly from our constructive proof of Floquet’s theorem [see Eq. (2.4)]:
First one computes the time-evolution operator after one driving period U(T,0), for
instance by means of a Runge-Kutta integration method. A numerical diagonalisation
of the resulting N ×N -matrix, N being the dimension of the spatial Hilbert space R,
then yields both the Floquet states at time t= 0 and the respective quasienergies. The
Floquet states at a later time t < T are again obtained by a numerical propagation
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according to the Schrödinger equation (2.1).

Alternatively, one can start from the Hermitian eigenvalue problem (2.12) in the
Sambe space. Then a numerical propagation of Eq. (2.1) is no longer necessary but
instead one has to deal with the higher dimensionality of the composite Hilbert space.
Yet, the numerical effort can often be reduced by choosing a particular adapted set of
basis states. Let us, in order to illustrate this point, consider a Floquet Hamiltonian
of the form

H(t) = H0 +
∞∑
l=1

Al sin(lΩt+ ϕl)Hl − i~
d

dt
. (2.18)

In the canonical basis (2.10) of R⊗T , the eigenvalue problem (2.12) then can be
written as ∑

n′k′

Hkk′

nn′ φ
k′

n′ = εΦk
n , (2.19)

where we have introduced the Floquet matrix

Hkk′

nn′ :=
(
〈n|H0|n′〉+n~Ω δnn′

)
δkk′+

∞∑
l=1

Al

2i
〈n|Hl|n′〉

(
eiϕl δk,k′+l−e−iϕl δk,k′−l

)
. (2.20)

For notational brevity, the index α of the quasienergies and the Floquet modes Φk
n :=

〈〈Φk
n|Φα〉〉 has been dropped. In passing, we note that if Al = 0 for all l > 1, Hkk′

nn′ is of
block tridiagonal structure, and thus, for instance, matrix continued-fraction methods
can be applied for the efficient computation of the eigenvalues [60]. For numerical
computations, it is of course only possible to take into account a finite number of k-
and n-values. However, as noted above, a basis set which is particularly well adapted
for a certain problem achieves convergence already for a small number of basis states.
For moderate driving strengths Al, the decomposition (2.20) with arbitrary basis states
|n〉 is a priori optimal. For weak driving, however, it is worthwhile to diagonalise
the undriven Hamiltonian H0 first, and to use the resulting eigenbasis for the states
|n〉. On the other hand, in the strongly driven regime, on which we put the main
focus in the following, the Floquet modes of the time-dependent contribution to the
Hamiltonian (2.18) form a particularly suitable basis set. Let us consider for instance
the special case A1 =A and Al = 0 for all l > 1, where the time-dependent contribution
to Eq. (2.18) is given by the Floquet Hamiltonian

H1(t) := A sin(Ωt)H1 − i~
d

dt
, (2.21)

which is readily diagonalised by the states

|Φ̄k
n(t)〉 = eikΩt+iAĒn cos(Ωt)/~Ω |n̄〉 (2.22)

with quasienergies k~Ω (independent of n). Here, |n̄〉 and Ēn denote the eigenstates
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2 Floquet theory

and the eigenenergies, respectively, of H1, i.e., H1|n̄〉= Ēn|n̄〉. Using the standard
identity

eia cos ϕ =
∑

k

ikJk(a) e−ikϕ (2.23)

for Bessel functions [61], we obtain the new Floquet matrix [62]

H̄kk′

nn′ := (−i)k−k′Jk−k′
(
A (Ēn − Ēn′)/~Ω

)
〈n̄|H0|n̄′〉+ k~Ω δkk′ δnn′ . (2.24)

2.4 Space-time symmetries of a system driven by a

dipole field

Typically, the time-dependence of the Hamiltonian H(t) results from the coupling of
a quantum mechanical system to an external electromagnetic field. Within a semi-
classical description and in the electric dipole approximation, such a situation can be
described by a Hamiltonian of the form [57]

H(x, p, t) = H0(x, p) + xa(t) . (2.25)

Here, H0(x,p) is the static Hamiltonian of the system, x and p are the position and mo-
mentum operators, respectively, and a(t) = eE(t) is a real-valued function describing
the time-dependent driving by the external electromagnetic field E(t).

Let us now consider a Hamiltonian H0(x,p) that is an even function of x and, thus,
is invariant under the parity transformation

P : x 7→ −x . (2.26)

Then, its eigenstates |ϕα〉 can be divided into two classes: even and odd ones, according
to the sign in ϕα(x) =±ϕα(−x).

Adding a periodically time-dependent dipole force xa(t) to such a Hamiltonian ev-
idently breaks the parity symmetry since P changes the sign of the interaction with
the radiation. The Floquet description in the extended space R⊗T , however, allows
to generalise the parity transformation such that the Floquet Hamiltonian

H(x, p, t) = H0(x, p) + xa(t)− i~
d

dt
, (2.27)

remains invariant. This requires that the shape of the driving a(t) is such that an
additional time transformation “repairs” the acquired minus sign. We consider two
types of transformations: generalised parity and time-reversal parity. Both occur for
purely harmonic driving, a(t) = sin(Ωt). In the following two sections, we derive their
impact on the Fourier coefficients (2.17) of the Floquet modes, which in the present

10



2.4 Space-time symmetries of a system driven by a dipole field

context are functions of the position variable x, i.e.,

Φk(x) :=
1

T

∫ T

0

dt eikΩt Φ(x, t) with Φ(x, t) := 〈x|Φ(t)〉 . (2.28)

For notational brevity, we have suppressed the index α distinguishing the different
Floquet modes.

2.4.1 Generalised parity

It has been noted previously [21,22,63] that a Floquet Hamiltonian of the form (2.27)
with a(t) = sin(Ωt) may possess degenerate quasienergies due to its symmetry under
the so-called generalised parity transformation

SGP : (x, t) → (−x, t+ π/Ω) , (2.29)

which consists of a spatial parity transformation plus a time shift by half a driving
period. This symmetry is present in the Floquet Hamiltonian (2.27), if the driving field
obeys a(t) =−a(t+π/Ω), since then SGP leaves the Floquet equation (2.12) invariant.
Owing to S2

GP = 1, we find that the corresponding Floquet states are either even or
odd, SGPΦ(x,t) = Φ(−x,t+ π/Ω) =±Φ(x,t). Consequently, the Fourier coefficients
(2.28) obey the relation

Φk(x) = ±(−1)k Φk(−x) . (2.30)

2.4.2 Time-inversion parity

A further symmetry is found if a(t) is an odd function of time, a(t) =−a(−t). Then,
time inversion transforms the Floquet Hamiltonian (2.27) into its complex conjugate
so that the corresponding symmetry is given by the anti-linear transformation

STP : (Φ, x, t) → (Φ∗,−x,−t) . (2.31)

This transformation represents a further generalisation of the parity P; we will refer
to it as time-inversion parity since in literature the term generalised parity is mostly
used in the context of the transformation (2.29).

Let us now assume that the Floquet Hamiltonian is invariant under the transforma-
tion (2.31), H(x,t) =H∗(−x,−t), and that Φ(x,t) is a Floquet state, i.e., a solution
of the eigenvalue equation (2.12) with quasienergy ε. Then, Φ∗(−x,−t) is also a Flo-
quet state with the same quasienergy. In the absence of any degeneracy, both Floquet
states must be identical and, thus, we find as a consequence of the time-inversion par-
ity STP that Φ(x,t) = Φ∗(−x,−t). This is not necessarily the case in the presence of
degeneracies, but then we are able to choose linear combinations of the (degenerate)
Floquet states which fulfil the same symmetry relation. Again we are interested in the

11



2 Floquet theory

Fourier decomposition (2.28) and obtain

Φk(x) = Φ∗k(−x) . (2.32)

The time-inversion discussed here can be generalised by an additional time-shift
to read t→ t0− t. Then, we find by the same line of argumentation that Φk(x) and
Φ∗k(−x) differ at most by a phase factor. However, for convenience one may choose
already from the start the origin of the time axis such that t0 = 0.

2.5 Example: The driven two-level system

The driven two-level system represents a simple, yet non-trivial example for the ap-
plication of the Floquet formalism. Two-level systems are abundant in many areas of
physics. Prominent representatives are the states |↑〉 and |↓〉 of a spin-1/2 particle, the
ground state |g〉 and the excited state |e〉 of an atom/ion, and the ground-state doublet
of a bistable potential. Related to the latter system and particularly important for
the present work, is a two-level system consisting of two localised atomic orbitals |L〉
and |R〉 of a molecule (see Sects. 5.3.2 and 5.4.1). Let us thus consider a Hamiltonian
of the form

H(t) =

(
Eb/2 −∆
−∆ −Eb/2

)
+
a(t)

2

(
1 0
0 −1

)
= −∆σx +

1

2
[Eb + a(t)]σz . (2.33)

Here, Eb and ∆ are the static bias and the tunnelling coupling, respectively, between
the two states. The external driving is specified by the T -periodic, but for the moment
otherwise arbitrary function a(t), which, in contrast to Eq. (2.25), has dimension
energy. In the last equation, the Hamiltonian has also been written in an alternative,
pseudo-spin form with the Pauli matrices σx =−|L〉〈R| − |R〉〈L| and σz = |L〉〈L| −
|R〉〈R|.

2.5.1 Perturbation theory in the limit of fast external driving

Quasienergies and Floquet states of the two-level system (2.33) cannot be expressed
in analytically closed form. Yet, perturbational methods allow to describe the system
dynamics reasonably well in certain limiting cases. Here, extending an approach put
forward in Ref. [64], we focus on the high-frequency regime of the external driving:
~Ω�|∆|,|Eb|. In this limit, the static contribution to Eq. (2.33) can be treated as a
perturbation. Hence, we start from the Hamiltonian

H0(t) =
a(t)

2
σz − i~

d

dt
(2.34)

12



2.5 Example: The driven two-level system

and consider the static Hamiltonian operator

H1 =
Eb

2
σz −∆σx (2.35)

to act as a perturbation.

In each Brillouin zone, the eigenvalue problem (2.12) for H0(t) has one degenerate
eigenvalue ε1,k = ε2,k = k~Ω with eigenspace spanned by the states

|φk
1(t)〉 := e−iA(t)/2~+ikΩt |L〉 , |φk

2(t)〉 := eiA(t)/2~+ikΩt |R〉 , (2.36)

where A(t) =
∫ t

0
dt′a(t′). Next, we diagonaliseH1 in each degenerate subspace, yielding

the Floquet modes

|φk
+〉〉= cos(Θ/2)eiΞ/2 |φk

1〉〉− sin(Θ/2)e−iΞ/2 |φk
2〉〉 ,

|φk
−〉〉= sin(Θ/2)eiΞ/2 |φk

1〉〉+cos(Θ/2)e−iΞ/2 |φk
2〉〉

(2.37)

with corresponding quasienergies

ε±,k = ±1

2

√
E2

b + 4|∆0|2 + k~Ω . (2.38)

The angles Θ and Ξ are defined implicitly by

tanΘ =
2|∆0|
Eb

(0≤Θ<π) , (2.39)

∆0 = |∆0|eiΞ (0≤Ξ< 2π) , (2.40)

and we have denoted the tunnelling matrix element renormalised by the Fourier coef-
ficients of exp(iA(t)/~) by

∆k :=
∆

T

∫ T

0

dt eikΩt+iA(t)/~ . (2.41)

Note that for a driving field with a(t) =−a(−t), one finds A(t) =A(−t), yielding the
relation ∆−k = ∆k. Similarly, one finds for a(t+π/Ω) =−a(t) that ∆−k = (−1)k∆∗k.
In particular, ∆0 is then real and thus Ξ = 0. For the important example of a si-
nusoidal driving force a(t) =Asin(Ωt), the Bessel function identity (2.23) yields the
renormalised tunnelling matrix elements ∆k = (−i)kJk(A/~Ω)∆.

With the expressions (2.37) and (2.38), we have already determined the Floquet
modes to zeroth order and the first-order corrections to the quasienergies, respectively.
For the rather technical details of the calculation of the first-order correction to the
Floquet modes, we refer to Appendix A. Here, we only give the resulting expression
for the matrix elements of the σz operator in the basis of the Floquet states, which is

13



2 Floquet theory

needed for the next two sections. Up to first order in H0, they follow from Eqs. (2.37)
and (A.10) as

〈〈Φα|σz|Φβ〉〉α,β=± ≈
(

cosΘ−2λsinΘ sinΘ+2λcosΘ
sinΘ+2λcosΘ −(cosΘ−2λsinΘ)

)
. (2.42)

Here, we have introduced the dimensionless, real parameter

λ :=
|∆0|

4|∆0|2 + E2
b

∑
k 6=0

|∆k|2 − |∆−k|2

k~Ω
, (2.43)

which vanishes for the two special driving forms a(t) =−a(−t) or a(t+π/Ω) =−a(t),
discussed after Eq. (2.41).

2.5.2 Coherent destruction of tunnelling

A prominent quantum effect occurring in strongly driven systems, is the so-called
coherent destruction of tunnelling (CDT) [21, 22, 23], i.e., the dynamical suppression
of the quantum mechanical tunnel effect. As a prototypical example, we will discuss
CDT in a two-level system described by Eq. (2.33) [23, 65]. Thereby, we assume that
the driving field fulfils a(t+π/Ω) =−a(t), implying λ= 0 and Ξ = 0 or Ξ = π.

CDT in an unbiased two-level system

Let us first consider the unbiased case Eb = 0. We start with a particle that initially has
been prepared in the state |Ψ(t= 0)〉= |L〉. From Eq. (2.39) we find Θ = π/2, leading
to the following expression of the initial state in terms of the adapted eigenstates of
H0:

|Ψ(t= 0)〉 = ± 1√
2

(|φ+(0)〉+ |φ−(0)〉) ≈ ± 1√
2

(|Φ+(0)〉+ |Φ−(0)〉) . (2.44)

Here, the plus (minus) sign corresponds to Ξ = 0 (Ξ = π). Owing to the orthonormality
of the states |Φ±(0)〉, the system evolves approximately according to

|Ψ(t)〉 ≈ ± 1√
2

(
e−iε+t/~ |φ+(t)〉+ e−iε−t/~ |φ−(t)〉

)
. (2.45)

Thus, we find that the probability PL(t) to find the system in the state |L〉 oscillates
with time t [66],

PL(t) ≈ cos2

(
ε+ − ε−

2~
t

)
= cos2

(
∆0

~
t

)
. (2.46)
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2.5 Example: The driven two-level system

This result corresponds to the well-known tunnel oscillations between the states |L〉
and |R〉 in the undriven situation. The only difference is that energies are substi-
tuted by quasienergies. Since the frequency of these oscillations is proportional to
the renormalised tunnelling matrix element ∆0, we expect for vanishing ∆0 a stand-
still of the tunnelling dynamics, i.e., the CDT effect. Because ∆0 is always a real
number (remember that either Ξ = 0 or Ξ = π), we obtain only one equation from
the CDT condition ∆0 = 0. Its solutions thus lie on one-dimensional manifolds in the
two-dimensional parameter space of driving amplitude A and frequency Ω [67]. For a
sinusoidal driving a(t) =Asin(Ωt), Eq. (2.23) yields ∆0 = J0(A/~Ω)∆. One therefore
obtains the vanishing of the zeroth order Bessel function J0 as condition for CDT.

Figure 2.1 shows exact results from a numerical solution of the quantum dynam-
ics (2.33). In the upper panel, the probability PL(t) is plotted for two different driving
amplitudes A. Thereby one can confirm that for the driving amplitude corresponding
to the first zero of J0 the particle rests indeed in the state |L〉, while for a slightly larger
driving amplitude tunnel oscillations between the states |L〉 and |R〉 occur. Moreover,
besides small oscillations within one driving period, the approximate result (2.46)
describes the exact dynamics reasonably well.

CDT in a biased two-level system

Although in literature CDT is commonly discussed only for spatially symmetric sys-
tems, the effect is in fact stable against a small system bias, i.e., a situation with Eb 6= 0
but still |Eb| � ~Ω. Then, we can already infer from the perturbative result (2.38)
that the quasienergies cannot be degenerate any longer; they form avoided crossings.
However, we will see that CDT still occurs whenever ∆0 = 0 is fulfilled. To see how
this comes about, we expand again a localised initial state |Ψ(t= 0)〉= |L〉 in terms of
the zeroth order Floquet modes (2.37),

|Ψ(0)〉 = ±
(
cos2(Θ/2) |φ+(0)〉+ sin2(Θ/2) |φ−(0)〉

)
. (2.47)

The same line of reasoning as above then yields the approximative result [68]

PL(t) ≈ 1

4∆2
0 + E2

b

[
E2

b + 4∆2
0 cos2

(
ε+ − ε−

2~
t

)]
(2.48)

for the probability to find the system in state |L〉 at time t [see also Eq. (2.39)]. For
∆0 = 0 the prefactor of the oscillating term vanishes and one obtains PL(t)≈ 1, i.e.,
again a suppression of the tunnelling dynamics. We point out that here the common
explanation of CDT fails. It is no longer the frequency appearing in the cosine function
that is zero at a quasienergy degeneracy, but the prefactor of the cosine that vanishes
as a consequence of the form of Floquet states (2.37).

Again, for the special case of a sinusoidal driving, our conclusion from the approxi-
mate dynamics (2.48) are in accordance with numerically exact results (cf. Fig. 2.2).
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Figure 2.1: Unbiased two-level system (Eq. (2.33) with Eb = 0) driven by a harmonic signal
a(t) = Asin(Ωt) with a driving frequency Ω = 10∆/~. Upper panel: probability
PL(t) of finding the system in the state |L〉 at time t for two different driving
amplitudes A. Shown are both exact results from a numerical diagonalisation
of the Floquet equation (2.19) (solid lines) and the approximate results (2.46)
(dashed lines). Lower panel: quasienergies as a function of the driving amplitude
A. The two driving amplitudes used in the upper panel are indicated by a dotted
vertical line.
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2.6 Summary

2.5.3 Dynamical symmetry breaking

The discussion of the space-time symmetries in Sect. 2.4 is exemplified nicely by the
two-level dynamics (2.33) without bias, i.e. Θ = π/2. For the moment, we do not
impose any further restriction on the driving field—apart from its time-periodicity.
Instead of looking at the dynamical time evolution of the two-level system, we focus
on the spatial symmetry of the Floquet modes |Φ±〉〉. As indicator for the localisation
properties of a Floquet mode, we choose the time-averaged expectation values of the
Pauli matrix σz: For perfect localisation, the absolute value of this time-averaged ex-
pectation values would be unity, while they vanish in the opposite case with delocalised
states. From the perturbative result (2.42), we find

〈〈Φ+|σz|Φ+〉〉 ≈ −〈〈Φ−|σz|Φ−〉〉 ≈ −2λ . (2.49)

As discussed after Eq. (2.43), the effective parameter λ and, thus, the time-average
of the expectation value is zero for a driving field obeying any of the two symmetries
discussed in Sect. 2.4; then both Floquet modes |Φ±〉 are completely delocalised. On
the other hand, a broken space-time symmetry leads in general to a non-vanishing λ
and consequently to a driving-induced localisation of the Floquet states.

Note that a driving field of the form a(t) =A1sin(Ωt)+A2sin(2Ωt+ϕ) allows to tune
this localisation as a function of the phase difference ϕ. From the previous discussion
it is clear, that λ has to vanish for both ϕ= 0 and ϕ= π, where a(t) =−a(−t). For
other values of ϕ, relation (2.23) may be used to obtain an expression for ∆k in terms
of a sum over a product of Bessel functions and an exponential factor containing the
phase difference ϕ. Upon insertion into Eq. (2.43) this yields an expression for λ,
which, however, cannot be written in a compact form.

2.6 Summary

In this chapter, we have reviewed some basic concepts of Floquet theory, a method
that not only gives important insights in the properties of quantum mechanical systems
with a time-periodic Hamiltonian but also permits their efficient numerical treatment.
Most naturally, Floquet theory is discussed in Sambe space, i.e., in the composite
Hilbert space R⊗T , where R is the original Hilbert space of the spatial coordinates
(including spin and other degrees of freedom of the particle) and T is the space of all
T-periodic functions in time. In Sambe space, the time-dependent problem reduces
to an effectively stationary one, a fact that allows the application of the standard
methods known from time-independent quantum mechanics.

Symmetries in R possess generalisations in the composite space R⊗T . The parity
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Figure 2.2: Probability PL(t) (upper panel) and quasienergy spectrum (lower panel) for
the biased two-level system (2.33) driven by a harmonic signal a(t) = Asin(Ωt).
All parameters and details are as in Fig. 2.1, except for the additional bias
Eb = 0.5∆.
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2.6 Summary

symmetry operation in R, for instance, may be extended in a two-fold way, leading
to either a time-inversion parity or a generalised parity operation. Such symmetries
have consequences for the Fourier coefficients of the Floquet modes.

Finally, we have discussed aspects of the simplest, non-trivial application of the
Floquet formalism, namely the driven two-level system. A perturbation theory in the
static Hamiltonian already allows to explain two important effects occurring in such
systems: (i) Coherent destruction of tunnelling, which for an unbiased system results
from a quasienergy degeneracy and for a biased system comes from a localisation of
the Floquet states. Later on, we will see that this effect permits a sensitive switching
of the currents through nanosystems. (ii) Dynamical symmetry breaking appearing in
spatially symmetric systems due to the action of a driving field with vanishing mean
but non-vanishing higher moments. The discussed two-level situation will turn out to
be a minimal example for the generation of currents in spatially symmetric systems by
means of an external driving field, i.e., an electron pump based on harmonic mixing
of different Fourier components of the driving field.
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3 Dynamics of a driven molecular wire

While isolated systems can be described by a pure state |Ψ(t)〉, it is well-known that
this is no longer the case when the system is coupled to environmental degrees of
freedom. In the present context, such a coupling originates both from contacting
the wire to macroscopic leads—this is indispensable for a transport experiment—and
from the interaction of the wire electrons with the phononic degrees of freedom of the
molecule itself and of its environment. Due to the presence of a coupling between wire
and environment, the dynamics of the wire electrons is no longer unitary, and one has
to formulate a theory in terms of a (reduced) density matrix. Then, two new important
physical effects emerge: (i) decoherence, that is loss of the quantum mechanical phase
information and (ii) dissipation, i.e., energy exchange with the environment, leading
to a relaxation of the system towards an equilibrium state. In the case of a tunnelling
coupling between wire and leads, particle exchange accompanies these processes.

Transport through systems which are merely coupled to electronic leads is com-
monly referred to as coherent transport [69, 70, 47, 9]. On the other hand, in the
incoherent regime, transport is dominated by hopping processes, whereby an inter-
mediate localisation on a wire site occurs due to the presence of electron-phonon
interaction [71, 72, 73, 47, 9]. Most challenging from a theoretical point of view is the
intermediate regime, where neither of these transport mechanisms is dominant. In the
context of molecular wire transport, this regime was only recently addressed. Different
methods ranging from a multichannel scattering approach [74, 75, 76], Liouville space
pathway techniques [77] to a scattering approach combined with a Redfield formal-
ism [78, 79] have been applied. In this chapter, we put forward a non-linear kinetic
equation approach, which allows to efficiently include oscillating fields, but requires a
weak coupling to both the leads and the phonons.

3.1 The wire and its environment

The total system consisting of the molecular wire, electronic leads, and phonon baths
together with the wire-lead and the wire-phonon coupling (cf. Fig. 3.1) is described
by a Hamiltonian of the form

H(t) = Hwire(t) +Hleads +Hwire-leads +Hphonons +Hwire-phonons . (3.1)
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` = 1 ` = 2

` = 3` = 4

Γ1 Γ2

Γ3Γ4

Figure 3.1: Molecular circuit consisting of N = 6 sites, of which the sites 1,...,L are coupled
to L = 4 leads. The molecule is under the additional influence of a laser field
(wiggled line).

The wire itself, we model by a set of noninteracting electrons in a finite, N -dimensional
Hilbert space,

Hwire(t) =
∑
n,n′

Hnn′(t) c
†
ncn′ , (3.2)

where the sums over n and n′ run over all wire sites n = 1,...,N . The fermionic
operators cn and c†n annihilate and create, respectively, an electron in the wire orbital
|n〉. Here, orthonormality 〈n|m〉= δnm of the orbitals {|n〉} is presumed. The creation
and annihilation operators hence obey the anticommutation relations [cn,c

†
m]+ = δnm

and [cn,cm]+ = [c†n,c
†
m]+ = 0, where [A,B]+ :=AB+BA.

The Hamiltonians (3.1) and (3.2) also account for a T -periodic external field acting
upon the wire, Hnn′(t+T ) =Hnn′(t). We assume in our model that the field influ-
ences only the wire itself. This is physically motivated by the fact that typical laser
frequencies are in the infrared or in the optical range. Since such frequencies lie well
below typical plasma frequencies of metals [58, 80], the laser light is reflected at the
metal surface and is not able to penetrate the leads. This justifies also our later as-
sumption that the leads remain close to equilibrium. However, it is well-known that
near the metal surface, and in particular near metallic tips, the electrical field may
be enhanced drastically [81].1 Note also that the energy of infrared light quanta is by

1 A well-established application of this effect is the so-called Surface-Enhanced Raman Scattering [82,
83], where the response increases by several orders of magnitude if the molecule is adsorbed on a
metal surface.
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3.1 The wire and its environment

far smaller than the work function of a common metal, which is of the order of 5 eV.
Thus, photoelectrons do not play a role for the further considerations.

The environment comprises both the macroscopic electronic leads as well as
phononic degrees of freedom of the molecule itself and of its surroundings. We will
discuss both contributions in the next two sections.

3.1.1 Coupling to electronic leads

We assume that there are L electronic leads, described by grand-canonical ensembles
of non-interacting electrons at a common temperature T and possibly different electro-
chemical potentials µ`, `= 1,...,L. Thus, we describe the leads by the Hamiltonian

Hleads =
L∑

`=1

∑
q

εq` c
†
q` cq` , (3.3)

where the operators cq` and c†q` destroy and create, respectively, an electron with
energy εq` in state q of lead `. All lead states are mutually orthogonal and orthogonal
to the wire states. Consequently, the anticommutation relations [cq`,c

†
q′`′ ]+ = δqq′ δ``′

and [cq`,c
†
n]+ = [cn,c

†
q`]+ = 0 are fulfilled. The equilibrium distribution of the leads is

completely specified by the expectation values

〈c†q`cq′`′〉eq = δqq′ δ``′ f(εq` − µ`) , (3.4)

where f(ε) = (eε/kBT +1)−1 denotes the Fermi function.

Furthermore, we presume that each lead is coupled to exactly one of the suitably
labelled molecular orbitals via the tunnelling Hamiltonian

Hwire-leads =
L∑

`=1

∑
q

Vq` c
†
q` c` + h.c. (3.5)

with Vq` being the tunnelling matrix elements. As it will turn out, the effect of the
coupling to the leads is completely characterised by the distribution (3.4) together
with the spectral density of the coupling

Γ`(ε) :=
2π

~
∑

q

|Vq`|2 δ(ε− εq`) , (3.6)

which becomes a continuous function of the energy ε if the lead states are dense. It
is frequently assumed that the attached leads can be described by a one-dimensional
tight-binding chain with hopping matrix elements ∆′. Then, the spectral densities
Γ`(ε) of the lead-wire couplings are given by the Newns-Anderson model [84], i.e. they
assume an semi-elliptical shape with a band width 4∆′. However, since we are mainly
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3 Dynamics of a driven molecular wire

interested in the behaviour of the molecule itself and not in the details of the lead-wire
coupling [85], we will later on assume that the conduction band width of the leads
is much larger than all remaining relevant energy scales. In this so-called wide-band
limit, we assume constant spectral-densities

Γ`(ε) = const. = Γ` . (3.7)

3.1.2 Coupling to phonon baths

The coupling of the wire electrons to environmental degrees of freedom, like high-
frequency molecular vibrational modes and low-frequency phonon modes of the sur-
rounding medium, depends in principle on many microscopic details of the system.
Here, we consider independent phonon baths, labelled by an index ν, each of which
comprises phonon modes q with frequency ωqν ,

Hphonons =
∑

ν

∑
q

~ωqν b
†
qνbqν . (3.8)

The corresponding canonical commutation relations take on the form [bqν ,b
†
q′ν′ ] =

δqq′ δνν′ and [bqν ,bq′ν′ ] = [b†qν ,b
†
q′ν′ ] = 0. Of course, all bosonic operators commute with all

fermionic operators. A complete characterisation of the equilibrium Bose-distribution
of the phonons is provided by the expectation values

〈b†qν bq′ν′〉eq = δqq′ δνν′ nB(~ωqν) (3.9)

with the Bose function nB(ε) = (eε/kBT −1)−1.

Within our model, we describe the coupling between the wire electrons and the
phonons by the Hamiltonian [86,75]

Hwire-phonons =
∑

ν

∑
n,n′

Xnn′ν c
†
ncn′

∑
q

Mqν (bqν + b†qν) , (3.10)

where theXnn′ν =X∗n′nν are Hermitian matrices and theMqν are real constants. Again,
we introduce for the coupling the spectral density

Dν(ω ≥ 0) :=
π

~
∑

q

M2
q δ(ω − ωqν) . (3.11)

For the description within a kinetic equation approach, we have to require that Dν(ω)
vanishes at least linearly for ω→ 0 [cf. Eq. (3.48) below]:

Dν(ω) ∝ ωs with s ≥ 1 . (3.12)
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3.2 Kinetic equation approach

Thus, we exclude the case of a subohmic damping. Furthermore, we extend the
definition (3.11) of Dν(ω) to negative frequencies ω < 0 by setting

Dν(ω < 0) := −Dν(−ω) . (3.13)

In our numerical calculations, we will later employ a model, where each wire site
couples locally to a separate bath with an Ohmic spectral density, thus

Xnn′ν = δnn′ δnν and Dν(ω) = κ~ω , (3.14)

where the dimensionless coupling strength κ is assumed to be identical for all sites.
This model has been used previously to describe the effect of dephasing and relaxation
in bridged molecular systems without time-dependent driving [78,79]. The local form
of the coupling disregards correlations between the baths at different wire sites and is
therefore only valid, if these are well separated in space. Note that if each bath consists
of only one single oscillator, the coupling (3.14) reduces to the standard Holstein
Hamiltonian [87].

3.2 Kinetic equation approach

Because of the wire-environment coupling, a proper description of the wire electrons
requires a formulation by means of a density operator (see also discussion in the
introduction of this chapter). We therefore consider the total density matrix %(t)
describing the wire and its environment. The dynamics is then fully specified by the
Liouville-von Neumann equation

%̇(t) = − i

~
[H(t), %(t)] (3.15)

together with an initial condition at time t= t0. Since we will not be interested in any
transient effects, we may safely assume that the long-time dynamics is independent of
any initial correlations between the wire electrons and the environmental degrees of
freedom and thus

%(t0) = %wire(t0)⊗ %env,eq . (3.16)

The environment is assumed to be in thermal equilibrium and %wire(t) := Trenv%(t)
is the reduced density matrix of the wire electrons. Our aim is to eliminate the
environmental degrees of freedom in the regime of a weak wire-environment cou-
pling, yielding a complete description in terms of the reduced density matrix %wire(t).
An oft-used, systematic method to achieve this goal is the so-called projection op-
erator technique [88, 89]. Here, we present a different, for the present purposes
more direct derivation [90, 91]. To this end, we focus on the coupling Hamiltonian
Hcoupl :=Hwire-leads +Hwire-phonons by switching to the interaction picture with respect
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3 Dynamics of a driven molecular wire

to the uncoupled dynamics, defined by the operators Õ(t,t′) := U †0(t,t
′)O(t)U0(t,t

′),
where O(t) is an arbitrary operator in the Schrödinger picture and

U0(t, t
′) =

←
T exp

(
− i

~

∫ t

t′
dt′′ [Hwire(t

′′) +Hleads +Hphonons]

)
. (3.17)

is the propagator of wire and environment in the absence of Hcoupl. Here,
←
T denotes

the time-ordering operator, which sorts operators in such a way that those at the latest
time appear farthest to the left. The Liouville-von Neumann equation then assumes
the form

˙̃%(t, t0) = − i

~
[H̃coupl(t, t0), %̃(t, t0)] , (3.18)

which reads after integration

%̃(t, t0) = %̃(t0, t0)−
i

~

t−t0∫
0

dτ [H̃coupl(t− τ, t0), %̃(t− τ, t0)] . (3.19)

Upon re-insertion of this relation into the right-hand side of Eq. (3.18), we arrive at
the integro-differential equation

˙̃%(t,t0) =− i

~
[H̃coupl(t,t0),%̃(t0,t0)]

− 1

~2

t−t0∫
0

dτ [H̃coupl(t,t0),[H̃coupl(t− τ,t0),%̃(t− τ,t0)]] ,
(3.20)

which still describes the exact dynamics of the total system %(t). At this point, we as-
sume that the dynamics induced by transitions due to the weak coupling Hcoupl is slow,
so that we may approximate %̃(t− τ,t0) by %̃(t,t0) in the integral. This so-called Born-
Markov-approximation of course also requires t� t0. After a back transformation into
the Schrödinger picture, we therefore consider the asymptotic limit t0 →−∞. Fur-
thermore, we presume that the environment always stays in thermal equilibrium and
neglect correlations between the wire and the environment, i.e., %(t) = %wire(t)⊗%env,eq

for all times t. Tracing out the environmental degrees of freedom, we finally arrive at
the master equation

%̇wire(t) =− i

~
[Hwire(t),%wire(t)]

− 1

~2

∞∫
0

dτTrenv[Hcoupl,[H̃coupl(t− τ,t),%wire(t)⊗%env,eq]] .
(3.21)
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3.2 Kinetic equation approach

Here, the first term describes the coherent dynamics of the isolated wire, while the
second term corresponds to incoherent transitions between different wire states. Cor-
respondingly, it cannot be cast into the commutator form of the first term.

Equation (3.21) determines the time-evolution of the expectation value 〈Owire(t)〉t =
Tr[%(t)Owire(t)] of an arbitrary operator Owire(t) in the Hilbert space of the wire. After
some straightforward algebraic manipulations, we obtain the dynamical equation

d

dt
〈Owire(t)〉t = 〈

◦
Owire(t)〉t −

1

~2

∞∫
0

dτ 〈[[Owire(t), Hcoupl], H̃coupl(t− τ, t)]〉t , (3.22)

where we have introduced the observable

◦
Owire(t) :=

i

~
[Hwire(t), Owire(t)] +

dOwire(t)

dt
, (3.23)

which describes the coherent time-variation of Owire(t) [92].

3.2.1 Coherent dynamics

In principle, all one-electron wire expectation values at a time t can be expressed as
linear combinations of the quantities 〈c†ncn′〉t. However, as emphasised in Chapter 2,
the coherent dynamics of a time-periodically driven system is most efficiently described
by the Floquet modes |Φα(t)〉, i.e., the solutions of Eq. (2.3). This Floquet equation
assumes in the present context, where H(t) =Hwire(t) =

∑
nn′ |n〉Hnn′(t)〈n′|, the form( ∑

n,n′

|n〉Hnn′(t)〈n′| − i~
d

dt

)
|Φα(t)〉 = εα|Φα(t)〉 . (3.24)

In terms of the fermionic creation and annihilation operators, the Floquet modes
translate into a “Floquet picture”, defined by the time-dependent transformation

cα(t) =
∑

n

〈Φα(t)|n〉 cn . (3.25)

The inverse transformation

cn =
∑

α

〈n|Φα(t)〉 cα(t) (3.26)

follows from the mutual orthogonality (2.15) and the completeness of the Floquet
states at equal times [93, 26]. Note that the right-hand side of Eq. (3.26) becomes
t-independent after the summation. In the interaction picture, the operators cα(t)
obey

c̃α(t, t′) = U †0(t, t
′) cα(t)U0(t, t

′) = e−iεα(t−t′)/~ cα(t′) . (3.27)

27



3 Dynamics of a driven molecular wire

This is easily verified by differentiating the expression after the first equal sign with
respect to t and by using that |Φα(t)〉 is a solution of the eigenvalue equation (3.24).
The proof is completed by noting that Eq. (3.27) fulfils the initial condition c̃α(t′,t′) =
cα(t′).

Using the operators c†β(t)cα(t) with α,β = 1,...,N , for Owire(t) in Eqs. (3.22) and
(3.23), we obtain after a straightforward calculation that their coherent time-variation
is very simple indeed, namely

(c†β(t) cα(t))◦ = − i

~
(εα − εβ) c†β(t) cα(t) . (3.28)

In other words, the coherent part of Eq. (3.22) has been solved by the canonical
transformation (3.25).

3.2.2 Incoherent dynamics

The discussion of the coherent time-evolution has yielded the adequate basis operators
Owire(t) = c†β(t)cα(t) with corresponding expectation values

Pαβ(t) := 〈c†β(t) cα(t)〉t . (3.29)

As for the incoherent contributions, we now consider subsequently the terms result-
ing from the coupling to the electronic leads (3.5) and to the phonons (3.10). Note
that each such contribution may be treated separately since the equilibrium distri-
bution %env,eq of the environmental degrees of freedom contained in the expectation
value of the integrand of Eq. (3.22) contains no correlations between the different
reservoirs. In the following, we will derive from the master equation (3.21) for the
reduced, many-particle density matrix %wire(t) within a mean-field approximation the
non-linear kinetic equation

dPαβ(t)

dt
=− i

~
(εα− εβ)Pαβ(t)

+
∑
α′β′

[
Rleads

αβα′β′(t)+Rphonons
αβα′β′ (t)

]
Pα′β′(t)

+
∑

α′β′α′′β′′

Qphonons
αβα′β′α′′β′′(t)Pα′β′(t)Pα′′β′′(t)

+S leads
αβ (t) .

(3.30)

for the one-particle expectation values Pαβ(t). This equation presents one of the cen-
tral formal results of the present work. Here, Rleads

αβα′β′(t) and Rphonons
αβα′β′ (t) are Redfield

tensors resulting from the wire-lead and electron-phonon coupling, respectively. In ad-
dition, within a mean-field approximation, the electron-phonon coupling contributes a
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3.2 Kinetic equation approach

quadratic term with coefficient tensor Qphonons
αβα′β′α′′β′′(t). Finally, the source term Sleads

αβ (t)
reflects the in- and outflux of electrons from and to the leads. The specific form of
these contributions will be derived in the following sections.

Contribution from coupling to electronic leads

For a wire operatorOwire(t) consisting of an even number of creation and/or destruction
operators, the integral in Eq. (3.22) can be cast into the form

1

~2

∞∫
0

dτ 〈[[Owire(t),Hwire-leads],H̃wire-leads(t− τ,t)]〉t

=
L∑

`=1

∞∫
0

dτ

~

∫
dε

2π
Γ`(ε)

{
eiετ/~

[
〈[[Owire(t),c`],c̃

†
`]+〉tf(ε−µ`)−〈c̃†`[Owire(t),c`]〉t

]
− e−iετ/~

[
〈[[Owire(t),c

†
`],c̃`]+〉tf(ε−µ`)−〈[Owire(t),c

†
`] c̃`〉t

]}
.

(3.31)

Here, we have used for the lead operators the relation c̃q`(t− τ,t) = exp(iεq`τ/~)cq` to-
gether with the equilibrium expectation values (3.4). For notational compactness, the
time arguments of the interaction picture operators c̃`(t− τ,t) have been suppressed.

In view of Eq. (3.29), we now have to consider the special case Owire(t) = c†β(t)cα(t),
for which the commutators in Eq. (3.31) are readily evaluated using Eq. (3.26) to read

[c†β(t) cα(t), c`] = −〈`|Φβ(t)〉 cα(t) , [c†β(t) cα(t), c†`] = 〈Φα(t)|`〉 c†β(t) . (3.32)

Moreover, the transformation (3.26) yields in conjunction with Eqs. (2.13), (2.14),
(2.17), and (3.27) the spectral decomposition of the wire operators in the interaction
picture,

c̃`(t− τ, t) =
∑
α′k

e−ikΩt eiεα′,kτ/~〈`|Φα′,k〉 cα′(t) . (3.33)

With the aid of the last two equations, one may readily carry out the time and the en-
ergy integrations in Eq. (3.31). Inserting the resulting expressions into the dynamical
equation (3.22) then yields the Redfield tensor

Rleads
αβα′β′(t) =−1

2

L∑
`=1

∑
kk′

ei(k′−k)Ωt
{

Γ`(εα′,k)〈Φα,k′|`〉〈`|Φα′,k〉δββ′

+Γ`(εβ′,k′)〈Φβ′,k′|`〉〈`|Φβ,k〉δαα′

} (3.34)
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3 Dynamics of a driven molecular wire

and the source terms

S leads
αβ (t) =

1

2

L∑
`=1

∑
kk′

ei(k′−k)Ωt〈Φα,k′|`〉〈`|Φβ,k〉
{
Γ`(εα,k)f(εα,k−µ`)

+Γ`(εβ,k)f(εβ,k−µ`)
}
.

(3.35)

Note that principal value terms stemming from an energy renormalisation due to the
coupling to the leads have been neglected in Eqs. (3.34) and (3.35). For later use,
we note that in the wide-band limit (3.7) for the wire-lead coupling these expressions
assume the more compact form

Rleads
αβα′β′(t) =−

L∑
`=1

Γ`

2

∑
kk′

ei(k′−k)Ωt{〈Φα,k′|`〉〈`|Φα′,k〉δββ′ + 〈Φβ′,k′|`〉〈`|Φβ,k〉δαα′}

(3.36)

and

S leads
αβ (t) =

L∑
`=1

Γ`

2

∑
kk′

ei(k′−k)Ωt〈Φα,k′|`〉〈`|Φβ,k〉{f(εα,k−µ`)+f(εβ,k−µ`)} . (3.37)

Contribution from coupling to phonons

For the derivation of the phononic contributions to the kinetic equation (3.30), we
write the electron-phonon coupling Hamiltonian (3.10) as

Hwire-phonons =
∑

ν

Xν Fν (3.38)

with the position and force operators

Xν :=
∑
n,n′

Xnn′ν c
†
ncn′ , Fν :=

∑
q

Mqν(bqν + b†qν) . (3.39)

Then, the integral in Eq. (3.21) can be expressed as

1

~2

∞∫
0

dτ 〈[[Owire(t),Hwire-phonons],H̃wire-phonons(t− τ,t)]〉t

=
1

~
∑

ν

∞∫
0

dτ Sν(τ)〈[[Owire(t),Xν ],X̃ν(t− τ,t)]〉t

+
i

~
∑

ν

∞∫
0

dτ Aν(τ)〈[[Owire(t),Xν ],X̃ν(t− τ,t)]+〉t .

(3.40)
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3.2 Kinetic equation approach

Here, we have introduced the symmetrised and antisymmetrised autocorrelation func-
tions

Sν(τ) :=
1

2~
〈[F̃ν(τ),Fν ]+〉eq =

∞∫
0

dω

π
Dν(ω)coth(~ω/2kBT )cos(ωτ) , (3.41)

Aν(τ) :=
1

2i~
〈[F̃ν(τ),Fν ]〉eq =−

∞∫
0

dω

π
Dν(ω)sin(ωτ) , (3.42)

which fully characterise the fluctuation properties of the environment. For the ex-
pression of the autocorrelation functions in terms of the spectral density (3.11) we
have made use of the equilibrium expectation values (3.21) together with the relation
nB(ε) = 1

2
[coth(ε/2kBT )−1]. Note that coth(x) = 1/x+O(x) so that the existence of

the low-frequency contributions to the integral (3.41) is well guaranteed by for the
Ohmic and superohmic case (3.12).

Like for the wire-lead coupling, the next step consists in the evaluation of the dy-
namical equation (3.40) for Owire(t) = c†β(t)cα(t). Here, however, because of the dif-
ferent structure of the electron-phonon coupling Hamiltonian (3.38) compared with
that of the wire-lead coupling (3.5), it is impossible to obtain a closed set of equations
for the expectation values Pαβ(t) like that in Eq. (3.34). Instead, the expectation
values in the third line of Eq. (3.40), i.e., the terms proportional to the antisym-
metrised autocorrelation functions Aν(τ), generate higher order terms of the structure
〈c†δ(t)c†γ(t)cβ(t)cα(t)〉t. This leads to a hierarchy of equations for all wire expectation
values with up to N destruction and creation operators. To close this hierarchy already
at the level of the Pαβ(t), we adopt the mean-field approximation

〈c†δ(t)c
†
γ(t)cβ(t)cα(t)〉t≈ 〈c†δ(t)cα(t)〉t〈c†γ(t)cβ(t)〉t−〈c†δ(t)cβ(t)〉t〈c†γ(t)cα(t)〉t

=Pαδ(t)Pβγ(t)−Pβδ(t)Pαγ(t) .
(3.43)

Though such a crude approximation does only cover the most basic properties of the
many-particle problem (3.38), it enables an efficient treatment of the present problem.
Moreover, in thermal equilibrium, i.e., in the absence of a time-dependent driving and
without external bias, it gives a solution that guarantees that the current through
the wire vanishes, as will be demonstrated in Sects. 3.4.1 and 5.3.1. In other words,
the mean-field approximation (3.43) yields a description that is consistent with the
second law of thermodynamics. We remark that in principle one could also include
electron-electron interaction in the framework of the mean-field approximation (3.43),
similar to the approach put forward in Refs. [94, 95]. However, in order to focus on
the phonon-mediated interaction effects, we refrain from doing so in the present work.

We emphasise that if one considers only one particle, the mean-field approxima-
tion (3.43) fails completely, because then all two-particle expectation values at equal

31



3 Dynamics of a driven molecular wire

times vanish exactly. Consequently, non-linear terms of the type (3.43) do not appear.
For the description of the transport problem, such a one-particle case is often assumed
beforehand [74, 75, 76, 77, 78, 79]. The same happens, if one considers a fixed number
of wire electrons, say one, like in the case without a tunnelling coupling to external
leads. Then, by omitting in the non-linear kinetic equation (3.30) all terms quadratic
in Pαβ(t), one arrives back at the linear master equation that has been used for the
description of dissipative quantum systems, e.g., in Refs. [96,97,98,99,100,26,101,102].

For the further evaluation of Eq. (3.40), we now express the operator Xν and its
interaction picture version X̃ν(t− τ,t) in terms of the Floquet picture operators at
time t, yielding

Xν =
N∑

α,β=1

∑
k

eikΩtX̄ν
αβ,k c

†
α(t)cβ(t) , (3.44)

X̃ν(t− τ,t) =
N∑

α,β=1

∑
k

eikΩtei(εβ−εα−k~Ω)τ/~X̄ν
αβ,k c

†
α(t)cβ(t) . (3.45)

Here, we have abbreviated the time-averaged coupling matrix elements in the Floquet
basis by

X̄ν
αβ,k :=

∑
n,n′

∑
k′

〈Φα,k+k′|n〉Xnn′ν〈n′|Φβ,k′〉 . (3.46)

Disregarding again the principal value integrals which correspond to an energy renor-
malisation due to the electron-phonon coupling, we arrive at the Redfield tensor of
the electron-phonon coupling

Rphonons
αβα′β′ (t) =

∑
ν

∑
k,k′

ei(k′−k)Ωt
{

[Nν(∆αα′,k′)+Nν(∆ββ′,k)]X̄
ν
αα′,k′ X̄

ν
β′β,−k

− δαα′

∑
α′′

Nν(∆α′′β′,k)X̄
ν
α′′β,k′ X̄

ν
β′α′′−k

− δββ′

∑
β′′

Nν(∆β′′α′,k′)X̄
ν
β′′α′,k′ X̄

ν
αβ′′,−k

}
.

(3.47)

Here, the functions Nν(ε) are defined for each phonon bath ν by

Nν(ε) :=
1

~
Dν(ε/~)nB(ε) . (3.48)

Note that owing to the restriction (3.12), the Nν(ε) are well-defined in the limit ε→ 0.
Furthermore, we have abbreviated the quasienergy differences as

∆αβ,k := εα − εβ + k~Ω . (3.49)
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3.3 Rotating-wave approximation

The coefficient tensor of the quadratic contributions reads

Qphonons
αβα′β′α′′β′′(t) =

1

~
∑

ν

∑
k,k′

ei(k′−k)Ωt
{
Dν(∆β′α′′,k′/~)X̄ν

β′α′′,k′ X̄
ν
β′′β,−kδαα′

+Dν(∆β′α′,k′/~)X̄ν
β′α′,k′ X̄

ν
αα′′,−kδββ′′

−Dν(∆β′α′,k′/~)X̄ν
β′α′,k′ X̄

ν
β′′β,−kδαα′′

−Dν(∆β′′α′,k′/~)X̄ν
β′′α′,k′ X̄

ν
αα′′,−kδββ′

}
.

(3.50)

Obviously, these quadratic contributions do not depend on the temperature but only
on the spectral densities Dν(ω) and the matrix elements X̄ν

αβ,k of the coupling to the
phonon baths.

For later use, we remark that because of the particle number conserving cou-
pling (3.10), the partial traces over the tensors Rphonons

αβα′β′ (t) and Qphonons
αβα′β′α′′β′′(t) fulfil

the identities ∑
α

Rphonons
ααα′β′ (t) = 0 , (3.51)∑

α

Qphonons
ααα′β′α′′β′′(t) =−

∑
α

Qphonons
ααα′′β′′α′β′(t) . (3.52)

Their verification from the respective definitions (3.47) and (3.50) is straightforward.

3.3 Rotating-wave approximation

For a very weak coupling between the wire electrons and the environmental degrees
of freedom, the coherent time-evolution (3.28) dominates the dynamics of the density
matrix Pαβ(t). Thus, it is convenient to define the interaction picture

P̃αβ(t) := ei(εα−εβ)t/~ Pαβ(t) (3.53)

with respect to the dynamics of the wire electrons including the oscillating driving-
force. Inserting this definition into the kinetic equation (3.30), yields the new equations
of motion

dP̃αβ(t)

dt
=

∑
α′β′

ei(εα−εβ−εα′+εβ′ )t/~Rleads
αβα′β′(t)P̃α′β′(t)+ei(εα−εβ)t/~ S leads

αβ (t) . (3.54)

The contribution due to the coherent dynamics has moved to the exponential prefac-
tors, which thereby have acquired an additional time-dependency. Since the rotating-
wave approximation is most useful in a situation without electron-phonon coupling
[cf. discussion after Eq. (3.59) below], we consider in Eq. (3.54) only the wire-lead
coupling. The more tedious derivation of the RWA for the electron-phonon coupling
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3 Dynamics of a driven molecular wire

is discussed in Appendix B.

The largest time-scale of the coherent evolution is determined by the smallest
quasienergy difference ∆αβ,k, while the dissipative time-scale is of the order of the
coupling rates Γ`(ε). We now assume that both time-scales are well-separated, , i.e.,

|εα − εβ + k~Ω| � ~Γ`(ε) for all `, k, ε and α 6= β . (3.55)

In particular, this requires that the quasienergy spectrum has no degeneracies. Then,
it is possible to replace the time-dependent coefficients in Eq. (3.54) by their time-
averages. This yields only contributions when either α= α′ and β = β′ or α= β and
α′ = β′ (for details, see Appendix B). Thus, the dynamics of the diagonal and the
off-diagonal density matrix elements separates

˙̃
Pαα(t) =−wleads

α P̃αα(t)+sleads
α , (3.56)

˙̃
Pαβ(t) =−1

2

(
wleads

α +wleads
β

)
P̃αβ(t) , α 6= β . (3.57)

The rates of this RWA master equation are given by

wleads
α :=

L∑
`=1

∑
k

|〈`|Φα,k〉|2 Γ`(εα,k) (3.58)

and

sleads
α :=

L∑
`=1

∑
k

|〈`|Φα,k〉|2 Γ`(εα,k)f(εα,k−µ`) . (3.59)

We remark that a similar RWA approximation was used in Refs. [55, 56] for the de-
scription of driven transport in the presence of Coulomb interactions.

From the RWA master equation (3.56) follows that the off-diagonal elements decay
on a time-scale determined by (wleads

α +wleads
β )/2, while the diagonal elements converge

to a finite value. Therefore, the stationary solution is diagonal,

Pαβ = Pα δαβ , (3.60)

with the populations Pα given by the weighted average

Pα =
sleads

α

wleads
α

=

∑L
`=1

∑
k |〈`|Φα,k〉|2 Γ`(εα,k)f(εα,k − µ`)∑L
`=1

∑
k |〈`|Φα,k〉|2 Γ`(εα,k)

. (3.61)

Thus, the one-particle density matrix becomes time-independent and diagonal in the
Floquet basis.
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Finally, we note that in the presence of electron-phonon interaction, diagonal and
off-diagonal dynamics no longer decouple [cf. Eqs. (B.6) and (B.9)]. Moreover, even
if we conjecture that the reduced density matrix at asymptotic times is diagonal, we
obtain from Eq. (B.6) a set of non-linear equations for the populations Pαα(t), which,
in general, cannot be solved analytically. This restricts the usefulness of the rotating-
wave approximation in the presence of electron-phonon interaction.

3.4 Analytical solutions for two special cases

3.4.1 Thermal equilibrium

In thermal equilibrium, i.e., for a time-independent Hamiltonian (H(t) =:H0) and in
the absence of an external bias (µ` = const.=: µ), the Fermi distribution

Pαβ = f(Eα − µ) δαβ (3.62)

solves the set (3.30) of non-linear equations.2 Here, the indices α and β refer to the
different eigenstates of H0, and Eα is the corresponding eigenenergy. For details, we
refer the reader to Appendix C. We only remark that the proof is based upon the
identity (C.10) for Bose and Fermi functions. We will later see that the solution (3.62)
guarantees the absence of a current through the molecule in thermal equilibrium.

3.4.2 Equal coupling to all leads in the wide-band limit without

electron-phonon coupling

Let us consider the wide-band limit (3.7) with the additional restriction that each wire
site is equally strong coupled to the adjacent lead, i.e.,

Γ` = Γ and L = N . (3.63)

Note that a similar assumption was used in Refs. [103, 50]. However, for the typical
situation of a contact to two leads (L= 2), it implies the restriction to a two-site wire
(N = 2). From Eq. (3.36), we then obtain with the help of the completeness of the
wire states |`〉 and the orthogonality of the Floquet modes |Φα(t)〉 at equal times the
Redfield tensor

Rleads
αβα′β′(t) = −Γ δαα′δββ′ . (3.64)

2 Of course, thermal equilibrium requires all baths to be at a common temperature, as was put into
our model from the very beginning.
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3 Dynamics of a driven molecular wire

Without electron-phonon coupling, it is then possible to derive an explicit expression
for the solution of the kinetic equation (3.30) at asymptotic times t→∞, namely

Pαβ(t) =
Γ

2

∑
kk′

ei(k−k′)Ωt

∑L
`=1

[
f(εα,k − µ`) + f(εβ,k′ − µ`)

]
〈Φα,k|`〉〈`|Φβ,k′〉

i(εα,k − εβ,k′)/~ + Γ
. (3.65)

Granted that εα,k 6= εβ,k for α 6= β and arbitrary k, k′, the explicit solution (3.65) yields
to first order in the coupling strength Γ a diagonal solution with the populations

Pα =
∑

k

L∑
`=1

f(εα,k − µ`)|〈`|Φα,k〉|2 (3.66)

of a state α, consistent with the RWA expression (3.61).

3.5 Numerical solution of the kinetic equation

In general, one has to resort to numerical methods for the solution of the master
equation (3.30). Let us first discuss the situation without coupling to phonon baths,
where the kinetic equation assumes a linear, dissipative, periodically time-dependent
form. Hence, its solution Pαβ(t) shares in the long-time limit the time-periodicity of
the driving field, and can be decomposed in the Fourier series

Pαβ(t) =
∑

k

e−ikΩtPαβ,k , Pαβ,k :=

∫ T

0

dt eikΩt Pαβ(t) . (3.67)

A spectral decomposition of the master equation (3.30) then yields an infinite set of
linear equations for the Pαβ,k. In the wide-band limit (3.7), which we shall adopt in
all numerical calculations below, they assume the form [90,104]

i

~
(εβ− εα +k~Ω)Pαβ,k =

L∑
`=1

Γ`

2

∑
k′

{∑
α′k′′

〈Φα,k′+k′′|`〉〈`|Φα′,k+k′′〉Pα′β,k′

+
∑
β′k′′

〈Φβ′,k′+k′′|`〉〈`|Φβ,k+k′′〉Pαβ′,k′

−〈Φα,k′|`〉〈`|Φβ,k′+k〉f(εα,k′−µ`)

−〈Φα,k′−k|`〉〈`|Φβ,k′〉f(εβ,k′−µ`)
}
.

(3.68)

Note that typically a large number of sidebands contributes significantly to the Fourier
decomposition of the Floquet modes |Φα(t)〉. On the other hand, numerical conver-
gence for the solution of the master equation (3.68) is already obtained by using a few
sidebands for the decomposition of Pαβ(t). This justifies a posteriori the use of the
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Floquet basis (3.26). In many cases it even suffices to only take into account the time-
averages Pαβ,0, amounting to a moderate rotating-wave approximation [97,98]. Thus,
the numerical effort for the solution of Eq. (3.68) is rather small, and, in particular,
not the limiting step of the entire numerical procedure.

In the presence of electron-phonon coupling, we use a numerical propagation scheme
for the computation of the long-time limit of the solutions of the set of non-linear equa-
tions (3.30). From the resulting time-series one can first verify the T -periodicity of
the solution and then compute the Fourier coefficients Pαβ,k directly from their defini-
tion (3.67). In contrast to solving the set of linear equations (3.68), the propagation
scheme is numerically rather time-consuming and, especially in the strongly driven
regime, only applicable for not too large systems.

3.6 Summary

The topic of this chapter has been the description of a T -periodically driven molecular
structure, being weakly coupled to several macroscopic electronic leads and to phonon
baths of the surrounding. Starting from the exact dynamics (3.15) of the total system
comprising molecule plus environment, we have derived the kinetic equation (3.30) for
the reduced density matrix in the Floquet basis.

It turned out that the influence of an electronic lead ` is fully determined by the
density of state of the coupling Γ`(ε) defined in Eq. (3.6) together with the Fermi
distribution function f(ε−µ`). In the sequel of this work, we will assume the wide-
band limit (3.7), that is, spectral densities which do not depend on the energy ε. An
important feature of the wire-lead coupling is that is does not conserve the electron
number on the wire, resulting in source terms S leads

αβ (t) in the kinetic equation (3.30).

The coupling to the phonon bath ν is specified by the coupling matrix elements
Xnn′ν in conjunction with the spectral density Dν(ω) from Eqs. (3.11) and (3.13)
as well as the Bose distribution nB(~ω). The form (3.10) of the electron-phonon
coupling generates—even within the weak-coupling approach we have put forward—
higher order expectation values, which do not occur within a single-particle theory.
However, since the electron number on the wire is not fixed, we have to include them for
a consistent theory. In the framework of our approach, this has been done within the
mean-field approximation (3.43), leading to non-linear terms in the kinetic equation.
Fortunately, this approximation yields the Fermi distribution as thermal equilibrium
solution, thus preventing a non-zero current through the molecule.

Compared to the approaches mentioned in the introduction of this chapter [74, 75,
76,77,78,79], which use a one-particle picture, we put forward a description that takes
into account the phonon-mediated interaction, albeit in a mean-field approximation.
On the other hand, we have to require a weak-coupling of the wire-electrons to both
the leads and the phonons, which is not necessary in a scattering approach like that of
Refs. [74, 75, 76, 78, 79]. Yet, our approach goes beyond the rotating-wave approxima-
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3 Dynamics of a driven molecular wire

tion, which is frequently employed, e.g., in Refs. [55, 56]. Especially the latter point
turns out to be crucial in certain parameter regimes (see, for instance, Sect. 5.4.1).

Apart from this equilibrium situation, an analytical solution has been found only in
the special case of equal coupling between all sites and all leads in the wide-band limit
without electron-phonon interaction. Otherwise, one has to resort to approximation
schemes or numerical methods for the determination of the stationary solution of the
master equation. Commonly employed is the rotating-wave approximation, which, in
the absence of electron-phonon interaction, results in a decoupled set of equations that
can be solved explicitly.
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4 Electrical current through the wire

The central quantity of interest in the present work is the electrical current through
the molecular wire. We will derive here expressions for both the time-dependent and
the time-averaged current across the different wire-lead contacts, which are based on
the solution of the kinetic equation from the previous chapter.

4.1 Time-dependent electrical current

The net (incoming minus outgoing) current through contact ` is given by the nega-
tive time derivative of the electron number N` =

∑
q c
†
q`cq` in lead ` multiplied by the

electron charge −e,
I`(t) = e

d

dt
〈N`〉t =

ie

~
〈
[H(t), N`]

〉
t
. (4.1)

For the Hamiltonian (3.1), the commutator in Eq. (4.1) is readily evaluated to read

I`(t) = −2e

~
Im

∑
q

Vq`〈c†q`c`〉t . (4.2)

It is now convenient to switch to the interaction picture with respect to the uncoupled
dynamics, which is governed by the Liouville-von Neumann equation in its integrated
form (3.18). Inserting into Eq. (4.2), we obtain for the current

I`(t) = − 2e

~
Im

∑
q

Vq`Tr[c̃†q`(t− t0) c̃`(t,t0)%̃(t0,t0)]

+
2e

~2
Re

∑
q

Vq`

t−t0∫
0

dτ Tr
{
c̃†q`(t− t0)c̃`(t,t0)[H̃coupl(t− τ,t0),%̃(t− τ,t0)]

}
.

(4.3)

Due to the factorising initial condition (3.16), the first line of the last equation vanishes.
Using the identity TrA[B,C] = Tr[A,B]C, we thus arrive at

I`(t) =
2e

~2
Re

∑
q

Vq`

t−t0∫
0

dτ Tr
{

[c̃†q`(t− t0)c̃`(t, t0), H̃coupl(t− τ, t0)] %̃(t− τ, t0)
}
.

(4.4)
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4 Electrical current through the wire

Evaluating the commutator appearing under the trace then yields after some algebra
the stationary (t0→−∞), time-dependent net electrical current through the contact `,

I`(t) =
e

π~
Re

∞∫
0

dτ

∫
dε Γ`(ε) eiετ/~

{〈
c†` c̃`(t, t− τ)

〉
t−τ

− [c†`, c̃`(t, t− τ)]+f(ε− µ`)
}
.

(4.5)
Here, we have used that for a weak wire-lead coupling, expectation values of lead
operators are at all times given by their equilibrium values (3.4). Note that the
anti-commutator [c†`,c̃`(t,t− τ)]+ is in fact a c-number, which by means of the trans-
formation (3.26) and the interaction picture dynamics (3.27) of the wire operators in
the Floquet picture reads

[c†`, c̃`(t, t− τ)]+ =
∑

α

e−iεατ/~ 〈Φα(t− τ)|`〉〈`|Φα(t)〉 . (4.6)

Similarly, the expectation value appearing in the current formula (4.5) can be expressed
in terms of the density-matrix elements (3.29) as〈

c†` c̃`(t, t− τ)
〉

t−τ
=

∑
αβ

e−iεατ/~ 〈Φβ(t− τ)|`〉〈`|Φα(t)〉Pαβ(t− τ) . (4.7)

Using the spectral decomposition (3.67) of the density matrix (see also discussion in
last paragraph of Sect. 3.5), these relations together with the spectral decomposi-
tion (3.67) of the Floquet states allow to carry out the time and energy integrals in
the expression (4.5) for the net current entering the wire from the lead `. We shall
only give the result in the wide-band limit (3.7)—its extension to the general case is
straightforward. The first contribution of the ε-integral in Eq. (4.5) is then readily
evaluated to yield an expression proportional to δ(τ). Thus, we obtain for the current
the spectral decomposition

I`(t) =
∑

k

e−ikΩt Ik
` , (4.8)

with the Fourier components

Ik
` = eΓ`

[ ∑
αβk′k′′

〈Φβ,k′+k′′|`〉〈`|Φα,k+k′′〉Pαβ,k′

− 1

2

∑
αk′

(
〈Φα,k′|`〉〈`|Φα,k+k′〉+ 〈Φα,k′−k|`〉〈`|Φα,k′〉

)
f(εα,k′−µ`)

− i

2

∑
αk′

(
〈Φα,k′|`〉〈`|Φα,k+k′〉−〈Φα,k′−k|`〉〈`|Φα,k′〉

)
P

∫
dε

π

f(ε−µ`)

ε− εα,k′

]
.

(4.9)
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4.2 Time-averaged current

Here, P denotes the principal value of the integral; the corresponding term does not
contribute to the time-averaged (dc) components I0

` .

4.2 Time-averaged current

Equation (4.8) implies that the current I`(t) obeys the time-periodicity of the driving
field. Since we consider here excitations by a laser field, the corresponding frequency
lies in the optical or infrared spectral range. The only experimentally relevant quantity
is thus the time-average of the current. For the net current entering through contact `
it is in the wide-band limit given by

Ī` := I0
` = eΓ`

∑
αk

[∑
βk′

〈Φβ,k′+k|`〉〈`|Φα,k′〉Pαβ,k − |〈`|Φα,k〉|2f(εα,k − µ`)

]
. (4.10)

The last equation represents one of the main formal results of this thesis. In con-
junction with the master equation in Fourier decomposition (3.68) (without electron-
phonon interaction) or the non-linear kinetic equation (3.30) (with electron-phonon
interaction), it constitutes an efficient method for the computation of dc currents
through a driven molecule.

Total charge conservation of the original system Hamiltonian (3.1) of course requires
that the charge on the wire Qwire(t) can only change by current flow, amounting to
the continuity equation Q̇wire(t) =

∑L
`=1I`(t). Since asymptotically, the charge on the

wire obeys at most the periodic time-dependence of the driving field, the time-average
of Q̇wire(t) must vanish in the long-time limit. From the continuity equation one then
finds

L∑
`=1

Ī` = 0 . (4.11)

For a wire connected to two leads `= L,R, we can then introduce the time-averaged
current

Ī := ĪL = −ĪR. (4.12)

For consistency, Eq. (4.11) must also follow from expression (4.10) for the average
current in the wide-band limit. In fact, this can be shown by identifying

∑L
`=1 Ī` as

the sum over the right-hand side of the Fourier decomposed master equation (3.68)
for α= β and k= 0,

L∑
`=1

Ī` =
∑

α

[
i

~
(εβ − εα + k~Ω)Pαβ,k

]
α=β,k=0

, (4.13)

which vanishes as expected. In the presence of electron-phonon coupling, the proof
requires additionally the identities (3.51) and (3.52), which reflect the electron-number
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4 Electrical current through the wire

conserving nature of the electron-phonon coupling.

4.2.1 Equal coupling to all leads

In the absence of electron-phonon interaction, where additionally all wire sites are
equally strong coupled to the leads, the master equation can be solved explicitly (cf.
Sect. 3.4.2). Then, the dc current (4.10) can in principle be expressed completely in
terms of the Floquet states and quasienergies. However, since the corresponding result
is rather lengthy, we focus on the limit of an infinite voltage bias, i.e., a situation where
the electro-chemical potentials lie above or below all relevant wire energies. Then it
is possible to obtain a compact analytical expression for the dc current. Consider for
instance the situation with two leads (and hence two sites) and µR =−µR =∞, where
the explicit solution (3.65) of the master equation (3.30) reads

Pαβ,k =
Γ 〈〈Φα|R〉〈R|Φk

β〉〉
i(εα − εβ − k~Ω)/~ + Γ

. (4.14)

Inserting this result into the current formula (4.10), we arrive at the dc current

Ī = eΓ
∑
αβk

Γ 〈〈Φk
β|L〉〈L|Φα〉〉〈〈Φα|R〉〈R|Φk

β〉〉
i(εα − εβ − k~Ω)/~ + Γ

. (4.15)

4.2.2 Rotating-wave approximation

If we assume that within RWA, and this is only guaranteed for the case of a van-
ishing electron-phonon interaction (cf. Sect. 3.3), the stationary solution of the ki-
netic equation is time-independent and diagonal in the Floquet basis, i.e., of the form
Pαβ(t) =Pαδαβ, we may simplify the expression (4.10) for the dc current to read

ĪRWA
` = eΓ`

∑
αk

|〈`|Φα,k〉|2 [Pα − f(εα,k − µ`)] . (4.16)

Without electron-phonon coupling, we can then employ formula (3.61) to obtain an
explicit expression for the dc current across contact `,

ĪRWA
` = e

∑
α

Γ`

∑
k |〈`|Φα,k〉|2

∑L
`′=1 Γ`′

∑
k′ |〈`′|Φα,k′〉|2

[
f(εα,k′ − µ`′)− f(εα,k − µ`)

]∑L
`′=1 Γ`′

∑
k′ |〈`′|Φα,k′〉|2

.

(4.17)
Again, in a strongly biased system, that is in the limit where the electron-chemical
potentials lie above or below all relevant wire energies, the last expression can be
written in a more compact form. Suppose, as above, that there are L= 2 leads (`= L
and `= R) with µL =−∞ and µR =∞. Then, the Fermi functions assume a constant
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value, f(ε−µL) = 0 and f(ε−µR) = 1, and the scalar product in Sambe space, defined
in Eq. (2.9), allows to write the RWA current as

ĪRWA
L = e

∑
α

ΓL ΓR 〈〈Φα|L〉〈L|Φα〉〉 〈〈Φα|R〉〈R|Φα〉〉
ΓL 〈〈Φα|L〉〈L|Φα〉〉+ ΓR 〈〈Φα|R〉〈R|Φα〉〉

. (4.18)

Each Floquet mode thus contributes to the dc current proportionally to the product of
its time-averaged overlaps with the terminal sites L and R. For equal coupling to both
leads (ΓL = ΓR = Γ), this expression is in agreement with the result (4.15) evaluated
in the RWA limit (3.55). Introducing the effective rates Γ̄αL := ΓL〈〈Φα|L〉〈L|Φα〉〉 for
the transitions from the left lead to the Floquet mode |Φα(t)〉, and mutatis mutandis
for the right lead, permits to write the RWA current in the more compact form

ĪRWA
L = e

∑
α

Γ̄αL Γ̄αR

Γ̄αL + Γ̄αR

. (4.19)

The current can thus be expressed as a sum over contributions which assume a form
familiar from the description of resonant transport through a single site [47].

4.3 Summary

The derivation of the expressions for both the time-dependent and the time-averaged
(dc) current through the different wire-lead contacts concludes the formal part of the
present thesis. Due to the high-driving frequencies of a laser field, only the latter
quantity is relevant for practical applications. Furthermore, we have shown that,
consistent with charge conservation, the sum over the dc currents through the different
contacts vanishes (see Eq. (4.11)). A compact expression for the dc current has been
derived for the case of two sites which are equally strong coupled to the respective
lead.

Within a rotating-wave approximation and in the absence of electron-phonon inter-
action, the current can be written in the explicit form (4.17). This result becomes
even more intuitive, if one considers the limit of an infinite voltage bias, where one
obtains the concise result (4.19).
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5 Coherent current control

Having the necessary formalism at hand, we are now in the position to investigate the
current through the molecule for several representative situations. However, before
doing so, we need to specify some details of the model for the molecule. Since we deal
with rather novel phenomena, we try to be as general as possible and employ rather
generic models. To be close to a specific experiment, one could also use results from
density functional calculations [105,106,107,108,109] as input to the present theory. A
further, already in itself rather complicated problem, arises from the fact that transport
through molecular wires is typically measured for finite voltage. Consequently, one has
to self-consistently include the influence of the external voltage on the molecule [110,
111, 112]. Again, we restrict ourselves to a very generic model, where the molecule is
viewed as a dielectric in between to parallel plates formed by the leads [11,113].

Subsequently, we study three paradigmatic cases, each of which covers a specific
aspect of the transport problem: (i) current amplification by means of a resonant
laser field, (ii) generation of ratchet or pump currents, and (iii) optical switching of
the current. The order of these examples has been chosen by increasing difficulty of
an experimental realisation.

5.1 Tight-binding model for the wire

Except for the last subsection of this chapter, we will employ a one-dimensional tight-
binding model (cf. Fig. 5.1), wherein the wire is described by a set of orthogonal
states |n〉 with energy En, each of which is localised at a scaled position xn = (2n−
N +1)/2. Two adjacent states are coupled by a hopping matrix element ∆, which,
within our model, is assumed to be a constant throughout the wire. The laser field
renders each level oscillating in time with a position dependent amplitude a(t)xn,
where the energy a(t) = a(t+T ) equals the electron charge e multiplied by the time-
dependent electrical field of the laser and the distance between two neighbouring sites
(cf. Sect. 2.4). Thus, the corresponding wire Hamiltonian reads

Hnn′(t) = −∆(δn,n′+1 + δn+1,n′) + [En + a(t)xn] δnn′ . (5.1)
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|1〉
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Figure 5.1: Schematic drawing of the molecule situated in between to metallic leads: Hori-
zontal lines represent the sites with energies En for n = 1,...,5. Arrows indicate
the coupling between neighbouring sites via the hopping matrix element ∆. The
terminal sites are connected to the adjacent leads with corresponding rates ΓL

and ΓR. Additionally, a laser impinges on the molecule, leading to an additional
time-dependent field a(t).

We remark that for the sake of simplicity, intra-atomic dipole excitations are neglected
within our model Hamiltonian. In an experiment, the site energies En can be controlled
by attaching different chemical groups to an otherwise symmetric molecular wire [114,
18].

The two terminal sites |1〉 and |N〉, which we shall term donor and acceptor in
the following, are connected to the corresponding leads via the tunnelling Hamilto-
nian (3.5) with the identification L↔ 1 and R↔N . We will always consider the
wide-band limit (3.7) and a symmetric coupling, ΓL = ΓR = const.=: Γ.

In all following numerical calculations, energy is expressed in units of the hopping
matrix element ∆; we choose ∆ = 0.1eV, which is a reasonable value for a realistic
wire molecule. Furthermore, we assume that the effective couplings to the leads are
by one order of magnitude smaller, ~Γ = 0.1∆, yielding typical currents eΓ = 2.56×
10−5 A. This corresponds to a large contact resistance and ensures the applicability of
a perturbational approach. A laser frequency Ω≈ 10∆/~ corresponds to a wavelength
of about 1µm, which is in the near infrared spectral range. For a realistic distance
of 1 Å between two neighbouring sites, a laser amplitude A= ∆ is equivalent to an
electrical field strength of 107 V/cm. Note that, as discussed in Sect. 3.1, the electrical
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5.2 Current spectroscopy

field may be drastically enhanced due to the presence of the metallic tips.

Potential profile across the wire

An externally applied bias between the two leads results in an energy shift ∆En of the
wire levels |n〉 according to the local electrostatic potential. Thereby, the potential
profile across the wire, i.e., the local potential as a function of the position, depends
crucially on the screening of electrical fields within the wire. Thus, in principle, its
specification requires the solution of the coupled many-body Schrödinger and Poisson
equation of the lead-molecule-lead system [110,111]. This in itself presents a formidable
task we will not try to tackle. Instead, we shall use a simple model proposed in
Refs. [11, 113], which views the two electrodes as parallel plates forming a capacitor
with the molecule in between acting like a dielectric. This model has recently been
recovered as a limiting case of a more detailed electrostatic model calculation, which
also takes into account the screening length and the diameter of the molecule [112].

Within the capacitor picture one obtains a potential profile where the fractions ηL

and ηR of the applied voltage V drop at the respective contact, while the fraction
ηM = 1−ηL−ηR establishes a linear potential profile

∆En = ηLeV + ηM
n− 1

N − 1
eV (5.2)

along the wire. Figure 5.2 illustrates this for a situation where the energies of the wire
levels in the absence of an applied voltage (dashed lines) are equal to the chemical
potential in the leads, En = µ. The actual levels (solid lines) are then shifted according
to the voltage profile (5.2). Thereby, the electro-chemical potential µR = µL + eV in
the right electrode is assumed to lie higher in energy, thus favouring transport of
electrons from right to left, corresponding to a positive electrical current from the left
to the right electrode.

We note that within the electrostatic model of Ref. [112], for a “thick” molecule,
i.e., for one whose diameter is much larger than the screening length, the electrostatic
potential is constant along the molecule and, thus, the voltage drops entirely at the
contacts, ηL = ηR = 1 and ηM = 0. In the opposite limit of a “thin” molecule, the
entire voltage drops linearly along the molecule, corresponding to our assumption (5.2)
together with ηL = ηR = 0 and ηM = 1.

5.2 Current spectroscopy

As a first example, we consider a molecule consisting of donor and acceptor, and N −2
bridge sites in between (cf. Fig. 5.3). The energies of the donor and the acceptor
orbitals are assumed to be at the level of the chemical potentials of the attached leads,
E1 =EN = µL = µR. The bridge levels En with n= 2,...,N −1, lie EB�∆ above the
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|1〉

|2〉
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ηLeV

ηMeV

ηReV

Figure 5.2: Shift of the wire levels due to a finite applied voltage for a situation where
the energies of the states |n〉, n = 1,...,N = 4 without external voltage (dashed
lines) lie at the position of the chemical potential. The external voltage V shifts
the levels to the positions marked by the full lines. ηL, ηM, and ηR denote the
fractions of the total applied voltage which drop across the left contact, the wire,
and the right contact, respectively.

chemical potential, as sketched in Figure 5.3. The applied voltage is always chosen
so small that the bridge levels are located well above the chemical potentials of the
leads, whereby, unless otherwise indicated, the voltage drop is presumed to occur at
the contacts. Here, we will not take into account electron-phonon interaction.

5.2.1 Average current at resonant excitations

Let us first discuss the static problem in the absence of the field, i.e., for A= 0. In the
present case where the coupling between two neighbouring sites is much weaker than
the bridge energy, ∆�EB, one finds two types of eigenstates: One forms a doublet
whose states are approximately given by (|1〉± |N〉)/

√
2. Its splitting can be estimated

in a perturbational approach [115] and is approximately given by 2∆(∆/EB)N−2. A
second group of states is located on the bridge. It consists of N −2 levels with energies
in the range [EB− 2∆,EB + 2∆]. In the absence of the driving field, these bridge
states mediate the super-exchange between the donor and the acceptor. This yields
an exponentially decaying length dependence of the conductance [69,9].

This behaviour changes significantly when a driving field with a frequency Ω≈EB/~
is switched on. Then the resonant bridge levels merge with the donor and the acceptor
state to form a Floquet state. This opens a direct channel for the transport resulting
in an enhancement of the electrical current as depicted in Figure 5.4, which shows the
current amplification, defined as the ratio Ī/I0 of the time-averaged current to the
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Figure 5.3: Level structure of a molecular wire with N = 7 atomic sites which are attached
to two leads. The energies of N −2 bridge levels in the middle lie EB�∆ above
the chemical potential.

current in the absence of the laser. In a wire with N = 8 sites, one finds current peaks
when the driving frequency matches the energy difference between the donor/acceptor
doublet and one of the N − 2 = 6 bridge levels. The amplification can assume many
orders of magnitude, cf. Fig. 5.4.

From an experimental point of view, such a “current spectroscopy” setup thus opens
promising opportunities for a detailed investigation of the level structure of the con-
tacted molecule. Note that if we take into account a voltage drop along the molecule,
the site energies are shifted according to Eq. (5.2), resulting in a change of the eigenen-
ergies of the molecular bridge. In particular, the external voltage may tune the system
to resonance at a fixed laser frequency, as demonstrated in Fig. 5.5 for different val-
ues of the parameter ηM from Eq. (5.2) with equal voltage drop across both contacts
(ηL = ηR).

The experimental realisation of such a measurement scheme for a quantum dot was
reported, e.g., in Ref. [20]. We remark that, in turn, when the level structure of the
molecule is known, it should be possible to extract information about the potential
profile along the wire, which is otherwise a very difficultly accessible quantity.

Generally, the response of a system to a weak resonant driving scales with the
damping and the driving amplitude. Figure 5.6 depicts this behaviour for the peaks of
the electrical current. The peak heights at the maxima of the time-averaged current
turn out to be proportional to A2/Γ. A further scaling behaviour is found for the
current peaks as a function of the wire length: The average current no longer exhibits
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Figure 5.4: Amplification of the time-averaged current through the wire sketched in Fig-
ure 5.3 with EB = 10∆. The scaled amplitude is A = 0.1∆; the applied volt-
age µL−µR = 5∆/e. The other parameters read Γ = ΓL = ΓR = 0.1∆/~ and
kBT = 0.25∆.
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Figure 5.5: Amplification of the time-averaged current through the wire sketched in Fig-
ure 5.3 as a function of an external bias voltage V . The voltage drop is as-
sumed to be of the form (5.2) with ηL = ηR = (1−ηM)/2. A driving frequency
Ω = 10∆/~ was chosen, while all other parameters are as in Fig. 5.4.
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Figure 5.6: Average current Ī as a function of the driving frequency Ω for various driving
amplitudes A and coupling strength Γ = ΓL = ΓR. All the other parameters are
as in Fig. 5.4.

the exponentially decaying length dependence that has been found for bridged super-
exchange. By contrast, it emerges proportional to 1/(N −1). This can be appreciated
in Fig. 5.7 where the scale of the abscissa is chosen proportional to N − 1 such that
it suggests a common envelope function. Put differently, the current is essentially
inversely proportional to the length as in the case of Ohmic conductance.

In summary, we find current peaks whose height Īpeak scales according to

Īpeak ∝
A2

(N − 1)Γ
. (5.3)

Thus, the current is especially for long wires much larger than the corresponding cur-
rent in the absence of the driving. Finally, we remark that a similar current enhance-
ment was recently predicted using a scattering approach for the transport through the
driven molecule [54].

5.3 Rectification of driving induced currents

In the previous section, we have demonstrated that a laser field can resonantly enhance
a current which is already flowing across the molecule due to a small external bias.
Let us now turn to the question whether the molecule can rectify the laser-induced
oscillating electron motion, thereby establishing a non-zero dc current through the
wire even in the absence of an applied voltage, i.e., for µL = µR. In this section, we

51



5 Coherent current control

0

2.5

5

7.5

10

12.5
Ī
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Figure 5.7: Average current Ī as a function of the the driving frequency Ω for various wire
length N . All the other parameters are as in Fig. 5.4.

investigate the possibilities of such pump or ratchet currents in molecular wires.

Two basic types of phenomena have to be distinguished: (i) rectification of an
external field with a harmonic time-dependence in a spatially asymmetric structure
and (ii) rectification of an external laser field with a broken time symmetry in a
spatially symmetric molecule. We relate our findings to the absence of the mentioned
symmetries. Both situations will be discussed in the following for (A) a two-site wire
and (B) a real wire consisting of N sites, namely, as before, N − 2 bridge levels and
two terminal sites, donor and acceptor, which establish the contact to the leads.

5.3.1 Symmetries

It is known from the study of deterministically rocked periodic potentials [116] and
of overdamped classical Brownian motion [117] that the symmetry of the equations of
motion may rule out any non-zero average current at asymptotic times. Thus, before
starting to compute ratchet currents, let us first analyse what kind of symmetries
may prevent a ratchet effect. Apart from the principle interest, such situations with
vanishing average current are also of computational relevance since they allow to test
the numerical implementations rather sensitively. Note that in the absence of all
symmetries precluding a non-zero dc current, such a current does in general appear.
In a more general context, this can be regarded as a consequence of Curie’s principle,
a heuristic fact which states that an effect always occurs unless it is ruled out by
symmetries [118,31].
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5.3 Rectification of driving induced currents

Detailed balance

The second law of thermodynamics states that it is impossible to extract useful work
out of the microscopic fluctuations occurring in a system in thermal equilibrium. In
other words, Maxwell’s demon does not exist. The deeper reason for this behaviour
lies in the so-called detailed-balance symmetry, a probabilistic symmetry which itself
originates from the time-reversal symmetry of the total system, in our case, consisting
of molecule plus environment.

A valid theory thus has to ensure that for an undriven molecule without external
bias voltage and all baths at a common temperature, the current across the different
molecule-lead contacts has to vanish—despite any possible asymmetry of the molecule
itself or of its coupling to the environment. This is within our approach indeed the
case, since in thermal equilibrium the solution of the kinetic equation is given by the
Fermi distribution Pαβ = f(Eα−µ)δαβ, as already emphasised in Sect. 3.4.1. Upon
insertion into the current formula (4.10), we then immediately obtain that the current
across an arbitrary contact ` vanishes as required:

Ī` = 0 (in thermal equilibrium) . (5.4)

Parity symmetry

We have already seen in Sect. 2.4 that it is possible to extend the concept of parity
symmetry, i.e., the invariance of a system under the transformation P : x 7→−x, in the
presence of a periodically time-dependent force. For a Hamiltonian of the form (2.25),
this has led us to the notion of a generalised parity and a time-reversal parity. The
obvious question is now, what consequences arise from these symmetries for the dc
current across a molecule.

Let us thus consider a molecule connected to two leads, whose static Hamiltonian
is symmetric with respect to the centre of the wire. To simplify the discussion, we
restrict ourselves to the situation without electron-phonon interaction, where the ki-
netic equation is linear. We observe that the current formula (4.9) and the Fourier
decomposed master equation (3.68) contain, besides Fermi factors, the overlap of the
Floquet states with the terminal sites at the left and right contact, |1〉 and |N〉, which
therefore play a central role in the following discussion.

Generalised parity

As a first case, we investigate a driving field that obeys a(t) =−a(t+π/Ω). Then,
as discussed in Sect. 2.4.1, the wire Hamiltonian (5.1) is invariant under the so-called
generalized parity transformation [cf. Eq. (2.29)]

SGP : (x, t) → (−x, t+ π/Ω) . (5.5)
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Consequently, the Floquet states are either even or odd under this transformation, i.e.,
they fulfil the relation (2.30), which reduces in the tight-binding limit to the following
relation between the two terminal sites |1〉 and |N〉:

〈1|Φα,k〉 = σα (−1)k 〈N |Φα,k〉 . (5.6)

Here, σα =±1 according to the generalised parity of the Floquet state |Φα(t)〉.
The average current Ī is defined in Eq. (4.12) by the current formula (4.10) in

conjunction with the master equation (3.68). Applying the symmetry relation (5.6) to
both interchanges donor state |1〉 and acceptor state |N〉. In addition, we substitute in
both the master equation and the current formula Pαβ,k by P̃αβ,k = σασβ (−1)kPαβ,k.
The result is that the new expressions for the current, including the master equation,
are identical to the original ones except for the fact that ĪL,ΓL and ĪR,ΓR are now
interchanged (recall that we consider the case µL = µR). Therefore, we can conclude
that

ĪL
ΓL

=
ĪR
ΓR

, (5.7)

which yields together with the continuity relation (4.13) a vanishing average current
Ī = 0.

Time-reversal parity

We already know from Sect. 2.4.2 that a further symmetry is present if the driving is
an odd function of time, a(t) =−a(−t). Then, the Floquet eigenvalue equation (2.3)
is invariant under the time-reversal parity [cf. Eq. (2.31)]

STP : (Φ, x, t) → (Φ∗,−x,−t) , (5.8)

i.e., the usual parity together with time-reversal and complex conjugation of the Flo-
quet states Φ. The consequence for the Floquet states is the symmetry relation (2.32)
which reads for a tight-binding system

〈1|Φα,k〉 = 〈N |Φα,k〉∗ = 〈Φα,k|N〉 . (5.9)

Inserting this into the current formula (4.10) would yield, if all Pαβ,k were real, again
the balance condition (5.7) and, thus, a vanishing average current. However, the
Pαβ,k are in general only real for ΓL = ΓR = 0, i.e., for very weak coupling such that
the condition (3.55) for the applicability of the rotating-wave approximation holds.
Under this condition, the solution of the master equation is dominated by the RWA
solution (3.60), (3.61), which is real. In the general case, the solution of the master
equation (3.68) is however complex and consequently the symmetry (5.9) does not
inhibit a ratchet effect. Still we can conclude from the fact that within the RWA the
average current vanishes, that Ī is of the order Γ2 for Γ→ 0, while it is generally of
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5.3 Rectification of driving induced currents

the order Γ for broken time-reversal symmetry.

5.3.2 Rectification in two-level systems

The basic mechanisms behind the rectification of the laser induced currents can already
be understood for a wire consisting of only two levels, where the Hamiltonian (5.1)
specialises to

Hmolecule(t) =

(
EL −∆
−∆ ER

)
+
a(t)

2

(
1 0
0 −1

)
. (5.10)

Apart from a trivial energy shift (EL +ER)/2, this Hamiltonian is of the form (2.33)
discussed in Sect. 2.5.1, if we identify Eb = EL−ER. In the following, we fix the
chemical potentials in the leads at zero energy, µL = µR = 0, and set ΓL = ΓR = Γ, as
throughout this chapter.

Rectification from spatial asymmetry

We first investigate a model (see Fig. 5.8) with a built-in spatial asymmetry, EL 6=ER,
driven by a purely harmonic field

a(t) = A sin(Ωt) . (5.11)

Figure 5.9 shows the resulting dc current as a function of the driving amplitude A for
different angular frequencies Ω of the driving field. Consistent with detailed balance,
for vanishing driving amplitude, i.e., in equilibrium, the current is always zero. In the
presence of a driving, in general, a non-zero current is generated. As a function of the
driving amplitude, it exhibits an oscillating behaviour with multiple current reversal.
For a very strong driving, the amplitude of these oscillations decays. The driving-
frequency dependency of the dc current (see Fig. 5.10) reveals that the observed effect
occurs due to resonances between the external driving field and the energy differences
of the two-site wire. In the weak driving regime, these resonances occur at a frequency
matching the energy difference

√
(EL−ER)2 +4∆2 between the two eigenstates of

the undriven system (which for the situation of Figs. 5.9 and 5.10 equals
√

5∆/~≈
2.236∆/~). Larger driving amplitudes lead to a shift of the resonance frequency, the so
called Bloch-Siegert shift [119,120], and to the appearance of higher-order resonances
around the subharmonic frequencies

√
5∆/2~,

√
5∆/3~, . . .

The amplitude dependence of the dc current in the presence of electron-phonon
interaction of the form (3.10) and (3.14), can be seen from Fig. 5.11. Panel 5.11a
depicts the situation for a nearly resonant driving ~Ω = 2∆. One observes that the
dissipation damps out the oscillatory behaviour and decreases the overall amplitude
of the pump current oscillations. However, for a very high driving frequency [cf.
panel 5.11b], where the pumping effect without electron-phonon interaction is only
moderately strong, one finds the opposite behaviour, namely an enhancement. Finally,
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Figure 5.8: Two-site structure with internal bias (EL 6= ER) coupled to two leads acting
as a rectifier for an externally applied harmonic laser field of the form a(t) =
Asin(Ωt).
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Figure 5.9: Average current through the spatially asymmetric, harmonically driven two-site
molecule sketched in Fig. 5.8 as a function of the driving amplitude A for different
angular frequencies Ω of the driving field. The wire-lead coupling strength is
Γ = 0.1∆, the temperature kBT = 0.25∆, the energies of the two levels are EL = 0
and ER = ∆, and no electron-phonon coupling is present (κ = 0).
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Ī
[e

Γ
]

1 2 3 4 5 6 7

h̄Ω[∆]

A = 0.1∆
A = 1∆
A = 10∆

Figure 5.10: Time-averaged current through the spatially asymmetric, harmonically driven
two-site molecule sketched in Fig. 5.8 as a function of the angular frequency
Ω of the driving for different driving amplitudes A. All other parameters are
as in Fig. 5.9. The linear resonance frequency Ω =

√
5∆/~ is indicated by a

vertical line.

we remark that for suitably chosen driving parameters, one also observes a current
reversal as a function of the electron-phonon coupling strength κ, which can be seen
in the region around A= 25∆ in Fig. 5.11b.

Rectification from harmonic mixing

From the symmetry analysis in Sect. 5.3.1, we already know that a symmetric two-site
wire (see Fig. 5.12), will not result in a non-zero driving amplitude, if the driving is
purely harmonic, since then a non-zero value is forbidden by the generalised parity
symmetry (5.5). A simple way to break this symmetry is to add a second harmonic
to the driving field, i.e., a contribution with twice the fundamental frequency Ω, such
that it is of the form

a(t) = A1 sin(Ωt) + A2 sin(2Ωt+ ϕ), (5.12)

as sketched in Fig. 5.13. While now shifting the time t by a half period π/Ω changes the
sign of the fundamental frequency contribution, the second harmonic is left unchanged.
The generalised parity is therefore broken and we find a non-vanishing average cur-
rent. In general, by driving with the field (5.12), one also violates the time-reversal
parity (5.8). Yet, for a phase shift ϕ= 0 (or equivalently any multiple of π) the time-
reversal parity is still present. By tuning the phase shift, one can thus switch between

57



5 Coherent current control

(a)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Ī
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Figure 5.11: Time-averaged current through the spatially asymmetric, harmonically driven
two-site molecule sketched in Fig. 5.8 as a function of the driving driving am-
plitudes A in the situation without (solid line) and with electron-phonon in-
teraction of the form (3.10) and (3.14) (dashed and dotted lines). The angular
frequency of the driving is Ω = 2∆/~ (upper panel) and Ω = 10∆/~ (lower
panel). All other parameters are as in Fig. 5.9.
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Figure 5.12: Symmetric two-site structure coupled to two leads which rectifies an externally
applied laser field of the form a(t) = A1sin(Ωt)+A2sin(2Ωt+ϕ).

these qualitatively different situations.

The harmonic mixing driving field (5.12) permits a sensitive control of the direction
of the dc current as a function of the phase difference ϕ, as can be seen from Fig. 5.14
As mentioned above, for phase differences ϕ= 0 mod π, the time-reversal parity sym-
metry (5.8) is still present. Thus, according to the symmetry considerations above, the
current vanishes within the rotating-wave approximation. However, we expect beyond
RWA for small coupling a current Ī ∝ Γ2 (cf. Sect. 5.3.1). Figure 5.15 confirms this
prediction. Yet one observes that already a small deviation from ϕ= 0 is sufficient
to restore the usual weak-coupling behaviour, namely a current proportional to the
coupling strength Γ. We remark that a similar phase control of the current has been
discussed previously in the limits of a purely coherent [38] and a fully incoherent,
sequential transport [35] in infinite tight-binding systems.

The influence of an additional electron-phonon interaction of the form (3.10) and
(3.14) is shown in Fig. 5.16 for a driving field with time-reversal parity (ϕ= π/2). For
κ� ~Γ/∆, the dc current is proportional to Γ2. In this regime, the main dissipation
mechanism is due to the contacts with the leads and we obtain the same behaviour as
before. However, for larger κ-values, the electron-phonon coupling on the wire starts
to dominate and yields a strong enhancement of the current.

5.3.3 Rectification in long wires

Having discussed in detail the rectification properties in two-site system, we now move
on to situations with more than two sites. Of particular interest is then the length
dependence of the observed effects. Again, we discuss separately rectification effects
resulting from a spatial asymmetry of the wire itself and those originating from har-
monic mixing. Since we focus in the present section on the limiting case of long
molecular wires, where the numerical solution of the non-linear kinetic equation (3.30)
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Figure 5.13: Shape of the harmonic mixing field a(t) in Eq. (5.12) for A1 = 2A2 for different
phase shifts ϕ. For ϕ = 0, the field changes its sign for t→−t which amounts
to the time-reversal parity (5.8).
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Figure 5.14: Average current through the two-site wire sketched in Fig. 5.12 driven by the
harmonic mixing signal (5.12) as a function of the phase difference ϕ for differ-
ent wire-lead coupling strengths Γ. The driving amplitudes are A1 = 2A2 = ∆,
the driving frequency is Ω = ∆/~, and the temperature is kBT = 0.25∆.
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other parameters are as in Fig. 5.14. The dotted line is proportional to Γ,
corresponding to a current that is proportional to Γ2.

10−1

2 · 10
−1

5 · 10
−1

100

2 · 10
0

Ī
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driven by the harmonic mixing signal (5.12) with amplitudes A1 = 2A2 = ∆ and
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Figure 5.17: Level structure of the wire ratchet with N = 8 atomic sites, i.e., Ng = 2 asym-
metric molecular groups. The bridge levels are EB above the donor and accep-
tor levels and are shifted by ±ES/2.

becomes too time-consuming (cf. Sect. 3.5), we have to restrict ourselves to the situ-
ation without electron-phonon interaction.

Rectification in ratchet-like structures

Particularly interesting is the rectification behaviour of structures which are composed
of repeated identical, inherently asymmetric molecular groups. An example for such a
structure is sketched in Fig. 5.17, where the interior wire states |2〉,...,|N −1〉 are ar-
ranged in Ng groups of three, i.e., N −2 = 3Ng. The energies of the donor |1〉 and the
acceptor |N〉 orbitals are assumed to be at the level of the chemical potentials of the
attached leads, E1 =EN = µL = µR =: µ. The levels in each of the inner groups lie EB

above the chemical potential and are shifted by ±ES/2, forming an asymmetric saw-
tooth like structure [90,121]. In the limit of a infinite number of groups one obtains a
periodic but asymmetric arrangement, a discrete version of a so-called ratchet poten-
tial [122, 123]. For a concise overview over the transport properties of such systems,
we refer the reader to the introductory articles Refs. [30,32]. An exhaustive treatment
can be found in the review article Ref. [31]. Asymmetry in molecular structures can be
achieved in many ways, and was explored as a source of molecular rectifying since the
seminal paper of Aviram and Ratner [6]. As noted after Eq. (5.1), it can be controlled
by attaching different chemical groups to an otherwise symmetric molecule [114,18].

The driving-amplitude dependency of the stationary time-averaged current Ī for
the model (5.1) with the level structure depicted in Fig. 5.17 in conjunction with a
harmonic driving (5.11) is shown in Fig. 5.18. In the limit of a very weak laser field,
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Figure 5.18: Time-averaged current through a molecular wire that consists of Ng bridge
units as a function of the driving strength A. The bridge parameters are
EB = 10∆, ES = ∆; the driving frequency is Ω = 3∆/~, the coupling to the
leads is chosen as ΓL = ΓR = 0.1∆/~, and the temperature is kBT = 0.25∆.
The arrows indicate the driving amplitudes used in Fig. 5.20.

we find the scaling behaviour Ī ∝A2ES, as demonstrated in Fig. 5.19. This behaviour
is expected from symmetry considerations: On the one hand, Ī vanishes for zero step
size ES since then both parity symmetries discussed in Sect. 5.3.1 are restored. On
the other hand, the asymptotic current must be independent of any initial phase of
the driving field and therefore is an even function of the field amplitude A. The latter
A2-dependence clearly indicates that the ratchet effect can only be obtained from a
treatment beyond linear response. For strong laser fields, we find that Ī is almost
independent of the wire length. If the driving is moderately strong, Ī depends in
a short wire sensitively on the driving amplitude A and the number of asymmetric
molecular groups Ng; even its sign may change with Ng, i.e., we find a current reversal
as a function of the wire length. For long wires that comprise five or more wire units
(corresponding to 17 or more sites), the average current becomes practically length-
independent, as can be observed in Fig. 5.20. This stays in contrast to the situation
with external bias (cf. Sect. 5.2) and identifies the current reversal as a finite size
effect.

Figure 5.21 depicts the average current vs. the driving frequency Ω, exhibiting reso-
nance peaks as a striking feature. Comparison with the quasienergy spectrum reveals
that—like for the current amplification setup of Sect. 5.2—each peak corresponds
to a non-linear resonance between the donor/acceptor and a bridge orbital. While
the broader peaks at ~Ω≈EB = 10∆ match the 1:1 resonance (i.e., the driving fre-
quency equals the energy difference), one can identify the sharp peaks for ~Ω . 7∆ as

63



5 Coherent current control

10−10

10−9

10−8

10−7
|Ī
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Figure 5.19: Absolute value of the time-averaged current in a ratchet-like structure with
Ng = 1 as a function of A2ES, demonstrating the proportionality to A2ES for
small driving amplitudes. All other parameters are as in Fig. 5.18. At the dips
on the right-hand side, the current Ī changes its sign.

multi-photon transitions. The current within a rotating-wave approximation (3.61) is
plotted for comparison. While it reproduces the general features of the exact solution,
its results are not reliable since it might even predict the wrong current direction.

Rectification from harmonic mixing

As in the two-site case (cf. Sect. 5.3.2), in a spatially symmetrical molecule like the
wire bridge from Sect. 5.2, a non-vanishing dc response can be obtained by irradiating
with the harmonic mixing field (5.12). Let us thus consider the situation of Fig. 5.22:
The energies of the donor and the acceptor orbitals are, as always, assumed to be at
the level of the chemical potentials of the attached leads, E1 = EN = µL = µR =: µ.
The bridge levels En, n= 2,...,N − 1, are located EB above the chemical potential,
and the form of the driving is given by (5.12).

The average current for such a harmonic mixing situation is depicted in Fig. 5.23.
Like for the ratchet wire case, for large driving amplitudes, it becomes essentially
independent of the wire length and, thus, a wire that consists of only a few orbitals,
mimics the behaviour of an infinite tight-binding system. Figure 5.24 shows the length
dependence of the average current for different driving strengths. The current saturates
as a function of the length at a non-zero value. The convergence depends on the driving
amplitude and is typically reached once the number of sites exceeds a value of N ≈ 10.
For low driving amplitudes the current response is more sensitive to the wire length.

The dependence of the dc current on the phase difference ϕ between the two har-
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Figure 5.20: Time-averaged current as a function of the number of bridge units Ng, N =
3Ng +2, for the laser amplitudes indicated in Fig. 5.18. All other parameters
are as in Fig. 5.18. The connecting lines serve as a guide to the eye.
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Ng = 1. Solid: exact result. Dashed: RWA result (3.61). All other parameters
are as in Fig. 5.18.

65



5 Coherent current control

µ

E

µ|1〉

|2〉 |3〉 |4〉 |5〉 |6〉

|7〉

∆

∆ ∆ ∆ ∆

∆Γ Γ

A1 sin(Ωt) + A2 sin(2Ωt + ϕ)

EB

Figure 5.22: Level structure of the a wire bridge with N = 7 atomic sites. The bridge
levels are EB above the donor and acceptor levels, which lie at the level of the
chemical potentials in the leads. The wire is irradiated by the harmonic mixing
field (5.12).
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fixed by A1 = 2A2. The other parameters are as in Fig. 5.23; the dotted lines
serve as a guide to the eye.

monics of the signal (5.12) is depicted in Fig. 5.25. It exhibits again the same features
as already discussed for the two-site situation (cf. Fig. 5.15): For ϕ= 0 or ϕ= π, i.e.,
in the presence of a time-reversal symmetry, the current vanishes with Γ2 for Γ→ 0.
For all other values of ϕ, one observes a proportionality to Γ.

5.4 Current switches

As a last application of our formalism, we investigate the possibilities for laser con-
trolled switching of the electrical current through the wire. We hence consider a
situation, where already in the absence of laser excitations a substantial current flows
through the molecule due to an externally applied static voltage. The aim is then to
control this current by means of suitable laser fields. As before, we first discuss the
most simple setup, namely a two-site wire connected to two leads, which will yield an
optical current gate. Subsequently, we shall consider a three-terminal device, in order
to demonstrate the feasibility of an optical routing of electrical currents.

5.4.1 Current gate

Let us again consider the two-level Hamiltonian (5.10) in conjunction with a sinusoidal
driving (5.11); a top view of the corresponding experimental setup is sketched in
Fig. 5.26. Contrary to the situation in Sect. 5.3.2, we now take into account an
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Figure 5.25: Average current response to the harmonic mixing signal with amplitudes A1 =
2A2 = ∆, as a function of the coupling strength for different phase shifts ϕ. The
remaining parameters are Ω = 10∆/~, EB = 5∆, kBT = 0.25∆, N = 10. The
dotted line is proportional to Γ; it represents a current which is proportional
to Γ2.

external voltage V , i.e., a difference of the electro-chemical potentials, µL−µR =−eV .
As discussed in Sect. 5.1, this may result in a voltage drop between the two sites, so
that even for a symmetric molecule, for which initially EL =ER, the two site energies
EL and ER may differ in the presence of the external voltage V . Again, the coupling
to both leads is assumed to be equal, ΓL = ΓR = Γ.

In the limit of an infinitely strong voltage bias, an explicit expression for the dc
current can be obtained from the analytical result (4.15) together with our earlier
findings from a perturbation theory in the static Hamiltonian (cf. Sect. 2.5.1). It
turns out that we only need the zeroth order expression (2.37) for the Floquet states
together with the first order result (2.38) for the quasienergies. Inserting them into
Eq. (4.15), we arrive at

Ī = eΓ
sin2 Θ

2

[
1− ~2Γ2

(ε+,0 − ε−,0)
2 + ~2Γ2

]
. (5.13)

This equation, together with the expression (2.38) for the quasienergies ε±,0 and the
definition (2.39) of the angle Θ, completely determines the dc current through the
two-site wire in the presence of an infinite external bias voltage.

We can now immediately read off the main feature of the present setup, namely
that the dc current breaks down whenever one of the conditions Θ = 0 or ε+,0 = ε−,0
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∆Γ Γ

A sin(Ωt)

Figure 5.26: Schematic top view of a transport setup consisting of a two-site wire (cou-
pled by a tunnel-matrix element ∆) equally connected to two leads at electro-
chemical potentials µL and µR by the rate Γ. A laser with angular frequency
Ω and amplitude A permits the control of the dc current through the wire.

is satisfied. From the definitions of ε±,0 and Θ, we find that the former condition can
only be fulfilled if EL 6=ER, i.e., for a system with biased on-site energies. By contrast,
the latter equality requires an internally unbiased situation with EL =ER. However,
in both cases ∆0 = 0 is the common requirement for the current suppression. By
comparing with the discussion in Sect. 2.5.2, we thus identify the coherent destruction
of tunneling (CDT) as the origin of the current break-downs. In other words: CDT
should be observable in a transport measurement. We emphasise that since the RWA
result (4.18) does not contain the second term of the sum in Eq. (5.13), the description
of the predicted effect for a system without internal bias, requires a treatment beyond
RWA.

These analytical predictions are in accordance with numerical results. Let us first
consider the case EL =ER, where the time-averaged current Ī is depicted in Fig. 5.27.
The numerically exact result (4.10) exhibits the sharp current break-downs. Com-
paring with the analytical result (5.13), which was derived for the case of an infinite
external voltage, we observe for finite voltage a global decrease of the current with
increasing laser field amplitude A. As discussed in the previous paragraph, within
RWA, the suppressions do not occur. Figure 5.28 depicts the current Ī for EL 6=ER.
Now, the RWA result and the exact solution agree reasonably well.

While the general features of the suppression effect are thus described by the ana-
lytical expression (5.13), closer inspection (cf. inset of Fig. 5.27) reveals that the dc
current does not vanish exactly at the suppressions. Rather, a residual current of
about 1% of its maximal value reached in the absence of the driving remains. This
residual value of the current at the depression is proportional to the molecule-lead
coupling Γ. Since the current in the undriven situation is proportional to Γ as well,
we conclude that the maximal suppression ratio is Γ-independent.

An important question is, how robust the observed current suppression effect is in
the presence of additional coupling of the electrons to phonon baths. Since in general,
dissipation affects the CDT effect [97,98], the same has to be expected for the current
suppression. And indeed, as demonstrated in Fig. 5.29, upon turning on an electron-
phonon coupling of the form (3.10), (3.14), the depth of the suppression decreases with
increasing coupling strength κ. However, we have not yet been able to reproduce the
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Figure 5.27: Average current vs. driving amplitude for a wire consisting of two sites between
two electrodes for unbiased (ER = EL = 0) on-site energies. The leads’ chemical
potentials are µR =−µL = 10∆; the other parameters read ~Ω = 10∆, kBT =
0.25∆, ~Γ = 0.1∆. Solid: exact result (4.10). Dashed: result from rotating-
wave approximation (4.17). Dotted: analytical result (5.13) valid for infinite
bias µR =−µR =∞.

counterintuitive effect of a stabilisation of CDT for a certain, optimal temperature,
that has been reported in Refs. [97, 98].

5.4.2 Current router: molecular transistor

An experimentally more ambitious, three-terminal configuration consists in a planar
molecule with N = 4 sites, three of which are coupled to a central site and are directly
connected to the adjacent leads (see Fig. 5.30). We borrow from electrical engineering
the designation E, C1, and C2 for the leads. Here, an external voltage is applied
such that C1 and C2 have equal electro-chemical potential, i.e., µC1 = µC2 6= µE. In a
perfectly symmetric molecule, where all on-site energies are equal, reflection symmetry
at the horizontal axis ensures that any current which enters at E, is equally distributed
among C1,2, thus IC1 = IC2 =−IE/2.

The fact that this structure is essentially two-dimensional brings about a new degree
of freedom, the polarisation of the laser field. We assume it to be linear with an
polarisation angle ϑ as sketched in Fig. 5.30. The effective driving amplitudes of the
orbitals which are attached to the leads acquire now a geometric factor which is only
the same for both orbitals C1 and C2 when ϑ= 0. For any other polarisation angle, the
mentioned reflection symmetry is broken and the outgoing currents may be different
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Figure 5.28: Average current vs. driving amplitude for a wire consisting of two sites be-
tween two electrodes for biased (EL =−ER = 0.1∆) on-site energies. All other
parameters are as in Fig. 5.27. Solid: exact result (4.10). Dashed: result from
rotating-wave approximation (4.17). Inset: Minimum value Īmin of the dc cur-
rent at the first suppression as a function of the wire-lead coupling strength Γ.
For small Γ, one obtains Īmin ∝ Γ.

from each other. The difference may be huge, as depicted in Fig. 5.31. Their ratio
varies from unity for ϑ= 0 up to the order of 100 for ϑ= 60◦. Thus, by changing the
polarisation angle one is able to route the current towards the one or the other drain.

For the explanation of the mechanism behind this effect, it is instructive to look at
the RWA expression (4.18) for the current in the strongly biased situation. Thereafter,
each Floquet mode contributes to the current with an amount determined by the time-
averaged matrix elements 〈〈Φα|n〉〈n|Φα〉〉 =

∑
k |〈n|Φα,k〉|2 of the terminal sites n =

E,C1,C2. Figure 5.32 shows these quantities for three different polarisation angles ϑ.
Consider, for instance, the current across contact C1, which, in analogy to Eq. (4.18),
can be written as

ĪC1 = eΓ
∑

α

〈〈Φα|C1〉〈C1|Φα〉〉〈〈Φα|E〉〈E|Φα〉〉∑
`=C1,C2,E〈〈Φα|`〉〈`|Φα〉〉

. (5.14)

One observes that only Floquet modes which are both localised on the site C1 and
on the site E yield a non-vanishing contribution to the current. For a polarisation
angle ϑ=−60◦, we can infer from Fig. 5.32 that this condition is fulfilled by the states
with indices α= 1, 3 and 4; a current flows from lead E into lead C1. By contrast, for
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Figure 5.29: Average current vs. driving amplitude for a wire consisting of two sites be-
tween two electrodes for unbiased (ER = EL = 0) on-site energies for different
strengths κ of an electron-phonon interaction of the form (3.10,3.14). All other
parameters are as in Fig. 5.27. Inset: Minimum value Īmin of the dc current at
the first suppression as a function of the electron-phonon coupling strength κ.
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Figure 5.30: Schematic top view of a setup where a molecule connected to three leads allows
to control the current flowing between the different leads (electro-chemical po-
tentials µE, µC1 , and µC2) as a function of the polarisation angle θ of a linearly
polarised laser field.
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Figure 5.31: Average currents through contacts C1 (solid) and C2 (dashed) as a function
of the polarisation angle ϑ for the three-terminal device depicted in the inset.
The chemical potentials are µE = −µC1 = −µC2 = 50∆; the on-site energies
En = 0. The driving field is specified by the strength A = 25∆ and the angular
frequency Ω = 10∆/~; the effective coupling is ~Γ = 0.1∆ and the temperature
kBT = 0.25∆. The maximal value of the current ratio IC1/IC2 ≈ 100 is assumed
at ϑ = 60◦.
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Figure 5.32: Contributions 〈〈Φα|n〉〈n|Φα〉〉=
∑

k |〈n|Φα,k〉|2 of the sites n = E,C1,C2, and T
(central site) to a Floquet state |Φα(t)〉 for three different polarisation angles
ϑ. All parameters are as in Fig. 5.31. Note that for some states α not all
contributions are resolved in this figure.

ϑ= 0 and ϑ= 60◦, such current carrying states do not exist; the respective current is
zero.

An alternative setup for an optically controllable router is sketched in Fig. 5.33.
Now, the polarisation angle is fixed at ϑ= 0 and the reflection symmetry is broken
by using an intrinsically asymmetric molecule (see Fig. 5.33). This allows to control
sensitively the ratio of the outgoing currents by the strength A of the external field,
cf. Fig. 5.34. The switching range comprises up to four orders of magnitude with an
exponential sensitivity.
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Figure 5.33: Schematic top view of a setup where a molecule connected to three leads allows
to control the current flowing between the different leads (electro-chemical po-
tentials µE, µC1 , and µC2) as a function of the driving amplitude A of a linearly
polarised laser field.
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Figure 5.34: Ratio of the outgoing average currents vs. driving strength A for the three-
terminal device at a polarisation angle ϑ = 0. The filled circle in the inset
depicts a site with an on-site energy EC1 that differs from the others. All other
on-site energies and parameters as in Fig. 5.31.
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6 Summary and outlook

The present thesis deals with the description of electronic transport through driven
nanosystems, where we usually have in mind molecular wires under the influence of
laser fields. For the calculation of the electrical current across the different contacts
between the nanosystem and the macroscopic leads, we put forward an efficient numer-
ical procedure: In a first step, the quantum dynamics of the isolated system is solved
using a Floquet approach. The resulting basis states then provide a vantage point for
the inclusion of a weak coupling both to electronic leads and to phononic degrees of
freedom in the framework of a kinetic equation approach. In conjunction with the
Floquet states, we then have at our disposal the necessary input for the calculation of
the electrical current.

As a first exemplary application of the developed formalism, we have discussed a
current spectroscopy setup, which allows to gather information about the molecular
levels by transport measurements. Thereby, a resonant laser field drastically enhances
the current across the molecule. Since furthermore the length dependence of the
current changes from an exponential decrease without driving to a 1/N -behaviour,
this effect is most pronounced for long wires.

Another phenomenon that has been studied is the generation of a non-zero dc cur-
rent across the molecule in the absence of any voltage. Such quantum Brownian motor
or ratchet currents require that the system is driven away from thermal equilibrium
by a field that does not fulfil a generalised parity symmetry. This means that one has
to either use a molecule with an asymmetric level structure or irradiate the molecule
with a dynamically asymmetric laser field, for instance, one that contains higher har-
monics of the fundamental driving frequency. The resulting current shows an intricate
dependency on all model parameters, including multiple current reversals as a function
of laser field amplitude and frequency or the phase difference between harmonic and
second harmonic. These effects enable, e.g., a selective shuttling of electrons on the
nanoscale.

Finally, possibilities of switching the electrical current by use of an external laser
field have been explored. This has resulted in a setup for an optically controllable
current gate, which allows to sensitively switch the current flowing between two leads
on and off by means of a laser field with suitable frequency and amplitude. The
extension to a three-terminal geometry yields an optical current router or molecular
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6 Summary and outlook

transistor that permits to steer the current to one or the other lead, as a function of
either the polarisation angle of the laser field (cf. Fig. 5.31) or of the field strength (cf.
Fig. 5.34).

The experimental realisation of the proposed setups, especially of the current
switches, which require strong laser fields, is clearly a non-trivial task. One practical
problem that immediately comes to mind is the illumination of the molecule, which
might be hampered by the presence of the leads. However, by choosing a suitable
geometry, for instance by irradiating from the bottom side—through the substrate—
in a break-junction setup or by using an STM configuration, it should be possible to
overcome this obstacle. Another question concerns the stability of the laser-irradiated
molecule and of its bond to the metal surfaces. In particular, laser-induced desorp-
tion processes due to hot electrons originating from the electronic leads as well as the
heating of the molecule could pose serious problems. On the positive side, our theo-
retical proposals are generic in the sense that they do not rely on a specific molecular
structure, a fact which should facilitate their experimental realisation.

A completely different experimental implementation of our findings should be pos-
sible in semiconductor heterostructures, where instead of the molecule, quantum dots
form the central system [124, 20]. Here, stability issues are less important, however
one has to pay the price of a more difficult maintenance of quantum coherence.

So far, our formalism is restricted to continuously time-dependent laser fields. As
a future extension of the present work, one should also include the equally important
situation with pulsed laser fields. However, this requires a modification of the present
Floquet method, since the convergence of the numerical scheme becomes slower with
increasing period T of the driving: the width of the Brillouin zones decreases with
1/T and therefore the number of sidebands one has to take into account increases
correspondingly. Thus, a modified numerical procedure has to be developed, which
takes into account separately the fast dynamics within the pulse and the slow one due
to the pulse shape.

Our numerical studies of the influence of electron-phonon interaction have been
based on the simple on-site dissipation model in combination with an Ohmic spectral
density of the phonon bath. While this already yields some insight into generic prop-
erties of the system, one should realistically also take into account different coupling
forms and spectral densities. For instance, future work should examine the influence
of a cut-off frequency as well as that of a peaked spectral density corresponding to
vibrational modes of the molecule.

Two extensions of the present work have already been addressed. The first one con-
cerns the limit of a weak wire-lead coupling, which we have been considering through-
out this work. In a recent work [125], we have demonstrated that in fact the formalism
can be generalised to the case of an arbitrarily strong wire-lead coupling, provided that
no electron-phonon interaction is present. The Floquet equation then has to be mod-
ified to include a self-energy term due to the wire-lead coupling. The left and the
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right eigenvectors of the corresponding non-Hermitian eigenvalue problem then allow
to express the current in a scattering form [45]. Unfortunately, the numerical effort for
the solution of the complex eigenvalue problem limits this method to either smaller or
not too strongly driven molecular systems.

As a second extension, we have investigated not only the mean value of the current
but also its fluctuations, i.e., the current noise. In particular, the relative noise power at
zero frequency, the so-called Fano factor, provides additional insight into the properties
of the transport process [126]. An explicit expression for this quantity has been derived
with the methods mentioned in the previous paragraph [125]. For the optical current
gate presented in Sect. 5.4.1, we find that at the position of current suppression induced
by CDT, the Fano factor assumes a maximum accompanied by two minima nearby.
This opens perspectives of not only controlling the mean current but also its noise
properties by means of tailored laser fields.
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A Perturbation theory for the driven
two-level system

A.1 General expression

One of the main benefits of the composite Hilbert space formalism described in Sect. 2.2
lies in the fact that it immediately allows to make use of the tools known from time-
independent quantum mechanics. One example, which we will discuss in this appendix,
is the stationary, degenerate perturbation theory. Suppose that the unperturbed Flo-
quet HamiltonianH0 possesses a d-fold degenerate eigenvalue ε

(0)
1 = ε

(0)
2 = ...= ε

(0)
d with

a degenerate subspace spanned by the eigenstates |φ1〉〉,|φ2〉〉,...,|φd〉〉. As required by
degenerate perturbation theory, we assume that this basis is already chosen in such a
way that it diagonalises the perturbation operator H1 within the degenerate subspace.
Then to first order in H1, the eigenvalues of the perturbed problem

(H0 +H1)|Φα〉〉 = εα|Φα〉〉 (A.1)

are determined by
εα ≈ ε(1)

α := ε(0)α + 〈〈φα|H1|φα〉〉 . (A.2)

For α= 1,2,...d, the corresponding approximation for the eigenstates is given by1

|Φα〉〉 ≈ |φα〉〉+
∑′

βk

|φk
β〉〉
〈〈φk

β|H1|φα〉〉
ε
(0)
α − ε

(0)
β,k

+
∑′

β

|φβ〉〉
ε
(1)
α − ε

(1)
β

∑′

γ,k

〈〈φβ|H1|φk
γ〉〉〈〈φk

γ|H1|φα〉〉
ε
(0)
α − ε

(0)
γ,k

.

(A.3)
The first order eigenstates for α> d are determined by

|Φα〉〉 ≈ |φα〉〉+
∑′

βk

|φk
β〉〉
〈〈φk

β|H1|φα〉〉
ε
(0)
α − ε

(0)
β,k

. (A.4)

1 The third term on the right-hand side of Eq. (A.3) is erroneously omitted in many standard text
books on quantum mechanics [127], probably because it is seemingly of higher order in H1. Owing
to Eq. (A.2), this is in fact not the case. We refer the reader to the classical treatise [128] by
R. Courant and D. Hilbert for the correct expression.
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A Perturbation theory for the driven two-level system

Here, where not restricted, the summation indices β,γ and k run over all states in
the first Brillouin zone and all integers, respectively. Terms leading to a vanishing
denominator are to be left out in the sum, which is indicated by the prime on the
sum symbol. Note that, in particular, the first (second) sum in Eq. (A.3) contains
only states which do (not) belong to the degenerate subspace corresponding to the

eigenvalue ε
(0)
α .

A.2 Application to the two-level system

We now apply the general results (A.2)–(A.4) to the driven two-level dynamics (2.33)

from Sect. 2.5. Thereby, the quasienergies to zeroth order are given by ε
(0)
1 = ε

(0)
2 = 0

and the first order correction (A.2) follows directly from Eq. (2.38):

ε
(1)
± = ±1

2

√
E2

b + 4|∆0|2 . (A.5)

For the calculation of the first order correction (A.3) to the Floquet modes, one needs
the matrix elements 〈〈φk

±|H1|φ±〉〉 for k 6= 0. Inserting

〈〈Φk
n|H1|Φk′

n′〉〉n,n′=1,2 =

(
δkk′Eb/2 −∆k′−k

−∆∗k−k′ −δkk′Eb/2

)
(A.6)

into the definition (2.37) of the zeroth order Floquet modes, one obtains

〈〈φk
+|H1|φ+〉〉=−〈〈φk

−|H1|φ−〉〉=
1

2
sinΘ

(
eiΞ∆∗k +e−iΞ∆−k

)
,

〈〈φk
+|H1|φ−〉〉= 〈〈φ−k

− |H1|φ+〉〉∗ = sin2(Θ/2)eiΞ∆∗k− cos2(Θ/2)e−iΞ∆−k .
(A.7)

Here, the angles Θ and Ξ are defined in Eqs. (2.39) and (2.40), respectively. The prod-
ucts appearing in the second sum on the right-hand side of Eq. (A.3), are most easily
expressed using the identity

∑
α=± |φk

α〉〉〈〈φk
α|=

∑
n=1,2 |φk

n〉〉〈〈φk
n|, valid for arbitrary k,

together with the matrix elements

〈〈φk
1|H1|φ+〉〉=−〈〈φ−k

2 |H1|φ−〉〉∗ = sin(Θ/2)e−iΞ/2∆−k ,

〈〈φk
2|H1|φ+〉〉= 〈〈φ−k

1 |H1|φ−〉〉∗ =−cos(Θ/2)eiΞ/2∆∗k .
(A.8)

Using the definition (2.43) of the asymmetry parameter λ, this yields∑
γ=±

〈〈φ+|H1|φk
γ〉〉〈〈φk

γ|H1|φ−〉〉=
∑
γ=±

〈〈φ−|H1|φk
γ〉〉〈〈φk

γ|H1|φ+〉〉

= λ
√
E2

b +4|∆0|2 .
(A.9)
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A.2 Application to the two-level system

Collecting all terms, we arrive at the following expression for the first order Floquet
modes:

|Φ+〉〉 ≈ |φ+〉〉−λ|φ−〉〉−
sinΘ

2

∑
k 6=0

eiΞ∆∗k +e−iΞ∆−k

k~Ω
|φk

+〉〉

−
∑
k 6=0

sin2(Θ/2)e−iΞ∆−k− cos2(Θ/2)eiΞ∆∗k
k~Ω

|φk
−〉〉 ,

|Φ−〉〉 ≈ |φ−〉〉+λ|φ+〉〉+
sinΘ

2

∑
k 6=0

eiΞ∆∗k +e−iΞ∆−k

k~Ω
|φk
−〉〉

−
∑
k 6=0

sin2(Θ/2)eiΞ∆∗k− cos2(Θ/2)e−iΞ∆−k

k~Ω
|φk

+〉〉 .

(A.10)
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B Rotating-wave approximation

We have seen in Sect. 3.3 for the special case without electron-phonon interaction,
that for very weak wire-environment coupling, the dynamics is often well described by
a master equation in the so-called rotating-wave approximation. We now discuss the
derivation of such an approximative equation in the general situation with electron-
phonon coupling. To this end, as discussed in Sect. 3.3, we first switch to the kinetic
equation (3.30) in the interaction picture (3.53),

dP̃αβ(t)

dt
=

∑
α′β′

ei(εα−εβ−εα′+εβ′ )t/~
[
Rleads

αβα′β′(t)+Rphonons
αβα′β′ (t)

]
P̃α′β′(t)

+
∑

α′β′α′′β′′

ei(εα−εβ−εα′+εβ′−εα′′+εβ′′ )t/~Qphonons
αβα′β′α′′β′′(t)P̃α′β′(t)P̃α′′β′′(t)

+ei(εα−εβ)t/~S leads
αβ (t) .

(B.1)

Assuming that the typical time-scales of the deterministic and dissipative dynamics
are well separated, we are allowed to replace the time-dependent coefficients on the
right-hand side of Eq. (B.1) by their respective time-averages. In a first step, we
replace the exponential prefactors by their respective time-averages over one driving
period T . For the contributions from the wire-lead coupling this yields with Eq. (3.35)
the source terms

S leads
αβ =

1

2

L∑
`=1

∑
k

〈Φα,k|`〉〈`|Φβ,k〉
{

Γ`(εα,k)f(εα,k − µ`) + Γ`(εβ,k)f(εβ,k − µ`)
}

(B.2)

and with Eq. (3.34) the Redfield tensor

Rleads
αβα′β′ =−

1

2

L∑
`=1

∑
k

{
Γ`(εα′,k)〈Φα,k|`〉〈`|Φα′,k〉δββ′

+Γ`(εβ′,k)〈Φβ′,k|`〉〈`|Φβ,k〉δαα′

}
.

(B.3)
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B Rotating-wave approximation

The coefficients of the linear terms stemming from the electron-phonon coupling as-
sume the form [cf. Eq. (3.47)]

Rphonons
αβα′β′ =

∑
ν

∑
k

{
[Nν(∆αα′,k)+Nν(∆ββ′,k)]X̄

ν
αα′,k X̄

ν
β′β,−k

− δαα′

∑
α′′

Nν(∆α′′β′,k)X̄
ν
α′′β,k X̄

ν
β′α′′,−k

− δββ′

∑
β′′

Nν(∆β′′α′,k)X̄
ν
β′′α′,k X̄

ν
αβ′′,−k

}
,

(B.4)

and the quadratic part (3.50) reads

Qphonons
αβα′β′α′′β′′ =

1

~
∑

ν

∑
k

{
Dν(∆β′α′′,k/~)X̄ν

β′α′′,k X̄
ν
β′′β,−kδαα′

+Dν(∆β′α′,k/~)X̄ν
β′α′,k X̄

ν
αα′′,−kδββ′′

−Dν(∆β′α′,k/~)X̄ν
β′α′,k X̄

ν
β′′β,−kδαα′′

−Dν(∆β′′α′,k/~)X̄ν
β′′α′,k X̄

ν
αα′′,−kδββ′

}
.

(B.5)

Next, we observe that only terms with zero phase in the exponentials contribute to
the time-average of Eq. (B.1). This yields the kinetic equation in RWA, which we first
give here and will derive subsequently. The dynamics of the diagonal density matrix
elements is determined by

˙̃
Pαα(t) =−wleads

α Pαα(t)+
∑
α′

(
wphonons

αα′ P̃α′α′(t)−wphonons
α′α P̃αα(t)

)
+2

∑
α′

qphonons
αα′ P̃αα(t)P̃α′α′(t)+

∑
α′ 6=α

(
qphonons
α′α − qphonons

αα′

)
P̃αα′(t)P̃α′α(t)

+sleads
α ,

(B.6)

where the coefficients of the linear and quadratic terms are defined by the rates wleads
α

from Eq. (3.58) and

wphonons
αα′ = 2

∑
ν

∑
k

Nν(∆αα′,k)
∣∣X̄ν

αα′,k

∣∣2 , (B.7)

qphonons
αα′ =

1

~
∑

ν

∑
k

Dν(∆αα′,k/~)
∣∣X̄ν

αα′,k

∣∣2 . (B.8)

The contribution of the source term sleads
α = S leads

αα has already been defined in
Eq. (3.59). The off-diagonal matrix dynamics is governed by the differential equa-
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tions

˙̃
Pαβ(t) =− 1

2

(
wleads

α +wleads
β

)
P̃αβ(t)− w̄phonons

αβ P̃αβ(t)

+
∑
α′ 6=α

qphonons
βα′ P̃αβ(t)P̃α′α′(t)+

∑
β′ 6=β

qphonons
αβ′ P̃αβ(t)P̃β′β′(t)

+
∑
α′ 6=α

qphonons
α′β P̃αα′(t)P̃α′β(t)+

∑
β′ 6=β

qphonons
β′α P̃αβ′(t)P̃β′β(t) ,

(B.9)

where we have introduced the quantities

w̄phonons
αβ =−

∑
ν

∑
k

{
2Nν(k~Ω)X̄ν

αα,k X̄
ν
ββ,−k

−
∑
α′

Nν(∆α′α,k)|X̄ν
α′α,k|2−

∑
β′

Nν(∆β′β,k)|X̄ν
β′β,k|2

}
.

(B.10)

Let us now discuss the origin of the different contributions to Eqs. (B.6) and (B.9).

RWA contribution from the source term S leads
αβ (t)

The condition εα− εβ = 0 requires α= β. Equation (3.59) then follows immediately
from Eq. (B.2).

RWA contribution from the linear terms Rleads/phonons
αβα′β′ (t)

Here, the condition εα− εβ − εα′ + εβ′ = 0 requires the distinction between diagonal
(α= β) and off-diagonal (α 6= β) terms. For α= β, we can conclude that α′ = β′ has
to be fulfilled. Thus, we obtain the first line of Eq. (B.6) together with the rates wleads

α

from Eq. (3.58) and wphonons
αα′ from Eq. (B.7).

For the off-diagonal matrix elements Pαβ, α 6= β, only terms with α= α′ and β = β′

contribute. The corresponding rate coefficients (wleads
α +wleads

β )/2 [cf. Eq. (3.58)] and

w̄phonons
αβ from Eq. (B.10) follow immediately from Eqs. (B.3) and (B.4), respectively.

RWA contribution from the quadratic terms Qphonons
αβα′β′α′′β′′(t)

The RWA condition for the quadratic terms in the second line of Eq. (B.1) requires to
distinguish even more cases. Starting with

εα − εβ − εα′ + εβ′ − εα′′ + εβ′′ = 0 , (B.11)

we again treat the diagonal (α= β) and the off-diagonal (α 6= β) terms separately. For
α= β, we again consider two cases, namely:
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B Rotating-wave approximation

I. α′ = β′: From Eq. (B.11), we obtain that only terms with α′′ = β′′ contribute to
the sum in Eq. (B.1). The corresponding coefficients are:

Qphonons
ααα′α′α′′α′′ δα′β′ δα′′β′′ . (B.12)

II. α′ 6= β′: Non-vanishing contributions to Eq. (B.1) require α′ = β′′ and α′′ = β′:

Qphonons
ααα′β′β′α′ (1− δα′β′) δα′β′′ δα′′β′ . (B.13)

Altogether, we obtain the contribution∑
α′α′′

Qphonons
ααα′α′α′′α′′ P̃α′α′(t)P̃α′′α′′(t) +

∑
β′

∑
α′ 6=β′

Qphonons
ααα′β′β′α′ P̃α′β′(t)P̃β′α′(t) . (B.14)

Making use of the relations

Qphonons
ααα′α′α′′α′′ = 2qphonons

αα′′ δαα′ , (B.15)

Qphonons
ααα′β′β′α′ = qphonons

β′α δαα′− qphonons
αα′ δαβ′ , (B.16)

which follow directly from Eqs. (3.12), (3.13), (B.5) and (B.8), we arrive at the second
line of Eq. (B.6).

For the off-diagonal (α 6= β) elements, we have to distinguish between the following
cases:

I. α= α′: The condition (B.11) then assumes the form

εβ′ − εβ + εβ′′ − εα′′ = 0 (B.17)

and we have to treat the following subcases separately:

A. β = β′: Then necessarily α′′ = β′′, and hence the only contributions are

Qphonons
αβαβα′′α′′ δαα′ δββ′ δα′′β′′ . (B.18)

B. β 6= β′: This case requires α′′ = β′ and β = β′′, yielding

Qphonons
αβαβ′β′β δαα′ (1− δββ′) δα′′β′ δββ′′ . (B.19)

II. α 6= α′: This immediately leads to α= α′′ (remember that we are considering the
off-diagonal case α 6= β) and hence Eq. (B.11) reduces to

εβ′ − εβ + εβ′′ − εα′ = 0 . (B.20)

We now have to distinguish between two cases:
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A. β = β′: Then we find α′ = β′′ and hence contributions of the form

Qphonons
αβα′βαα′ (1− δαα′) δαα′′ δββ′ δα′β′′ . (B.21)

B. β 6= β′: This case leads to α′ = β′ and β = β′′ and thus contributes with
terms

Qphonons
αβα′α′αβ (1− δαα′) δαα′′ (1− δββ′) δα′β′ δββ′′ . (B.22)

Gathering all terms, we arrive at∑
α′′

Qphonons
αβαβα′′α′′ P̃αβ(t)P̃α′′α′′(t)+

∑
β′ 6=β

Qphonons
αβαβ′β′β P̃αβ′(t)P̃β′β(t)

+
∑
α′ 6=α

Qphonons
αβα′βαα′ P̃α′β(t)P̃αα′(t)+

∑
α′ 6=α,β

Qphonons
αβα′α′αβ P̃α′α′(t)P̃αβ(t)

, (B.23)

which in conjunction with

Qphonons
αβαβα′′α′′ = (1− δαα′′)q

phonons
βα′′ +(1− δβα′′)q

phonons
αα′′ , (B.24)

Qphonons
αβαβ′β′β = (1− δαβ− δββ′)q

phonons
β′α , (B.25)

Qphonons
αβα′βαα′ = (1− δαα′)q

phonons
α′β , (B.26)

Qphonons
αβα′α′αβ = 0 (B.27)

yields the second and third line of Eq. (B.9).
Having the RWA kinetic equation (B.6) and (B.9) at hand, let us for completeness

discuss a case, where the coupling to the leads is not present [cf. discussion after
Eq. (3.50)]. Then, of course, the number of electrons on the wire is fixed. If we
consider, for instance, the one-electron case, the mean-field approximation (3.43) fails
completely, since all two-particle expectation values at equal times are zero. Yet
the correct dynamics can directly be read from Eqs. (B.6) and (B.9) by omitting all
terms that are quadratic in P̃αβ(t). Since in the subspace of a single electron Pαβ

reduces to the density matrix in the basis of the Floquet states, we arrive at the
master equation which has been used to describe dissipative driven quantum systems
in Refs. [96,97,98,99,100,26,101,102]. In rotating wave approximation, like for the case
with coupling to the leads only (see Sect. 3.3), diagonal and off-diagonal dynamics then
decouple and the off-diagonal elements converge to zero in the long-time limit. Thus,
the stationary solution is of the diagonal form Pαβ =Pαδαβ. The only difference to the
previous case of a pure coupling to electronic leads is that this time the populations
Pαα(t) are not only determined by Eq. (B.6) but also by the normalisation condition∑

αPαα(t) = 1. Finally, in equilibrium, the detailed-balance relation

wphonons
αα′

wphonons
α′α

= e(εα′−εα)/kBT (B.28)
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B Rotating-wave approximation

holds, which corresponds to the canonical distribution Pα = exp(−εα/kBT )/Z with the
partition function Z =

∑
αexp(−εα/kBT ).
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C Equilibrium solution of the kinetic
equation

An important consistency check for the present theory is that in thermal equilibrium,
i.e., for a time-independent Hamiltonian (H(t) =:H0) and in the absence of an external
bias (µ` = const.=: µ), the current through the different molecule-lead contacts has to
vanish; otherwise the second-law of thermodynamics would be violated. The discussion
in Sect. 5.3.1 shows that a sufficient condition for a zero current is that the equilibrium
solution of the kinetic equation Eq. (3.30) is given by the Fermi distribution (3.62).
In this appendix, we show that this is indeed the case. To this end, we insert the
solution (3.62) as an ansatz into Eq. (3.30), yielding∑

α′

[
Rleads

αβα′α′ +R
phonons
αβα′α′

]
f(εα′) +

∑
α′α′′

Qphonons
αβα′α′α′′α′′ f(εα′) f(εα′′) + S leads

αβ = 0 . (C.1)

Note that we have set, without loss of generality, the common chemical potential µ
to zero. Let us now treat separately the contributions stemming from the coupling
to the leads and to the phonons, respectively. Concerning the lead’s contribution, we
note that for arbitrary α and β the identity∑

α′

Rleads
αβα′α′f(Eα′) + S leads

αβ = 0 (C.2)

holds true. This can readily inferred from the equilibrium form

Rleads
αβα′α′ = −1

2

L∑
`=1

Γ`(Eα′)〈Φα|`〉〈`|Φβ〉 (δβα′ + δαα′) (C.3)

of the Redfield tensor (3.34) and the source term (3.35), which reads

S leads
αβ =

1

2

L∑
`=1

〈Φα|`〉〈`|Φβ〉
{
Γ`(Eα)f(Eα) + Γ`(Eβ)f(Eβ)

}
. (C.4)
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C Equilibrium solution of the kinetic equation

Here, |Φα〉 and Eα are the eigenstates and the eigenenergies, respectively, of H0. The
proof of Eq. (C.1) is completed by demonstrating that the phononic contributions to
the left-hand side of Eq. (C.1) vanish for arbitrary α and β, i.e.,∑

α′

Rphonons
αβα′α′ f(Eα′) +

∑
α′α′′

Qphonons
αβα′α′α′′α′′ f(Eα′) f(Eα′′) = 0 . (C.5)

Therefore, we write the Redfield tensor for the equilibrium case as [cf. Eq. (3.47)]

Rphonons
αβα′α′ =

∑
ν

{
[Nν(Eα−Eα′)+Nν(Eβ−Eα′)]X̄

ν
αα′ X̄

ν
α′β

−(δαα′ + δβα′)
∑
α′′

Nν(Eα′′−Eα′)X̄
ν
αα′′ X̄

ν
α′′β

}
,

(C.6)

with the matrix elements

X̄ν
αβ :=

∑
n,n′

〈Φα|n〉Xnn′ν〈n′|Φβ〉 . (C.7)

The coefficient tensor (3.50) of the quadratic terms now reads

Qphonons
αβα′α′α′′α′′ =

1

~
(δαα′ + δβα′)

∑
ν

Dν((Eα′ − Eα′′)/~)X̄ν
αα′′ X̄

ν
α′′β . (C.8)

Upon insertion of Eqs. (C.6) and (C.8) into Eq. (C.5), we obtain∑
α′

Rphonons
αβα′α′ f(Eα′)+

∑
α′α′′

Qphonons
αβα′α′α′′α′′ f(Eα′)f(Eα′′) =

1

~
∑

ν

∑
α′

X̄ν
αα′ X̄

ν
α′β

×
{
Dν(Eα−Eα′)

[
nB(Eα−Eα′)f(Eα′)+nB(E ′α−Eα)f(Eα)+f(Eα)f(Eα′)

]
+Dν(Eβ−Eα′)

[
nB(Eβ−Eα′)f(Eα′)+nB(E ′α−Eβ)f(Eβ)+f(Eβ)f(Eα′)

]}
.

(C.9)

Using the remarkable identity between Bose and Fermi functions,

nB(E − E ′)f(E ′) + nB(E ′ − E)f(E) + f(E)f(E ′) = 0 , (C.10)

which can directly be verified by insertion of the definitions of nB(E) and f(E), we
can conclude that the right-hand side of Eq. (C.9) vanishes, thereby establishing the
validity of Eq. (C.5) and therefore that of the condition (C.1) for the validity of the
Fermi distribution as equilibrium solution.
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[29] F. Jülicher, A. Adjari, and J. Prost, Modeling Molecular Motors, Rev. Mod.
Phys. 69, 1269 (1997).

[30] P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors,
Appl. Phys. A 75, 169 (2002).

[31] P. Reimann, Brownian Motors: Noisy Transport far from Equilibrium, Phys.
Rep. 361, 57 (2002).

[32] R. D. Astumian and P. Hänggi, Brownian Motors, Physics Today 55(11), 33
(2002).

[33] P. Reimann, M. Grifoni, and P. Hänggi, Quantum Ratchets, Phys. Rev. Lett.
79, 10 (1997).

[34] I. Goychuk, M. Grifoni, and P. Hänggi, Nonadiabatic Quantum Brownian Rec-
tifiers, Phys. Rev. Lett. 81, 649 (1998), erratum: ibid. 81, 2837 (1998).

[35] I. Goychuk and P. Hänggi, Quantum rectifiers from harmonic mixing, Europhys.
Lett. 43, 503 (1998).

[36] I. Goychuk and P. Hänggi, Minimal Quantum Brownian Rectifiers, J. Phys.
Chem. B 105, 6642 (2001).
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Z. 30, 467 (1929).

[68] H. Wang and X.-G. Zhao, Dynamics of two-level systems driven by dc-ac fields,
Phys. Lett. A 217, 225 (1996).

97



References

[69] V. Mujica, M. Kemp, and M. A. Ratner, Electron conduction in molecular wires.
I. A scattering formalism, J. Chem. Phys. 101, 6849 (1994).

[70] V. Mujica, M. Kemp, and M. A. Ratner, Electron conduction in molecular wires.
II. Application to scanning tunneling microscopy, J. Chem. Phys. 101, 6856
(1994).

[71] E. G. Petrov and P. Hänggi, Nonlinear Electron Current through a Short Molec-
ular Wire, Phys. Rev. Lett. 86, 2862 (2001).

[72] E. G. Petrov, V. May, and P. Hänggi, Controlling electron transfer processes
through short molecular wires, Chem. Phys. 281, 211 (2002).

[73] J. Lehmann, G.-L. Ingold, and P. Hänggi, Incoherent charge transport through
molecular wires: interplay of Coulomb interaction and wire population, Chem.
Phys. 281, 199 (2002).
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