
Random processes: Theory and applications from physics to finance HS 2012

Problem set 6 to be handed in by 2012/10/31

1. Problem: First-Passage problems and gambler’s ruin (10 points)

In the following, we consider a one-dimensional discrete process described by the birth-death
forward equation

d

dt
p(n, t|m, 0) = γ+n−1 p(n− 1, t|m, 0) + γ−n+1 p(n+ 1, t|m, 0)−

(
γ+n + γ−n

)
p(n, t|m, 0) (1)

with the conditional probability1 p(n, t|m, 0) for the process to be at time t at position n ∈ Z
provided that initially, at time t = 0, we started at position m ∈ Z. Obviously, this implies
the initial condition

p(n, t = 0|m, 0) = δn,m . (2)

The coefficient γ±n is the probability per unit time to jump from n to n± 1.

Often, the dynamics (1) is restricted to a subset of all integers and thus boundary conditions
come into play. For instance, one may be interested in the probability that the process reaches
another site R (with, say, R > m) for the first time and, in case that this happens, after what
time. This first-passage time is different for different realizations of the process and therefore
a random quantity. In the following, we will derive relations for its average, the so-called mean
first-passage time.2

A classical example of Eq. (1) with boundary conditions is the gambler’s ruin problem: Suppose
a gambler starts with an initial captial of m and the game continues until his capital is reduced
to zero. How probable is that event and how long does it take on average until the game
is finished? In the following, we will first study one possible approach for calculating these
quantities and then consider a slightly more extended version of the gambler’s ruin problem.

1.1. Absorbing boundary conditions

We assume that the site R is an absorbing boundary such that whenever a random walker hits
R he is out. Thus Eq. (1) is only valid for n < R− 1 and we have the additional equation

d

dt
p(R− 1, t|m, 0) = γ+R−2 p(R− 2, t|m, 0)−

(
γ+R−1 + γ−R−1

)
p(R− 1, t|m, 0) . (3)

1In order to clutter the notation not too much, we write p(n, t|m, 0) for p1|1(n, t|m, 0).
2Mean-first-passage-time problems are also one of the most important topics of chemical physics: Reaction
rates can be calculated as the inverse of the mean first-passage time in a continuous model for diffusion
across a potential barrier.
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The probability p(R, t|m, 0) does not appear anymore.

Please note that since transitions back to R− 1 starting from R are not possible, the conser-
vation of probability cannot be fulfilled:

− d

dt

R−1∑
n=−∞

p(n, t|m, 0) = γ+R−1 p(R− 1, t|m, 0) . (4)

This can be interpreted as the density of an ensemble of independent particles each conducting
a random walk until it disappears at n = R. The number of remaining particles decreases.3

Note that both sides of Eq. (4) give the probability per unit time of disappearing at R at
time t.

Show that the probability πR(m) of reaching R having started at m is given by

πR(m) =

∞∫
0

dt

(
−

R−1∑
n=−∞

d

dt
p(n, t|m, 0)

)
(5)

Show furthermore, provided that the process reaches R with probability one, i.e., πR(m) = 1
that mean first-passage time τR(m) is given

τR(m) =

∞∫
0

dt t

(
−

R−1∑
n=−∞

d

dt
p(n, t|m, 0)

)
=

R−1∑
n=−∞

∞∫
0

dt p(n, t|m, 0) . (6)

Note that this requires the somewhat stronger assumption lim
t→∞

[
t

R−1∑
n=−∞

p(n, t|m, 0)

]
= 0.

Would you expect this to be fulfilled provided that πR(m) = 1?

1.2. Backward equation for splitting probabilities and mean first-passage time

Many formalisms have been developed for the calculation of quantities relating to first-passage
problems. Here, we shall derive one based on the backward equation, which for general, discrete
time-homogeneous Markov process assumes the form

d

dt
p(n, t|m, 0) =

∑
m′

Γ†mm′ p(n, t|m′, 0) (7)

“Derive” this from the backward equation for a continuous state space given in the lecture.
How does the master operator Γmm and its adjunct Γ†mm′ look for the birth-death process (1).

Derive for the splitting probability the equation∑
m′

Γ†mm′ πR(m′) = 0 (8)

3If you do not like this fact, introduce an absorbing state which captures the lost particles.
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where m < R with boundary condition πR(R) = 1. Interpret the boundary condition. Rewrite
this equation in the form

πR(m) =
γ+m

γ+m + γ−m
πR(m+ 1) +

γ−m
γ+m + γ−m

πR(m− 1) . (9)

Similarly, show that for πR(m) = 1 the mean first-passage time obeys∑
m′

Γ†mm′ τR(m′) = −1 (10)

with boundary condition τR(R) = 0. Again, discuss the plausibility of the boundary condi-
tion.

1.3. Two absorbing boundaries

So far, we have only considered one absorbing boundary. To make the problem more inter-
esting for the gambler (or the bank), we now allow for an alternative end of the game by
introducing another boundary on the “other” side, say at a side L < m. Then we ask for the
probabilities πR(m) and πL(m) that a process starting at m reaches first R or L, respectively.
Thus, we introduce analogously to the equation at R, an absorbing boundary at L:

d

dt
p(L+ 1, t|m, 0) = γ−L+2 p(L+ 2, t|m, 0)−

(
γ+L+1 + γ−L+1

)
p(L+ 1, t|m, 0) . (11)

The splitting probability πR(m) now still obeys the backward equation (9) with the same
boundary condition at m = R but additionally, it has to fulfill πR(L) = 0. Why?

The concept of the mean first-passage time can be generalized to a mean exit-time τ(m) if we
do not care about the fact where the process leaves the “allowed” range L+ 1 < m < R − 1.
Show that then (10) holds (replacing τR(m) by τ(m)) with the boundary conditions τ(L) =
τ(R) = 0.

1.4. Example: Gambler’s ruin

Now we are finally able to consider an interesting version of the gambler’s ruin problem,
namely the probability that a gambler with initial capital m goes bancrupt (i.e., ends up with
zero capital L = 0) if he plays against another gambler with capital R−m, when per unit time
he wins (loses) one “coin” with probability γ+ (γ−). with asymmetrical chances for winning
the game.4

4Note that somewhat unrealistically, we assume a continuous version of the game. It tunrs out, however,
that the result for the more realistic discrete-time process is the same.
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1.4.1. Ruin probability

The ruin probability is just given by the splitting probability π0(m) for m > 0 and we specialize
the rates to γ+m = γ+ and γ−m = γ−. Derive then the result

π0(m) =
xR − xm

xR − 1
(12)

where x = γ−/γ+.

Hint: Consider the difference equation for ∆m = π0(m + 1) − π0(m). Use
∑R−1

m=0 ∆m = −1
(why?).

Discuss this in the limit γ− = γ+ and also for R → ∞, i.e. the gambler playing against a
bank.

1.4.2. Mean duration of game (no points)

Show that the mean duration of the game is given in the “symmetric” case γ+ = γ− = 1 by

τ(m) = m(R−m)/2 (13)

Study some numerical examples for this mean exit-time. Is the duration of the game longer
or shorter than you expected it?
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