
Random processes: Theory and applications from physics to finance HS 2012

Problem set 2 to be handed in by 2012/10/03

1. Problem: Discrete-time random walk (10 points)

A drunkard moves along a line by making each second a step to the right or to the left with

equal probability. Thus, his possible positions are the integers −∞ < n < ∞. We assume

that initially n = 0 and want to determine the probability pn(r) after r steps.

1.1. Combinatorial derivation

Derive the probability pn(r) by combinatorial arguments.

Hint: How many different paths lead to the position n after r steps?

1.2. Solve by addition of variables

Each step j = 1, 2, . . . , r corresponds to a stochastic variable x̂j taking on the values 1 and

−1 with equal probability 1/2. The position after r steps is then given by

n̂r = x̂1 + x̂2 + . . .+ x̂r.

The steps and, thus, the variables x̂j are mutually independent.

1.2.1. Average

Derive the average 〈n̂r〉 and the variance 〈
(
n̂r − 〈n̂r〉

)2〉. Discuss the r-dependence of these

variables and compare it to a deterministic (sober) movement.

1.2.2. Characteristic Function

Calculate the characteristic function Gn̂r(k). Determine the probability pn(r) from this ex-

pression. What is the advantage of this method compared to the combinatorial derivation?
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Hint:

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

1.3. Asymmetric random walk

Now assume that a step to the left has the probability q and to the right 1 − q. Find pn(r)

for this case.

2. Problem: The Poisson distribution, cumulants (no points)

2.1. Poisson distribution

The Poisson distribution is defined as

pn =
an

n!
e−a (1)

on the discrete range n = 0, 1, 2, ....

The Poisson distribution describes, e.g., the number of events occuring in a certain time or

spatial interval when the probability of an event occuring per time / spatial unit is constant.

It also results from the binomial distribution in the limit of rare events (→ 2.3).

Check the normalization of the Poisson distribution, i.e.,
∑

n pn = 1.

Calculate the first moment 〈n̂〉.

Hint: Use the derivative ∂
∂a

to bring the expression in a form which can readily be summed.

2.2. Cumulants

Calculate the cumulants κm of the Poisson distribution, Eq. (1), defined by

logG(k) =
∞∑

m=0

(ik)m

m!
κm , (2)

where G(k) =
∞∑
n=0

pneikn is the characteristic function for a discrete random variable.

Hint: Use the derivative of logG(k).
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2.3. Poisson theorem

Show that the Poisson distribution approximates the binomial distribution

pn =

(
N

n

)
pn qN−n , q = 1− p and n = 0, 1, 2, . . . , N (3)

in the limit N →∞, p→ 0, Np = a = const.

Hint: Use Stirling’s formula k! ≈
√

2πk

(
k

e

)k

for k →∞.

3. Probability generating function, factorial moments and cumulants (no points)

The probability generating function of a random variable x̂ is defined by

f(z) =
〈
zx̂
〉

(4)

where z is a complex number on the unit circle |z| = 1.

What condition does x̂ have to fulfil in order that f(z) is even defined for all z within the unit

circle? What could be the advantage of using f(z) compared to the characteristic function

G(k) = 〈eikx̂〉?

Calculate the probability generating function f(z) for the Poisson distribution.

3.1. Factorial moments (optional)

For commonly occuring distributions, often special types of “moments”, “cumulants” and cor-

responding generating functions have been introduced. They both facilitate calculations with

these distributions, but are also sometimes used in approximation schemes. The “standard”

moments and cumulants have already been introduced in the lecture. Here, we look at a

variant which is sometimes helpful when dealing with Poisson distributions.

We first define the factorial moments Φm by

Φ0 = 1 (5)

Φm = 〈x̂(x̂− 1)(x̂− 2) . . . (x̂−m+ 1)〉 (m ≥ 1) (6)

Show that the factorial moments are generated by the probability generating function:

f(1− y) =
∞∑

m=0

(−y)m

m!
Φm. (7)
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3.2. Factorial cumulants (optional)

The factorial cumulants θm are defined by

log f(1− y) =
∞∑

m=1

(−y)m

m!
θm. (8)

What is the relation between the factorial cumulants and the factorial moments up to θ3.

How do the factorial moments look like?

What is special about the factorial cumulants of the Poisson distribution? Compare this to

the case of Gaussian distributions.

4. Problem: Compound distribution (no points)

Let x̂j be an infinite set of independent stochastic variables with identical distributions Px̂(x)

and characteristic function Gx̂(k) =
∞∫
−∞

Px̂(x)eikxdx. Let r̂ be a random non-negative integer

with distribution pr and probability generating function f(z). Then the sum

ŷ = x̂1 + x̂2 + . . .+ x̂r̂

is a random variable, where we set ŷ = 0 for r̂ = 0. Show that its characteristic function

Gŷ(k) fulfills

Gŷ(k) = f(Gx̂(k)).

The distribution of ŷ is the so-called compound distribution.

4.1. Example

Assume that x̂i are Bernoulli variables, i.e. P (x̂i = 1) = p = 1 − q and P (x̂i = −1) = q like

in the asymetric random walk discussed in problem 1 and r̂ obeys Poisson statistics. What is

the characteristic function Gŷ(k) of the compound process? Use the characteristic function to

compute both the mean and the variance of ŷ.
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