
Random processes: Theory and applications from physics to finance FS 2009

Problem set 3 to be handed in by 2009/03/18

1. Problem: Branching processes (10 points)

The so-called branching process models a chain reaction occuring in successive generations.

Initially, for the zeroth generation, we start with a single event. This event causes in the first

generation r̂ further events, where r̂ is a random non-negative integer with distribution pr.

If r̂ = 0, the process stops. Otherwise, every direct descendant causes in the next (second)

generation further events according to the same distribution pr and so on. The events of each

generation act independently of each other.

Whereas an obvious example for such a process are nuclear chain reactions, originally this

process has been invented by F. Galton to study the survival of family names (hence the name

Galton-Watson process). Another example is the cascading failure of components like power

lines which is induced by an overloading occuring after the initial failure of a line.

1.1. Recursion relation

Let ŷn be the number of events, i.e., the size of the n-th generation with generating function

fn(z) = 〈zŷn〉. In particular, y0 = 1 in the 0th generation. Furthermore, f1(z) = f(z), where

f(z) = 〈zr̂〉 =
∞∑

r=0

prz
r is the generating function corresponding to the variable r̂. Derive from

the description of the branching process the recursive relation

fn(z) = f(fn−1(z)) . (1)

1.2. Probability for a finite cascade

An important question is whether the branching process continues forever or stops after a

finite number of generations, i.e., whether ŷn = 0 for an arbitrary n.
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1.2.1. Recursion formula

How can the probability qn := P (ŷn = 0) that the process stops at or before the n-th generation

be calculated from the generating function fn(z)? Derive from Eq. (1) a recursion formula for

the qn. What is the initial condition q1?

1.2.2. Termination of branching process

Excluding the extreme cases p0 = 0 and p0 = 1 derive from the form of the generating function

f(z) that the qn approach a limiting value q ≤ 1 satisfying

q = f(q) . (2)

Show geometrically that equation (2) has the unique solution q = 1 if and only if the first

derivative f ′(1) of the characteristic function satisfies f ′(1) ≤ 1.

Hint: The characteristic function is convex. Why?

What does condition (2) yield for the special case of the variable r̂ being a Poisson distribution

with mean a?

1.2.3. Mean size of generations

Show that the expected size of the n-th generation is given by

〈ŷn〉 = f ′n(1).

Derive a chain rule for 〈ŷn〉 and show that

〈ŷn〉 = µn,

where µ is the mean value of r̂. Why is it intuitively clear that the branching process dies out

for f ′(1) < 1 ?

2. Problem: Compound distribution (no points)

Let x̂j be an infinite set of independent stochastic variables with identical distributions Px̂(x)

and characteristic function Gx̂(k) =
∞∫
−∞

Px̂(x)eikxdx. Let r̂ be a random non-negative integer
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with distribution pr and probability generating function f(z) = 〈zr̂〉 =
∞∑

r=0

prz
r. Then the

sum

ŷ = x̂1 + x̂2 + . . .+ x̂r̂

is a random variable, where we set ŷ = 0 for r̂ = 0. Show that its characteristic function

Gŷ(k) fulfills

Gŷ(k) = f(Gx̂(k)).

The distribution of ŷ is the so-called compound distribution.

2.1. Example

Assume that x̂i are Bernoulli variables, i.e. P (x̂i = 1) = p = 1 − q and P (x̂i = −1) = q like

in the asymetric random walk discussed on problem set 2 and r̂ obeys Poisson statistics. How

does the compound distribution Pŷ then look like?

3. Problem: Box-Muller algorithm for the generation of Gaussian random variables (no

points)

For the generation of random numbers according to a certain distribution on a computer, one

usually starts with uniformly distributed pseudo-random numbers1 and then does a suitable

transformation to the desired random variable. One of the most famous methods, the so-called

Box-Muller transform, deals with the generation of Gaussian random numbers.

Show that from two independent uniformly distributed in the interval (0, 1] random numbers

x̂1 and x̂2, one obtains two independent Gaussian variables ẑ1 and ẑ2 with zero mean and unit

variance by means of the transformation

ẑ1 =
√
−2 ln x̂1 cos(2πx̂2) (3)

ẑ2 =
√
−2 ln x̂1 sin(2πx̂2) (4)

Hint: Write the joint probability density of the transformed variables using a two-dimensional

δ-function and then evaluate this expression using the Jacobian ∂(x1,x2)
∂(z1,z2)

of the transforma-

tion.

1Pseudo-random number generators are a whole topic by itself, which we do not cover here. For an excel-
lent overview see, e.g., Chapter 3 in Donald E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 3rd edition (Addison-Wesley, 1997)
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