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1. Point process

We want to study a special class of random variables the so-called “point processes” (or

“random set of points”). They model, for instance, the random occurrence of certain events

like the passage of charge carriers through a device as a dot on a time axis.

1.1. Definitions

The simplest point process has a sample space described by a non-negative integer s = 0, 1, . . .

and for each s a set of s real number {τ1, . . . , τs}. In particular, arbitrary permutations of

the τi are identified. The probability distribution on this sample space is then defined by a

sequence of non-negative functions Qs(τ1, . . . , τs) which have to be symmetric in all arguments,

and have to obey and fulfill the normalization condition

Q0 +
∞∑
s=1

1

s!

∫
dτ1 . . . dτsQs(τ1, . . . , τs) = 1 . (1)

Here and in the following, all integrals run over the whole real axis and we also assume that

the Qs(τ1, . . . , τs) do not contain delta-functions of the type δ(τ1 − τ2), i.e., the probability

that two events occur at the same time is zero.

A random variable Â defined on this sample space consists of a sequence of functions

As(τ1, . . . , τs), which, again, have to be symmetric in all arguments. The corresponding aver-

age is given by

〈Â〉 = A0 Q0 +
∞∑
s=1

1

s!

∫
dτ1 . . . dτsAs(τ1, . . . , τs)Qs(τ1, . . . , τs) .

1.2. Example: Number of events in a given interval

Let N̂ be the number of points in a given interval [ta, tb]. In order to define the corresponding

sequence of functions Ns(τ1, . . . , τs), we introduce the indicator χ(t) of this interval by

χ(t) =

1 ta < t < tb

0 otherwise.

Then, the random variable N̂ is represented by

Ns(τ1, . . . , τs) =
s∑

σ=1

χ(τσ) .
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1.2.1. Calculation of averages

Calculate the average 〈N̂〉 and the mean square 〈N̂2〉 for this example.

1.3. The Poisson distribution

A point process is called independent when each Qs factorizes, i.e., for s ≥ 1

Qs(τ1, . . . , τs) = e−ν q(τ1) · · · q(τs) (2)

and Q0 = exp(−ν). Here, q(τ) is an arbitrary non-negative integrable function and the

normalization constant exp(−ν) is determined by

ν =

∞∫
−∞

dτ q(τ) . (3)

1.3.1. Normalization

Proof that for independent processes (2) the Qs fulfill the normalization condition (1) with

the constant ν given in Eq. (3).

1.3.2. Example

Calculate 〈N̂〉 and 〈N̂2〉 for the example in section 1.2 in the case of independent point

processes.

1.3.3. Probability distribution

Derive for the characteristic function of N̂ the relation

〈eikN̂〉 = exp

(eik − 1)

tb∫
ta

q(τ) dτ


and from there the probability distribution of N̂ . Argue why this point process is a Poisson

process where the parameter a from problem set 1 is the mean 〈N̂〉 given by

a = 〈N̂〉 =

tb∫
ta

q(τ) dτ.

1.3.4. Shot noise as stationary and independent point process

A stationary and independent point process is called shot noise. Stationary means that the

function q(τ) is independent of the time argument τ . Since the normalization condition (3)

2



cannot be fulfilled in this case, stationarity can only be defined in terms of a limit procedure:

q(τ) =

ρ |τ | < T

0 otherwise,

where the limit is taken such that T →∞, ν →∞, ρ = const. Derive ρ as a function of ν and

T .

2. Shot noise

2.1. Campbell’s process

Imagine a process of the form

ŷ(t) :=
ŝ∑

σ=1

u(t− τ̂σ) (4)

where u(t) is a given integrable function, which represents the response to an event at time

t = 0. If the random set {τ̂σ} with density ρ is independent and stationary, then this type of

process is called “Campbell’s process”.

Show that in this case

〈ŷ(t)〉 = ρ

∞∫
−∞

dτ u(τ),

〈〈ŷ(t)ŷ(t′)〉〉 = ρ

∞∫
−∞

dτ u(τ)u(t− t′ + τ).

2.1.1. Fourier transformation

The Fourier transform of the function u(t) and the autocorrelation function Sŷ(t − t′) =

〈〈ŷ(t)ŷ(t′)〉〉 are defined as

u(ω) :=

∫
dτ eiωτu(τ),

Sŷ(ω) :=

∫
dτ eiωτSŷ(τ),

where Sŷ(ω) is denoted the spectral density of ŷ.

Show that for the Campbell’s process the following relation is valid

Sŷ(ω) = ρ|u(ω)|2.
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2.2. Schottky’s theorem

The time dependent random function is now assumed to be the fluctuating part of an electric

current, ŷ(t) ≡ I(t). Electrons are assumed to be transported at independent random times.

How does the function u(t) in equation (4) thus look like?

Derive the Schottky relation that the shot noise SI(ω) obeys

SI(ω) = e〈Î〉.

Thus the Fano factor F = SI/e〈I〉 is unity. Interpret this result.

2.3. MacDonald’s theorem

The charge transported in a time t by e.g. an electric current is given by N̂ŷ(t) =
t∫

0

dt′ŷ(t′).

Proof MacDonald’s theorem

Sŷ(ω) = ω

∞∫
0

dt sin(ωt)
d

dt
〈〈N̂ŷ(t)

2〉〉 . (5)

The upper limit of Eq. (5) is guaranteed by a converging factor e−εt. What does this imply

for the Schottky process described in section 2.2?

Hint: To proof Eq. (5) first derive the relation

d

dt
〈〈N̂ŷ(t)

2〉〉 = 2

t∫
0

dτ Sŷ(τ)
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