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1. Discrete-time random walk

A drunkard moves along a line by making each second a step to the right or to the left with

equal probability. Thus his possible positions are the integers −∞ < n <∞. We assume that

initially n = 0 and want to determine the probability pn(r) after r steps.

1.1. Combinatorial derivation

Derive the probability pn(r) by combinatorial arguments.

Hint: How many different path lead to the position n after r steps?

1.2. Solve by addition of variables

Each step j = 1, 2, . . . , r corresponds to a stochastic variable x̂j taking on the values 1 and

−1 with equal probability 1/2. The position after r steps is then given by

n̂r = x̂1 + x̂2 + . . .+ x̂r.

The steps and thus the variables x̂j are mutually independent.

1.2.1. Average

Derive the average 〈n̂r〉 and the variance 〈n̂2
r〉. Discuss the r-dependence of these variables

and compare to that of a deterministic (sober) movement.

1.2.2. Characteristic Function

Calculate the characteristic function Gn̂r(k). Determine the probability pn(r) from this ex-

pression. What is the advantage of this method compared to the combinatorial derivation?
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Hint:

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

1.3. Asymmetric random walk

Now assume that a step to the left has the probability q and to the right 1 − q. Find pn(r)

for this case.

2. Compound distribution

Let x̂j be an infinite set of independent stochastic variables with identical distributions Px̂(x)

and characteristic function Gx̂(k) =
∞∫
−∞

Px̂(x)eikxdx. Let r̂ be a random non-negative integer

with distribution pr and probability generating function f(z) = 〈zr̂〉 =
∞∑

r=0

prz
r. Then the

sum

ŷ = x̂1 + x̂2 + . . .+ x̂r̂

is a random variable, where we set ŷ = 0 for r̂ = 0. Show that its characteristic function

Gŷ(k) fulfills

Gŷ(k) = f(Gx̂(k)).

The distribution of ŷ is the so-called compound distribution.

2.1. Example

Assume that x̂i are Bernoulli variables, i.e. P (x̂i = 1) = p = 1 − q and P (x̂i = −1) = q like

in the asymetric random walk in 1.3, and r̂ obeys Poisson statistics. How does the compound

distribution Pŷ then look like?

3. Branching Process

We now consider a so-called branching process representing a kind of chain reaction occuring

in successive generations. Initially, for the zeroth generation, we start with a single event.
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This event causes in the first generation r̂ further events, where r̂ is a random non-negative

integer with distribution pr. If r̂ = 0, the process stops. Otherwise, every direct descendant

causes in the next (second) generation further events according to the same distribution pr

and so on. The events of each generation act independently of each other.

Whereas an obvious example for such a process are nuclear chain reactions, originally this

process has been invented by F. Galton to study the survival of family names (hence the name

Galton-Watson process). Another example is the cascading failure of components like power

lines which is induced by an overloading occuring after the initial failure of a line.

3.1. Recursion relation

Let ŷn be the number of events, i.e., the size of the n-th generation with generating function

fn(z). In particular, y0 = 1 in the 0th generation. Furthermore, f1(z) = f(z), where f(z) =

〈zr̂〉 is the generating function corresponding to the variable r̂. Derive from the description of

the branching process, the recursive relation

fn(z) = f(fn−1(z)) . (1)

3.2. Probability for a finite cascade

An important question is whether the branching process continues forever or stops after a

finite number of generations, i.e., whether ŷn = 0 for an arbitrary n.

3.2.1. Recursion formula

How can the probability qn := P (ŷn = 0) that the process stops at or before the n-th generation

be calculated from the generating function fn(z)? Derive from Eq. (1) a recursion formula for

the qn. What is the initial condition q1?

3.2.2. Termination of branching process

Excluding the extreme cases p0 = 0 and p0 = 1 derive from the form of the generating function

f(z) that the qn approach a limiting value q ≤ 1 satisfying

q = f(q) . (2)
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Show geometrically that equation (2) has the unique solution q = 1 if and only if the first

derivative f ′(1) of the characteristic function satisfies f ′(1) ≤ 1.

Hint: The characteristic function is convex. Why?

3.2.3. Mean size of generations

Show that the expected size of the n-th generation is given by

〈ŷn〉 = f ′n(1).

Derive a chain rule for 〈ŷn〉 and show that

〈ŷn〉 = µn,

where µ is the mean value of r̂. Why is it intuitively clear that the branching process dies out

for f ′(1) < 1 ?
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