Random processes: Theory and applications from physics to finance
 SS 2008

 Problem set 10
 2008/05/14

1. Chain rule for Stratonovich SDE

The chain rule for the Itô calculus, i.e., Itôs formula [for t-independent $f(\hat{x}(t), t) = f(\hat{x}(t))$]

$$df(\hat{x}(t)) = \left\{ a_{\mathrm{I}}(\hat{x}(t), t) f'(\hat{x}(t)) + \frac{1}{2} [b_{\mathrm{I}}(\hat{x}(t), t)]^2 f''(\hat{x}(t)) \right\} dt + b_{\mathrm{I}}(\hat{x}(t), t) f'(\hat{x}(t)) d\hat{W}(t) \quad (1)$$

contains a second order derivative with respect to x. Here, $\hat{x}(t)$ has to obey the Itô SDE

$$d\hat{x}(t) = a_{\mathrm{I}}(\hat{x}(t), t) \, \mathrm{d}t + b_{\mathrm{I}}(\hat{x}(t), t) \, \mathrm{d}\hat{W}(t) \tag{2}$$

We will now demonstrate that the chain rule for the Stratonovich calculus is more straightforwardly given by the common chain rule of differential algebra,

$$df(\hat{x}(t)) = \left\{ a_{\rm S}(\hat{x}(t), t) dt + b_{\rm S}(\hat{x}(t), t) \circ d\hat{W}(t) \right\} f'(\hat{x}(t)) = d\hat{x}(t) f'(\hat{x}(t)), \qquad (3)$$

where $\hat{x}(t)$ has to fulfill the Stranonovich SDE implicitely defined by the second equality sign, i.e., Eq. (4) below.

1.1. Transformation

Show for the one-dimensional case that the Stratonovich SDE

$$d\hat{x}(t) = a_{\rm S}(\hat{x}(t), t) dt + b_{\rm S}(\hat{x}(t), t) \circ d\hat{W}(t)$$

$$\tag{4}$$

is equivalent to the Itô SDE

$$d\hat{x}(t) = \left[a_{\rm S}(\hat{x}(t), t) + v^{(\frac{1}{2})}(\hat{x}(t), t)\right] dt + b_{\rm S}(\hat{x}(t), t) \, d\hat{W}(t) \,, \tag{5}$$

where the noise-induced drift is given by

$$v^{(\frac{1}{2})}(x,t) = \frac{1}{2} b_{\mathrm{S}}(x,t) \frac{\partial}{\partial x} b_{\mathrm{S}}(x,t) .$$

$$\tag{6}$$

1.2. Chain rule

Use Itô's formula (1) and convert the Itô SDE for the function y = f(x) back to the Stratonovich SDE to derive expression (3).

2. Product rule (partial integration) for Itô processes

Let $\hat{x}(t)$ and $\hat{y}(t)$ be two Itô processes, i.e. solutions of the Itô SDEs

$$d\hat{x} = a_x(\hat{x}, t) dt + b_x(\hat{x}, t) dW(t)$$

$$d\hat{y} = a_y(\hat{y}, t) dt + b_y(\hat{y}, t) d\hat{W}(t)$$

with identical realizations of the Wiener process $\hat{W}(t)$. Derive using $d[\hat{x}\hat{y}] = \hat{x} d\hat{y} + \hat{y} d\hat{x} + d\hat{x} d\hat{y}$ that the product $\hat{x}(t)\hat{y}(t)$ obeys the Itô process

$$d[\hat{x}\hat{y}] = [\hat{x} a_y(\hat{y}, t) + a_x(\hat{x}, t) \,\hat{y} + b_x(\hat{x}, t) b_y(\hat{y}, t)] dt + [\hat{x} \, b_y(\hat{y}, t) + b_x(\hat{x}(t), t) \,\hat{y}] d\hat{W}(t)$$

Verify that this is consistent with the multidimensional Itô formula given in the lecture.

Now assume that the two Wiener processes for $\hat{x}(t)$ and $\hat{y}(t)$ are independent. Which result for $d[\hat{x}\hat{y}]$ do you then obtain?

3. Harmonic oscillator

The equation of motion for a classical harmonic oscillator is given by

$$m\ddot{\hat{x}}(t) + \eta\dot{\hat{x}}(t) + k\hat{x}(t) = \sqrt{2\eta k_B T} \hat{\xi}(t),$$

where $\hat{\xi}(t)$ describes Gaussian white noise with mean value $\langle \hat{\xi}(t) \rangle = 0$ and $\langle \hat{\xi}(t) \hat{\xi}(t') \rangle = \delta(t-t')$.

If we restrict ourselves to the stationary case, it is advantageous to consider the Fourier transform $\hat{x}(\omega) = \int dt \, e^{i\omega t} \, \hat{x}(t)$ of the process. Derive an equation for $\hat{x}(\omega)$.

3.1. Mean value and autocorrelation function

Calculate the mean value $\langle \hat{x}(t) \rangle$ and the autocorrelation function $\langle \hat{x}(t) \hat{x}(t') \rangle$ for the stationary process for the underdamped case $\gamma = \frac{\eta}{m} < 2 \omega_0$ where $\omega_0^2 = \frac{k}{m}$.