Spintronics in Nanostructures

Assistant:

Mircea Trif - Office 4.4 - Tel. 0612673656 - Mircea.Trif@unibas.ch

Exercise 1*. Point Group T_{d}.

Consider the full point group of a tetrahedron $\left(T_{d}\right)$.
a) Find all elements of the group and determine the order of the group.
b) Determine the order of the elements of T_{d}.
c) Find the classes of T_{d}.

Exercise 2*. Great Orthogonality theorem.

Consider irreducible representations of the point group $C_{3 v}\left(\rho: C_{3 v} \rightarrow D_{\nu} \subset G L_{2}(\mathbb{R})\right)$. Using matrix representation of $C_{3 v}$, calculate:

$$
\begin{aligned}
& \sum_{g_{i} \in C_{3 v}} D\left(g_{i}\right)_{11}^{*} D\left(g_{i}\right)_{11}, \quad \sum_{g_{i} \in C_{3 v}} D\left(g_{i}\right)_{22}^{*} D\left(g_{i}\right)_{22}, \\
& \sum_{g_{i} \in C_{3 v}} D\left(g_{i}\right)_{12}^{*} D\left(g_{i}\right)_{12}, \sum_{g_{i} \in C_{3 v}} D\left(g_{i}\right)_{11}^{*} D\left(g_{i}\right)_{22} .
\end{aligned}
$$

Using the great orthogonality theorem, find the result for the previous relations. Compare the results.

Exercise 3. Characters I

Proof the following theorem:
Theorem 1. The character for each element in a class is the same.

Exercise 4. Characters II

Proof the following theorem:
Theorem 2. The number of irreducible representations is equal to the number of classes.

