
Theoretische Festkörperphysik – Herbstsemester 2010 Exercise series 11
Assistant: K. van Hoogdalem 17.12.2010

Perturbation theory for the Kondo model

Motivation The Kondo model is one of the prototype models for strong electron correlation
physics. This means, that even if it looks very simple, it leads to very complex ground states
and system properties that cannot be explained in a simple single-particle picture. Instead, the
physics at low temperatures is described by states that involve a macroscopic fraction of the elec-
tronic collective.

The model was designed to explain the experimental observation of an unexpected logarithmic
increase of the resistivity in metals with magnetic impurities upon cooling down the sample below a
certain, very low, temperature. This was unexpected in the sense that electrical resistivity originates
from a delay (in a quasi-classical picture) of the electron motion through the conductor by repeated
scattering processes with other constituents of the solid state environment, such as impurities or
lattice vibrations (phonons). The increase of resistivity thus indicated that at very low temperatures
another scattering channels opens, and the fact that it occurs only at very low temperatures means
that it cannot be a simple first-order effect (such as banging only once against an impurity), but
that it requires a coherent repetition of scattering events. Such an effect is destroyed at higher
temperatures because temperature fluctuations destroy the memory of the system wave function
to the last scattering event, mainly its phase (known as dephasing). Kondo’s insight was that not
only this effect is due to scattering on the localized magnetic moments formed by the impurities,
but that it was necessary to push the calculation to second order in perturbation theory to see the
effect at all. In fact, the first order perturbative result is discouragingly uninteresting such that it
is rather surprising that Kondo went to second order.

In this exercise set you will follow Kondo’s calculation and determine the logarithmic increase of
the resistivity. The Kondo model is a model designed to capture the essential physics for the
increased scattering rate, leaving aside any other processes that do not contribute. It consists of a
single localized magnetic moment, the Kondo spin, S at position x = 0 (assuming the dilute limit
in which other impurities are far away; the final result then includes a final summation over all
impurities, mainly, the multiplication by their number), and a single-band metal of noninteracting
electrons, described by operators ckσ, with momentum k and spin σ =↑, ↓,

H =
∑

kσ

ǫkc
†
kσckσ − JS · s =

∑

kσ

ǫkc
†
kσckσ − JSzsz −

J

2

[
S+s− + S−s+

]
, (1)

where s =
∑

kk′σσ′

1
2c

†
kσσσσ′ck′σ′ is the (dimensionless) electron spin density at position x = 0,

where σ = (σx, σy, σz) is the vector formed by the Pauli matrices, and S± = Sx± iSy, s± = sx± isy

are the spin raising and lowering operators. The quantity H ′ = −JS · s describes the important
exchange coupling between the localized Kondo spin and the electron spin. The direct charge
interaction is left aside, because it is known that pure potential scattering adds only a temperature-
independent term to the resistivity (what we know as the resistance of Ohm’s law).

The quantity to calculate is the average rate Γ(T ) that an electron is scattered per unit time at
temperature T . This quantity is directly proportional to the resistivity ρ(T ), and is given by the
Golden Rule expression

Γ =
∑

i

ρi(T ) Γi (2)

with (we set ~ = 1 everywhere and measure energy in frequency units)

Γi = 2π
∑

f

|〈f | T (ω = Ei) |i〉|
2 δ(Ei − Ef ), (3)
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where i, f are initial and final states of the scattering process with eigenenergies Ei,f , and ρi is the
density matrix (thermal distribution) of the initial states. The scattering amplitude is given by the
scattering matrix (T-matrix) satisfying the Dyson equation

T (ω) = H ′ +H ′Gr(ω)T (ω), (4)

where Gr(ω) = [ω+ iη−H0]
−1 is the retarded many-body Green’s function, also known as resolvent

(the so far used single-particle Green’s function is obtained by taking matrix elements between
states with a single-particle excitation).

Exercise 1: First order perturbation (2 points) The problem in doing perturbation theory with
spin operators is that they are neither fermions nor bosons and so they do not obey the Wick
theorem. This means, we cannot do perturbation theory by the diagrammatic rules we know.
There are (at least) two ways out of this misery: First, for a Kondo spin 1/2, we can use a

fermionic representation S = 1
2

∑

σσ′ d
†
σσσσ′dσ′ . Second, we can work with the matrix elements

over the eigenstates |mS〉 of Sz (such that Sz |mS〉 = mS |mS〉, mS = −S,−S + 1, . . . ,+S), and
keep explicitly track of all time ordering of the operators.

Here, we suggest to use the matrix element approach (which is more general). The first order
contribution to Γi is then given by

Γ
(1)
i = 2π

∑

f

∣
∣〈f |H ′ |i〉

∣
∣2 δ(Ei − Ef ). (5)

Use initial and final states |i〉 = |k, σ =↑;mS〉 and |f〉 = |k′, σ′;m′
S〉, with energies Ei = ǫk and

Ef = ǫk′ , and show that

Γ
(1)
i = 2πJ2

{

[〈mS |S
z |mS〉]

2

︸ ︷︷ ︸

=m2

S

+
[
〈mS + 1|S− |mS〉

]2

︸ ︷︷ ︸

=S(S+1)−mS(mS−1)

}∑

k′

δ(ǫk − ǫ′k)

= 2πν(ǫk)J
2 [S(S + 1)−mS ] .

(6)

with S± = Sx± iSy raising or lowering |mS〉 by 1. In the thermal averaging, the term proportional
to mS drops out because Sz and −Sz values are identically occupied (there is no other field favoring
a direction, and no spontaneously broken symmetry in the unperturbed system). Hence

Γ = 2πJ2νS(S + 1). (7)

with ν̄ ≈ ν(ǫF ) the density of the states over which the thermal average extends (involving energies
in the vicinity of ǫF only). This result is not very appealing because it is small and essentially
temperature independent (a bit is hidden in ν but there is certainly no logarithm).

Exercise 2: Second order perturbation (8 points) At second order perturbation theory things
become more interesting. Consider

Γ
(2)
i = 2π

∑

f

∣
∣〈f |H ′ +H ′Gr(Ei)H

′ |i〉
∣
∣2 δ(Ei − Ef ). (8)

with again initial and final states |i〉 = |k, σ =↑;mS〉 and |f〉 = |k′, σ′;m′
S〉, with energies Ei = ǫk

and Ef = ǫk′ . For the evaluation of the amplitude 〈f |H ′Gr(Ei)H
′ |i〉, it is most convenient to work

in time space. Recall that we need to write down the time ordering explicitly and to evaluate the
contractions (there is no help from time-ordering operators). The results can still be represented
in diagrams.
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a) We consider here only those where mS = m′
S and σ = σ′ =↑ (the others give equivalent results).

There are in total 4 diagrams, 2 involving the twice the operator Sz and 2 involving S+ and S−.
For convenience, the first diagram is drawn here:

Draw the remaining 3 diagrams.

b) In the following, we will focus on the case of the displayed diagram only, since all other diagrams
give more or less identical results. Since we have taken matrix elements between single-particle
states, the propagator line is the retarded single-particle Green’s function of the free electron
gas (for the p momentum, the k,k′ lines indicate only the entry and exit points of the scattering
vertex but are no propagators themselves). Give the diagram the name γ(t2 − t1) and write
down the corresponding formula.

c) Assume now that ǫk, ǫk′ > ǫF . This implies necessarily that also ǫp > ǫF . Show then that the
diagram in momentum space reads

γ(ω = ǫk) = +J2m2
S

∑

p

1− f(ǫp)

ǫk − ǫp + iη
= J2m2

S

∫

dǫ
ν(ǫ)[1− f(ǫ)]

ǫk − ǫ+ iη

= J2m2
S

[

P

∫

dǫ
ν(ǫ)[1− f(ǫ)]

ǫk − ǫ
+ iπν(ǫk)[1− f(ǫk)]

]

,

(9)

with ν(ǫ) the electron density of states and f(ǫ) the Fermi function.

d) At very low temperatures, the Fermi function provides a sharp cutoff at ǫF , which dominates
the value of the integral. The upper integral boundary cannot affect the result. Indeed, first
the density of states vanishes for high energies (it is limited to a final bandwidth) and so the
integrand is there zero, second the low-energy physics cannot be influenced by the high energy
sector, which can therefore only contribute with at most a constant shift in energy (a so-called
ultraviolet cutoff scale). Close to ǫF we can then approximate ν(ǫ) ≈ ν(ǫF ) and write

P

∫

dǫ
ν(ǫ)[1− f(ǫ)]

ǫk − ǫ
≈ ν(ǫF )

∫ ǫF

unimportant

dǫ

ǫk − ǫ
= −ν(ǫF ) ln

∣
∣
∣
∣

ǫk − ǫF
ǫF

∣
∣
∣
∣
. (10)

Here is the logarithm (note that it must be dimensionless and the only available energy scale for
the normalization is ǫF ).

e) Now we need to average over the temperature distribution of the initial states ǫk. This is to
bring back the Fermi function: Only ǫk within an interval kBT about ǫF are thermally excited.
The major insight is now that if kBT sets the largest low-energy scale (there is, for instance,
no larger voltage) then any averaging over temperature fluctuations will lead to replacing the
fluctuating energy ǫk − ǫF by something proportional to kBT (plus higher order corrections on
the order of kBT/ǫF ≪ 1). This means the thermal average leads (without doing any calculation
here!) to

ln

∣
∣
∣
∣

ǫk − ǫF
ǫF

∣
∣
∣
∣
→ ln

(
ckBT

ǫF

)

, (11)
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with c some proportionality constant. Since ln(ckBT/ǫF ) = ln(kBT/ǫF ) + ln(c) and ln(c) is
a small constant in comparison with the diverging temperature dependent logarithm, we can
neglect ln(c). The result is then correct to what is known as logarithmic accuracy. Setting then
TF = ǫF /kB we find for the thermally averaged γ

γ ≈ −νJ2m2
S ln

(
T

TF

)

, (12)

with ν ≈ ν(ǫF ). Explain why the imaginary part ∝ ν(ǫk)[1− f(ǫk)] can be neglected.

f) All the other diagrams and also the processes where the electron and Kondo spins flip (e.g.,
(↑,mS) → (↓,mS + 1)) lead to identical expressions (up to some prefactors arising from the
matrix elements of the Kondo spin). Show then that we have found

Γ
(2)
i = Γ

(1)
i

[

1− αJν ln

(
T

TF

)

+ . . .

]

, (13)

with α a constant covering all the matrix elements over S (don’t calculate it!). Note that the
logarithmic correction depends on the sign of J . Observe also that the logarithm diverges as
T → 0. Give an argument until which temperature we can trust the perturbation theory, and
show that the so-called Kondo temperature

TK ∼ TF e
1

νJ (14)

gives a good idea when this happens. The fact that perturbation theory breaks down is an
excellent indicator that the system is no longer described by simple elementary excitations of
the noninteracting type but enters a phase formed by a strong coupling between all constituent
particles in the system (or at least a large fraction of them); here electrons and the Kondo spin.
This is what we know as strong correlation physics. Experimentally this phase is seen because
for T < TK , the temperature dependence of any response function is replaced by the larger,
temperature independent many-body correlation scale TK .
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