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Landauer formula

Motivation In conductors with a linear dimension comparable with the coherence length,
the transport is governed by quantum effects. The transport then proceeds by (coherently)
tunneling between the source and drain electrode via the states in the sample. The Landauer
formula describes the conduction in terms of tunneling.

Exercise 1: Adiabatic transport model (4 points) Consider the geometry of a two-dimensional
quantum point contact, i.e., a constriction in a two-dimensional electron gas. The Schrödinger
equation is [
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ψ(x, y) = Eψ(x, y), (1)

where the potential V (x, y) describes the lateral potential producing the constriction in the
transverse y− direction. The adiabatic approximation accounts for the fact that the spatial
variation in the x direction is much slower than in the transverse y direction. In order to
use this approximation, factor the wave function ψ(x, y) into an x− dependent part φn(x),
and an x− and y− dependent transverse part χn(x, y) that is a solution of a one-dimensional
Schrödinger equation at position x along the constriction. Hint: this is a simple separation of
variables, substitute ψ(x, y) = φ(x)χ(x, y) in the equation (1) and assume that the derivatives
with respect to x are much smaller than the derivatives with respect to y. At any point x,
the set of all possible transverse functions χn(x, y) forms a complete set, so that you can use
it as a basis

ψ(x, y) =
∑
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φn(x)χn(x, y). (2)

Multiply the resulting equation by χ∗m(x, y), and integrate over all y. Argue that the resulting
equation can be approximated by[
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φn(x) = Eφn(x). (3)

Interpret this result. Does it mean that the transport can be considered as a tunneling
through a set of one-dimensional barriers En(x), where each barrier comes from a confined
level in the transverse direction?

Exercise 2: Single channel conductance (3 points) The transport through a one-dimensional
channel proceeds through tunneling. The probability of transmission is given by T (E). Argue
that the current is then (assume spinless electrons)
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where the constant is the one-dimensional density of states in the k−space, v(k) is the velocity,
T (E) is the transmission coefficient, and f1 and f2 are the reservoir distribution functions.
Show that at low temperatures, the current between the leads at chemical potentials µ1 and
µ2 is
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Exercise 3: Interference of paths (3 points) When the tunneling can proceed through a
pair of paths with transmission amplitudes t1, t2, the incoherent transmission coefficient is
simply T = T1 +T2 = |t1|2 + |t2|2. In general, however, the tunneling amplitudes can interfere
and the transmission is T = |t1 + t2|2. The complex tunneling amplitudes have the phases φ1,
φ2, i.e., t1 = |t1|eiφ1 , and t2 = |t2|eiφ2 . Find the dependence of the transmission coefficient
T on the relative phase (φ1 − φ2). In the Aharonov-Bohm effect, the relative phase between
the two tunneling paths is given by the magnetic flux Φ encircled by the paths. Remember
that the magnetic flux introduces the phase difference of (e/~)Φ, and show that the current
through a ring is a periodic function of the flux.

Exercise 4: Connection to Meir-Wingreen formula, linear response (2 points) In the
lectures you have seen the general formula for the current through a central region

I =

∫
dω

1

2π

(
f1(ω)− f2(ω)

)∑
n

Γn(ω)An(ω), (6)

where n labels the states of the central region, Γn = Γ1nΓ2n/(Γ1n + Γ2n) is the effective
tunneling rate between reservoirs 1 and 2, and An is the spectral function in the central
region (we assume everything diagonal in n here).

Assume that the dependence on ω of Γ and A is weak and show that at low temperatures
(kBT � eV with V the voltage drop between the reservoirs) I = V G with G the conductance.

Explain then how (6) relates to (5).


