Theoretische Festkorperphysik — Herbstsemester 2010 Exercise series 8
Assistant: M. Schmidt 19.11.2010

Polarization bubble in 3 dimensions

Motivation The polarization bubble is one of the most important pieces appearing in

Feynman diagrams, and is the essential constituent of the so-called Random Phase Approxi-
mation (RPA).

Exercise 1: Polarization bubble (10 points) Assume that an unperturbed electron system
is described by the Hamiltonian

Hy = Zek chk, (1)
k

with k the momentum and k = |k|. For simplicity we assume that the electrons are spinless
here.

(a) Consider the density-density correlator,

xolx, £, 0) = (T (x, ) e, ) (o, 0)6(¢, 0)} ) (2)
Show that we can write, after a Fourier transformation (x,t) = (q,w)
_ dk dw'. . N e N e
Xo(q,W) = (—1) / W / gZGo(k,w ) lGo(k+ q,w + w ) = Zﬂo(q,W)7 (3)

where we specifically choose 3 spatial dimensions. In particular justify the factor (—1).
The function IIf is known as the “polarization function” or “polarization bubble”.

(b) Draw a Feynman diagram corresponding to II§ and write the according labels to every
propagator line and vertex. Observe that a “Kirchhoff law” corresponding to conservation
of momentum and frequency holds at every node (vertex). It is recommended to make
arrows on all lines to avoid confusion with the direction of the momentum and frequency
“flow”.

(c) Explicitly calculate now the w’ integral. [Set h = 1 to make life easier.] Follow here the
following lines (and answer the questions):

1. It is always recommended to do the frequency integrals first. Why?
eiwn/
w—ex+iMK o
quantities and n, = 7 sign(ex — €p). Why and when is the factor €7 important?

3. The product G§(k,w’)G§(k+q,w +w') is of the form -1 To avoid troubles with

1 1

the case a — b, it is recommended to write it in the form ﬁ [w_a — m}. Perform

2. The free Green’s function is given by G§(k,w) = with 7,7’ > 0 infinitesimal

then the ' integral by contour integration. Be extremely careful with the small shifts
Mk and 7Myx1q, which also appear in the factor ﬁ.

4. Observe that the result is very similar to the Lindhard function of Series 5, Exercise
2. What precisely is the difference?



5. Split the result into real and imaginary parts using the formula wim = 77% Fimd(w).

(d) Proceed with the calculation of the k integral in Rellf. For this we make the assumption

with m™* the effective mass of the Fermi liquid
ki
2m*)

that the dispersion is given by € = 2’:72*

described by Hy. Fermi momentum and Fermi energy then relate as follows: ep =
and the density of states at the Fermi surface is v(ep) = #(2771*)3/26};‘/2.

Use then that e q—ex = ﬁ(q2+2kq cos 0), with 6 the angle between k and q. If you set

— W — g _ _k _ . . .
T0 =360 T = 550 Y = 3 and k = cosf, then you can write (with ¢g here an arbitrary

function) [ dk g(k,cos @) = [ dkk? [, d(cos ) g(k,cos8) = (2kr)? [ dyy? [, dr g(y, k).
You should then obtain

RellS(q,w) = —VF P/l/zd 2/1 dr ! - L (@)
0\ W)= 2m2ep Jo v _1 zo — (22 4 2xyr)  x0 + (22 — 22yK) |

The final integration can be done using

/dxagjljL ;= 2111(@1; +b), /dx In(az +b) = 2 [((ax 4+ b) In(ax +b) — ax], (5)

and

2 2 2
/dxmln(aaz—f—b):bz—‘z-{—(é—;ﬂ) In |ax + b|. (6)

You should then obtain the result

Rell§(q, w) = —v(ep) [; | ) gxf(x, —xo)]

with
x+a?— xo

fla,zo) = [1 - (% - x) 2] In . (8)

(e) Now turn to ImII§. Do the k integration by noting that you can write

x — 22+ 10

Imll§(q,w) =7 ) (9)

/ (2(1:)371(%) [0(w + €k — €ktq) — O(w + ex—q — €k)]

with n(ex) = 0(ep — ex) the Fermi function at zero temperature. Use again exiq — €x =
1 (q®+2kq cos 0) and the dimensionless variables x, zg, y and x. If you note furthermore

2m*
that 6 (g(x — z9)) = mcﬂx — x9) if g(z) has a unique zero at x = x¢, then you should
obtain
i3 1/2 1
ImIT§(q, w) = —1— / dny/ dk [8(zo — 2% — 22yk) — &(z0 + 2 — 22yK)]|, (10)
2mer | Jo -1
which eventually leads to (for w > 0)
v(er) |45 [1 — (2 - :c)2” for |z — 22| < 29 < x + 22,
ImlI§(q, w) = vier)s |2 | for 0 < g < x — 22, (11)
0 otherwise.



