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Assistant: M. Schmidt 29.10.2010

Jordan-Wigner transformation and Majorana fermions

Motivation There is currently much excitement in parts of the condensed matter community
because of a potential observability of Majorana fermions in solid state systems. Majorana
fermions are are linear combinations of particle and antiparticle states (in condensed matter:
particles and holes) such that the Majorana particle is its own antiparticle. In the second
quantized language, the Majorana operators ¢ are thus hermitian, ¢ = ¢ (hence they are often
called “real” fermions). While such a fermion was over decades just a sometimes convenient
theoretical trick for representing fermions, the mere possibility of actually observing such a
state is already intriguing. In addition, however, there are by now proposals that build on
Majorana fermions for the so-called topological quantum computation, which is a further
driving force for many physicists.

In this exercise set, you will start from a simple spin-chain model. By a Jordan-Wigner
(JW) transformation you will map it onto a fermionic system, which has Majorana edge
states. Based on this insight, you are encouraged to speculate about what conditions must
be fulfilled for a true electron system to exhibit similar physics.

Exercise 1: Spin chain and sketch of the phase diagram (2 points) Consider a one-
dimensional system of spins S = 1/2 described by the Hamiltonian

H= Z [JUfJfH — haf] ) (1)
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where 7 runs over the lattice sites and o are the Pauli matrices for the spin operators
(the true spins are given by S’f WE = go , but for simplicity we use the Pauli matrices
with eigenvalues +1 here). Nearest neighbor spins interact by an antiferromagnetic exchange
coupling J > 0, and h is a uniform external field in the = direction.

Determine the ground state spin configuration in the limits J > |h| and J < |h|, and

then give an argument at which ratio J/|h| the transition from one to the other phase occurs.

Exercise 2: Jordan-Wigner transformation (2 points) The JW transformation is the map-
ping of the spin chain onto a system of spinless fermions. It is given by

of =20 1, of =(af+a) [0} ol =—ilal —a) ][} (2)
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Show that these fermion operators a; obey the anticommutation relations {a;,a;} = 0 and

{ai,a;} = §;;. Explain why the Hj ~; 05 is required and compare this with the definition

of fermionic creation and annihilation operators given in the lectures. Show then that the
Hamiltonian can be written as

H = Z |:—J(a;[ai+1 + ajﬂai) + J(aai41 — aIaLl) — QhQIai , (3)
)

and give an interpretation of the different terms.



Exercise 3: Spectrum for an infinite chain (3 points) Assume an infinite chain with lattice
constant a. Show that the Hamiltonian can then be written in the form

H = Z {—Q[h + Jcos(ap)]a;,ap - J(ei“pa;aip + e—iapa_pap)}
P
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with p restricted to the first Brillouin zone —% < p < Z. The diagonalization of such

a Hamiltonian is known as a Bogoliubov transformation. For now, however, we are only
interested in the spectrum. Calculate it (eigenvalues of the 2 X 2 matrix in Eq (4)) and show
that there is a gap given by A = min{|.J+h|,|J —h|} such that all eigenvalues €, fulfill €, > A
or €, < —A.

Exercise 4: Majorana fermions (3 points) Note that o and o} depend on the hermitian
combinations aj + a; and —i(aj- — a;). These are the combinations we can use to define
Majorana fermions,
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c; = a; + a;, c; = —i(aj —a;). (5)

Show that {cf, c?} = 20440;; and that the Hamiltonian becomes

H = —iz [Jciefq — helef] + const. (6)
i

For a chain of finite length, ¢ = 1,..., N, most of the eigenstates have energies ¢, > A or
en < —A (with A given above), but there are in addition precisely 2 states of energies € ~ 0,
one located near i = 1 and one near ¢ = N. For simplicity, we consider here a semi-infinite
system (N — oo), where only one bound state remains that has exactly e = 0. Show then that
the bound state is of the form |by) = A(ci + Al + A2ci +...)|). Show that it is a Majorana
fermion, determine A, and give the conditions necessary for the existence of the normalization
constant A (i.e., such that the bound state can exist). For finite length N, estimate then
the energy splitting between the bound states on both ends (remember the splitting between
bonding and antibonding states in the H? molecule). In the limit A — 0, to which state does
the bound state at ¢ = 1 correspond?

Exercise 5: Majorana fermions with electrons (bonus) Reconsider now Eq. (4) and assume
that the a, describe real electrons. Speculate what type of interaction, band structure, etc. is
necessary to obtain such a Hamiltonian. [Hint: Expressions of the form a,a_, appear when-
ever superconductivity is involved, and they represent 2 electrons that are bound together in
a Cooper pair. For conventional superconductors, the Cooper pairs are in a spin-singlet state
and so the operators are complemented by spin indices o =1, ] as apra—, . What does this

imply for the a;wa/pg terms of the kinetic energy?]



