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Assistant: M. Schmidt 29.10.2010

Jordan-Wigner transformation and Majorana fermions

Motivation There is currently much excitement in parts of the condensed matter community
because of a potential observability of Majorana fermions in solid state systems. Majorana
fermions are are linear combinations of particle and antiparticle states (in condensed matter:
particles and holes) such that the Majorana particle is its own antiparticle. In the second
quantized language, the Majorana operators c are thus hermitian, c† = c (hence they are often
called “real” fermions). While such a fermion was over decades just a sometimes convenient
theoretical trick for representing fermions, the mere possibility of actually observing such a
state is already intriguing. In addition, however, there are by now proposals that build on
Majorana fermions for the so-called topological quantum computation, which is a further
driving force for many physicists.

In this exercise set, you will start from a simple spin-chain model. By a Jordan-Wigner
(JW) transformation you will map it onto a fermionic system, which has Majorana edge
states. Based on this insight, you are encouraged to speculate about what conditions must
be fulfilled for a true electron system to exhibit similar physics.

Exercise 1: Spin chain and sketch of the phase diagram (2 points) Consider a one-
dimensional system of spins S = 1/2 described by the Hamiltonian

H =
∑

i

[

Jσx
i σ

x
i+1 − hσz

i

]

, (1)

where i runs over the lattice sites and σx,y,z
i are the Pauli matrices for the spin operators

(the true spins are given by Sx,y,z
i = ~

2
σx,y,z
i , but for simplicity we use the Pauli matrices

with eigenvalues ±1 here). Nearest neighbor spins interact by an antiferromagnetic exchange
coupling J > 0, and h is a uniform external field in the x direction.

Determine the ground state spin configuration in the limits J ≫ |h| and J ≪ |h|, and
then give an argument at which ratio J/|h| the transition from one to the other phase occurs.

Exercise 2: Jordan-Wigner transformation (2 points) The JW transformation is the map-
ping of the spin chain onto a system of spinless fermions. It is given by

σz
i = 2a†iai − 1, σx

i = (a†i + ai)
∏

j<i

σz
j , σy

i = −i(a†i − ai)
∏

j<i

σz
j . (2)

Show that these fermion operators ai obey the anticommutation relations {ai, aj} = 0 and

{ai, a
†
j} = δij . Explain why the

∏

j<i σ
z
j is required and compare this with the definition

of fermionic creation and annihilation operators given in the lectures. Show then that the
Hamiltonian can be written as

H =
∑

i

[

−J(a†iai+1 + a†i+1
ai) + J(aiai+1 − a†ia

†
i+1

)− 2ha†iai

]

, (3)

and give an interpretation of the different terms.
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Exercise 3: Spectrum for an infinite chain (3 points) Assume an infinite chain with lattice
constant a. Show that the Hamiltonian can then be written in the form

H =
∑

p

{

−2[h+ J cos(ap)]a†pap − J(eiapa†pa
†
−p + e−iapa−pap)

}

=
∑

p>0

(a†p, a−p)

(

−2[h+ J cos(ap)] 2iJ sin(ap)
−2iJ sin(ap) +2[h+ J cos(ap)]

)(

ap
a†−p

)

,

(4)

with p restricted to the first Brillouin zone −π
a

< p < π
a
. The diagonalization of such

a Hamiltonian is known as a Bogoliubov transformation. For now, however, we are only
interested in the spectrum. Calculate it (eigenvalues of the 2× 2 matrix in Eq (4)) and show
that there is a gap given by ∆ = min{|J+h|, |J−h|} such that all eigenvalues ǫp fulfill ǫp > ∆
or ǫp < −∆.

Exercise 4: Majorana fermions (3 points) Note that σx
i and σy

i depend on the hermitian

combinations a†i + ai and −i(a†i − ai). These are the combinations we can use to define
Majorana fermions,

c1i = a†i + ai, c2i = −i(a†i − ai). (5)

Show that {cai , c
b
j} = 2δabδij and that the Hamiltonian becomes

H = −i
∑

i

[

Jc2i c
1
i+1 − hc2i c

1
i

]

+ const. (6)

For a chain of finite length, i = 1, . . . , N , most of the eigenstates have energies ǫn > ∆ or
ǫn < −∆ (with ∆ given above), but there are in addition precisely 2 states of energies ǫ ≈ 0,
one located near i = 1 and one near i = N . For simplicity, we consider here a semi-infinite
system (N → ∞), where only one bound state remains that has exactly ǫ = 0. Show then that
the bound state is of the form |b1〉 = A(c11 + λc12 + λ2c13 + . . . )|〉. Show that it is a Majorana
fermion, determine λ, and give the conditions necessary for the existence of the normalization
constant A (i.e., such that the bound state can exist). For finite length N , estimate then
the energy splitting between the bound states on both ends (remember the splitting between
bonding and antibonding states in the H2 molecule). In the limit λ → 0, to which state does
the bound state at i = 1 correspond?

Exercise 5: Majorana fermions with electrons (bonus) Reconsider now Eq. (4) and assume
that the ap describe real electrons. Speculate what type of interaction, band structure, etc. is
necessary to obtain such a Hamiltonian. [Hint: Expressions of the form apa−p appear when-
ever superconductivity is involved, and they represent 2 electrons that are bound together in
a Cooper pair. For conventional superconductors, the Cooper pairs are in a spin-singlet state
and so the operators are complemented by spin indices σ =↑, ↓ as ap↑a−p↓. What does this

imply for the a†pσapσ terms of the kinetic energy?]
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