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Linear Response, Kramers-Kronig relations, Lindhard function

Figure 1: Taken without permission from A.
Tsvelik, Quantum Field Theory in Condensed
Matter Physics, Cambridge University Press,
Cambridge UK, 1995.

Motivation Some basic properties of mat-
ter depend on its equilibrium state in quite an
obvious manner. The density for instance is
just the number of particles in a unit volume
in equilibrium. Other important properties do
not show up as expectation values in equilib-
rium, at least not in any obvious way. For ex-
ample, the conductivity σ̂, defined by j = σ̂E is
a basic property of matter, but it describes the
system response in the form of current j to the
the external electric field E. Such quantities
are known as response functions. For weak ex-
ternal influences they are related to the corre-
lations that exist in the system at equilibrium.
This connection between the system response
to weak perturbation and the correlation in
equilibrium is established through the Kubo
formula. In this set of exercises you are go-
ing to examine this connection and write down
the general form of the conductivity for a non-
interacting electron gas.

Exercise 1: Kramers-Kronig relations (5 points) The Kubo formula connects the response
functions with the correlations in the equilibrium. Another view at this relation connects the
response of the system to a change caused by regular external perturbation and the change in the
system state due to fluctuations in the equilibrium. This view goes by the name of fluctuation-
dissipation relations. One manifestation of such a relation are Kramers-Kronig relations. They
connect the real and the imaginary part of an arbitrary response function. The real part of the
response function describes the transmission of the external perturbing field. The imaginary part
describes its dissipation. In this problem you are going to derive the Kramers-Kronig relations
and discuss their significance. Also you will begin to feel at home in the complex plane. For an
easy but insightful review of the most important aspects of the complex analysis, look at Byron
and Fuller’s text Mathematics of Classical and Quantum physics.

(a) Some response function is characterized by the susceptibility χ(r, t). In a homogeneous system
in equilibrium, the system’s response R(r, t) to the perturbation P (r, t) is given by

R(r, t) =

∫
dr′dt′χ(r− r′, t− t′)P (r′, t′). (1)

For concreteness, we can think about R as the magnetization and P as the external magnetic
field. The causality puts some constraints on the possible forms of the response function χ.
For example, it is possible to choose χ in (1) so that the system response R(r, t) depends on
the perturbation at the position r′ and at time t′ that are separated by a time-like interval.
To avoid complications coming from the special relativity, we will in what follows consider the
local response

R(r, t) =

∫
dt′χ(r, t− t′)P (r, t′). (2)

When can we neglect the nonlocality of the response and work with (2) instead of the more
general (1)?

(b) Taking the local response (2), what does the causality imply about the time dependence of
susceptibility χ(t) that connects the cause P (t0 − t) and the effect at time t0?



(c) In linear response it is convenient to work with the Fourier transformed time dependence. The
relation between the Fourier components of R and P takes the form

R(ω) = χ(ω)P (ω). (3)

This simple form is a consequence of the fact that the Fourier transform of the convolution of
two functions is the product of their Fourier transforms. The functions P (ω), R(ω), and χ(ω)
in (3) are Fourier transforms of the corresponding functions that appear in (2). Argue that
the causality implies that the susceptibility is an analytic function of the complex frequency
ω in the upper half plane Im(ω) > 0.

(d) Using the Cauchy theorem

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz, (4)

where the function f is analytic inside the contour C and continuous on C, and the fact that
both P (r, t) and R(r, t) are real, show that the real and imaginary part of the susceptibility
satisfy the Kramers-Kronig relations

Re(χ(ω0)) =
1

π
P
∫ ∞
−∞

ωIm(χ(ω))

ω2 − ω2
0

dω, (5)

Im(χ(ω0)) = −ω0

π
P
∫ ∞
−∞

Re(χ(ω))

ω2 − ω2
0

dω. (6)

The symbol P denotes the principal value of the integral and it is defined as

P
∫ ∞
−∞

f(x)dx = lim
ε→0

(∫ x0−ε

−∞
f(x)dx+

∫ ∞
x0+ε

f(x)dx

)
, (7)

where x0 is the point at which the function f has a singularity that makes it non-integrable.

(e) In the light of your calculation, explain the formula

lim
ε→0+

1

x± iε
= P 1

x
∓ iπδ(x). (8)

Exercise 2: Lindhard function (5 points) In this exercise we use the Kubo formula to
calculate the susceptibility of the free electron gas. The relevant correlator in this case is between
the particle densities

χR(r− r′, t− t′) = −iθ(t− t′)〈[ρ(r, t), ρ(r′, t′)]〉. (9)

(a) When the perturbation is small (and this is the assumption behind Kubo formula) we are
mostly interested in the linear response of the system. It is convenient to find the Fourier
transform of the susceptibility

χR(q, t− t′) =

∫
d3rχR(r− r′, t− t′)e−iq(r−r

′). (10)

With the help of the Kubo formula, we can find the susceptibility in terms of real-space
correlations 〈[ρ(r, t), ρ(r′, t′)]〉. Find this form of the susceptibility, and then express the real-
space correlations in terms of the Fourier components of the density, defined by

ρ(r, t) =
1

V

∑
q

eiq·rρ(q, t). (11)

(b) In the lectures you have seen that the particle density in momentum space is expressed in
second quantized language by

ρ(q) =
∑
k,σ

c†k,σck+q,σ. (12)



With the help of this definition and the canonical anticommutation relations, find the response
function in the momentum space for free electrons. The result should be

χR(q, t− t′) = −iθ(t− t′) 1

V

∑
k,σ

(n(ξk)− n(ξk+q)) ei(ξk−ξk+q)(t−t′), (13)

where ξk = εk − µ is the excitation energy of the electron (or the electron energy measured
with respect to the Fermi energy).

(c) Fourier transform the last expression once again, now with respect to time to obtain the
Lindhard function

χR(q, ω) =
1

V

∑
k,σ

n(ξk)− n(ξk+q)

ξk+q − ξk + ω + iη
. (14)

In the last expression η > 0 is a parameter that describes the adiabatic turning on and
off of the interaction. It defines the precise position of the pole, which is crucial: For the
retarded function we see that the poles for ω are shifted slightly into the lower half-plane. The
expression in the denominator is the dispersion relation for the excitations of the free electron
gas. Discuss which excitation energies are possible for a fixed momentum q (draw a figure).


