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Linear Hydrodynamics and Bosonization
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Motivation We present a very useful tool of many-
body physics called bosonization in the guise of hydrody-
namics. Starting from the classical equations of motion
of a liquid, we arrive at the quantum description of den-
sity fluctuations in a fluid. This approach shows that,
basically with the knowledge you already have, you can
approach a novel technique that is relevant in contemporary research. Please notice the approach
employed in this example: The description of a system of many particles is reduced to only few
elementary excitations at low energies.

The physics of 1D fermionic systems (quantum wires, nanotubes, 1D optical lattices of ultracold
fermions) is very different from the higher dimensional ones. The difference is mainly due to the
reduced phase space for particle scattering: After collision of two particles, the Pauli principle
forbids to scatter to an occupied state, and empty states are rare because of the dimension (see
the figure on the right): A change of momentum k cannot be achieved without a change of
energy εk. As the figure shows, there are essentially two remaining scattering processes: forward
scattering with small momentum transfer, and backscattering with momentum transfer close to
±2kF . Backscattering is an exchange interaction process, and it turns out that it is usually
irrelevant, which means that it is absent in a low energy description of the system. The remaining
(classical) forward scattering processes can be seen as density excitations of a particle-hole pair,
which at first approximation has a bosonic nature (one also speaks of “polarons”). A very powerful
way of describing the low energy physics (i.e. when the excitations remain all close to ±kF ) is to
treat those excitations as true bosons. This is known as bosonization.

Exercise 1: Linear Hydrodynamics (3 points) Consider a 1D system of length L with
periodic boundary conditions, containing N spinless fermions. The particle (number) density is
ρ(x, t) = ρ0 +δρ(x, t), where ρ0 = N/L is the average density and δρ(x, t) the density fluctuations.
Classically, small density fluctuations around the equilibrium state can be described by a linearized
Navier-Stokes equation (see e.g. L. Reichl, A Modern Course in Statistical Physics, J. Wiley &
Sons, 1998; Chap. 10):

ρ0∂t
(
mv(x, t)

)
= −∂x

(
δp(x, t)

)
, (1)

with m the mass of the particles, v(x, t) the velocity field, and δp(x, t) the pressure fluctuations
in the system. Particle conservation is expressed through the continuity equation

∂tρ(x, t) + ∂xj(x, t) = 0 (2)

with j(x, t) = ρ0v(x, t) the current density.

(a) Justify the expression δp = δρ(x, t)/ρ0κT , where κT = [ρ0(∂p∂ρ )T,equil.]
−1 (i.e. which are the

assumptions?).

(b) Show that Eqs. (1) and (2) can be combined to the wave equation

∂2t
(
δρ(x, t)

)
− c2∂2x

(
δρ(x, t)

)
= 0 (3)

and calculate its Fourier transform for the density fluctuation modes ρk(t) =
∫

dx e−ikxδρ(x, t).
What is the interpretation of c2 = 1/(mρ0κT )?

Exercise 2: Lagrange and Hamilton Functions (4 points)

(a) In order to quantize, we want to identify the Fourier transformed wave equation with the
Euler-Lagrange equation of a Lagrange function

L =
1

2L

∑
k

[
m
(
∂tφk(t)

)2 −mω2
kφ

2
k(t)

]
(4)



Take as an imput here that the dimension of φk is (Length)3/2 (to be worked out in more
detail in the next exercise series). Determine the relation between ρk and φk and the form of
ωk. How can we interpret the spectrum ωk?

(b) Calculate the Hamilton function H by introducing the conjugate momenta πk = δL
δ(∂tφk)

and

performing the Legendre transformation H =
∑
k πk ∂tφk − L. How can we interpret the

result?

Exercise 3: Quantization and Ground State (3 points) Quantization is imposed by replac-

ing φk and πk by the quantum fields φ̂k and π̂k that satisfy the canonical commutation relations
[φ̂k, π̂k′ ] = i~Lδk,k′ and [φ̂k, φ̂k′ ] = [π̂k, π̂k′ ] = 0. Show that the ground state wave function is
described by

Ψ({φk}) = 〈{φk}|Ψ〉 =
∏
k>0

[mωk
πL~

] 1
4

e−mωk|φk|2/2L~, (5)

where φk is the eigenvalue of φ̂k.

Exercise 4: Two-Body Interactions (2 points) Let us add the classical two-body interaction
potential

V =

∫
dxdx′V (x− x′)ρ(x)ρ(x′) (6)

and quantize it in the same way as before. What is its effect on the frequencies ωk?

Exercise 5: One-Body Potential and Orthogonality Catastrophe (3 points) In the
same way, we can add a one-body scattering potential

U =

∫
dxU(x)ρ(x). (7)

(a) Show that the Hamiltonian remains unchanged (up to a shift in energy) if we complete the
square, i.e. change the boson modes by φk → φk + ∆φk with ∆φk = 2U−kL|k|/mω2

k. The
new ground state function is thus Φ({φk})) = Ψ({φk + ∆φk}).

(b) Show that the overlap between the old and new ground states is

〈Φ|Ψ〉 = exp

(
−
∑
k>0

|Uk|2
~mc3k

)
. (8)

Observe that k = nπ/L, and that the sum in the exponent diverges in the thermodynamic
limit L→∞ (while keeping ρ0 = N/L constant). For a large but finite number of particles N ,
we have thus 〈Φ|Ψ〉 ∼ N−α with some exponent α > 0 that depends directly on the potential
U . The overlap is effectively zero, which is known as the “Orthogonality Catastrophe”, and
has been first investigated by P. W. Anderson in 1967 [Phys. Rev. Lett. 18, 1049 (1967)]. It
is a “catastrophe” because if U(x) is abruptely (nonadiabatically) switched on at some time,
there is no hope of finding the new ground state Φ by doing perturbation theory around the
original ground state Ψ, because perturbation theory always produces a finite overlap between
initial and finite states. This observation has stimulated a huge progress in the development
of nonperturbative techniques, and most of the modern techniques we know (among them
bosonization) have been applied and tested on the orthogonality catastrophe.


