
Theoretische Festkörperphysik – Herbstsemester 2010 Exercise series 2
Assistant: K. van Hoogdalem 08.10.2010

Linear hydrodynamics and bosonization (continued) and current operator

Exercises 2 is the repetition from the last exercise of Series 1.

Exercise 1: Lagrangian and Hamilton functions revisited (1 points) In Exercise 1 of Series 1, we
have derived the equation of motion for density fluctuations in a 1D gas of length L, containing N
spinless fermions:

∂2t ρk(t) + k2c2ρk(t) = 0. (1)

Here ρk(t) =
∫

dxeikxδρ(x, t) is the Fourier transform of the density fluctuations. If we wish to quantize
this description, the equation of motion is not a convenient starting point. Instead, we would like to
start from the Lagrangian. To derive it, we note that the equation of motion must follow from a
certain Lagrangian L, combined with the Euler-Lagrange equation, which is given by:

d

dt

(
∂L

∂ (∂tρk(t))

)
− ∂L
∂ρk(t)

= 0. (2)

In this exercise we will show that we can rewrite L in the canonical form of the harmonic oscillator:

L =
1

2L

∑
k

[
m (∂tφk(t))

2 −mω2
kφ

2
k(t)

]
, (3)

a form that is easily quantized.

(a) Show, by means of reverse engineering, that the Lagrangian that gives rise to the equation of
motion Eq. (2) can be written as:

L =
1

2

∑
k

1

f(k)

[
m (∂tρk(t))

2 −mk2c2ρ2k(t)
]
. (4)

Here f(k) is a function that is used to fulfill the requirement that the Lagrangian has the correct
dimension. Otherwise we are free to choose it, since its form does not affect the equation of motion.

(b) What is the dimension of a Lagrangian? What does this mean for the form of f(k)? Comparing
Eq. (3) and Eq. (4), what is the relation between ρk(t) and φk(t)?

Exercise 2: One-Body Potential and Orthogonality Catastrophe (3 points) In the same way, we
can add a one-body scattering potential

U =

∫
dxU(x)ρ(x). (5)

(a) Show that the Hamiltonian remains unchanged (up to a shift in energy) if we complete the square,
i.e. change the boson modes by φk → φk + ∆φk with ∆φk = U−k|k|/

√
Lmω2

k. The new ground
state function is thus Φ({φk})) = Ψ({φk + ∆φk}).

(b) Show that the overlap between the old and new ground states is

〈Φ|Ψ〉 = exp

(
−
∑
k>0

|Uk|2

~mc3k

)
. (6)

Observe that k = nπ/L, and that the sum in the exponent diverges in the thermodynamic limit
L → ∞ (while keeping ρ0 = N/L constant). For a large but finite number of particles N , we
have thus 〈Φ|Ψ〉 ∼ N−α with some exponent α > 0 that depends directly on the potential U . The
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overlap is effectively zero, which is known as the “Orthogonality Catastrophe”, and has been first
investigated by P. W. Anderson in 1967 [Phys. Rev. Lett. 18, 1049 (1967)]. It is a “catastrophe”
because if U(x) is abruptely (nonadiabatically) switched on at some time, there is no hope of
finding the new ground state Φ by doing perturbation theory around the original ground state Ψ,
because perturbation theory always produces a finite overlap between initial and finite states. This
observation has stimulated a huge progress in the development of nonperturbative techniques, and
most of the modern techniques we know (among them bosonization) have been applied and tested
on the orthogonality catastrophe.

(c) (new) Anderson found the Orthogonality Catastrophe for a 3-dimensional metal, calculating explic-
itly overlap integrals between Slater determinants. Your calculation here was for a 1-dimensional
system using a hydrodynamic approach. Look at Eq. (6) and give a simple technical argument
why this hydrodynamic approach does not reproduce the Orthogonality Catastrophe in dimensions
larger than 1. Try then to give a physical argument why the simple hydrodynamic calculation is
insufficient. [Hints: (i) Observe that the divergence of the sum is due to particle-hole excitations
with vanishing energy (since k → 0). (ii) In fact, the hydrodynamic result is not complete even in
1 dimension because we have neglected the 2kF backscattering across the Fermi surface. (iii) To
which type of density fluctuations correspond the φk in higher dimensions?]

Motivation for Exercise 3. The quantum mechanical (QM) description is more complete than the
classical one. There must, therefore, be “backward compatibility”: Any classical result can be (in
principle) derived from quantum mechanics. In particular, classical quantities like energy E, density
of particles n, coordinate ~r, momentum ~p, velocity ~v, charge current ~j, etc. must be equal to the
expectation value of corresponding QM operators:

E = Tr[ρ̂Ĥ], n = Tr[ρ̂n̂], ~r = Tr[ρ̂~̂r ], ~p = Tr[ρ̂~̂p ], ~v = Tr[ρ̂~̂v ], ~j = Tr[ρ̂~̂j ], (7)

where ρ̂ is the density matrix. This means, if we have invented, for instance, an operator ~̂v such that
Tr[ρ̂~̂v ] = ~v, then we claim that this must be the correct QM operator corresponding to the classical
speed.1

It turns out that for the velocity the good definition of the QM operator is the time derivative of the
coordinate, given through the Heisenberg equation by ~̂v ≡ d

dt ~̂r = i
~ [Ĥ, ~̂r ].

Let |ψ〉 be the wave function of a single spinless electron, and let |~r〉 be the Dirac notation for the
position basis (i.e. ~̂r|~r〉 = ~r|~r〉). Then the wavefunction is expressed by ψ(~r) = 〈~r|ψ〉. A general
operator2 Â is usually not diagonal in the position basis, and matrix elements over the position basis
depend on two coordinates: 〈~r|Â|~r′〉 = A(~r, ~r′). If the electron has a spin 1/2 (as they usually do)
we must complete the position basis by the spin basis and write |~r, s〉 with s =↑, ↓, and we have
ψ(~r, s) = 〈~r, s|ψ〉, and 〈~r, s|Â|~r′, s′〉 = A(~r, s;~r′, s′). If we know the latter quantities, the QM average
of Â is calculated through A = 〈Â〉 = 〈ψ|Â|ψ〉 =

∑
s,s′=↑,↓

∫
drdr′ψ∗(~r, s)A(~r, s;~r′, s′)ψ(~r′, s′). It is

often useful to represent those operators then as 2× 2 matrices for the spin projections s, s′, and the
wave function as a spinor ψ(~r) =

(ψ(~r,↑)
ψ(~r,↓)

)
. For instance, the matrix elements of the Hamiltonian of a

free electron becomes a diagonal matrix

H(~r, ~r′) =

(
−δ(~r − ~r′)−~

2∇2
~r′

2m 0

0 −δ(~r − ~r′)−~
2∇2

~r′
2m

)
(8)

1One may ask why do we think that only one such operator exists and what are we going to do in case we find two.
Luckily none of us has ever been confronted to this situation yet.

2Meaning here an operator acting on a one particle wave function – not to be mixed up with the creation and
annihilation operators acting on second-quantization vector states. From the mathematical point of view these two
operators are different; in particular, they act in different spaces. However, there is a one-to-one correspondence between

them, so in every-day’s life we switch, e.g., from Ĥ =
∑N

i=1

p̂2i
2m

to Ĥ =
∑

~p

p2i
2m

â†
~pâ~p and back without mentioning that

we are switching between “usual” (i.e., first quantization) operators and their second-quantization analogs.
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Exercise 3: Current operator (6 points) In the first 3 problems, the calculation is done in the first
quantization.

1. Show that (in the first quantization)

for Ĥ =
p̂2

2m
we have ~̂v =

~̂p

m
. (9)

2. Calculate ~̂v for

for Ĥ =
p̂2

2m
σ0 + a(σ1p̂y − σ2p̂x), a = const, (10)

where we have used the matrix notation for the spin projections s, s′ =↑, ↓, and

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (11)

Check that ~̂v = ~̂p
m .

3. Show that a charge current operator defined by ~̂j = ie
~ [Ĥ, ~̂r ], obeys the charge conservation law

e∂n̂∂t + div ~̂j = 0. where n̂ is the particle number operator and en̂ the charge density.

4. Rewrite ~̂p, ~̂v and ~̂j in the second quantized form.
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