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Single wall carbon nanotubes grown entirely from 13C form an ideal system to study the effect of

electron interaction on nuclear magnetism in one dimension. If the electrons are in the metallic, Luttinger

liquid regime, we show that even a very weak hyperfine coupling to the 13C nuclear spins has a striking

effect: The system is driven into an ordered phase, which combines electron and nuclear degrees of

freedom, and which persists up into the millikelvin range. In this phase the conductance is reduced by a

universal factor of 2, allowing for detection by standard transport experiments.
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The physics of conduction electrons interacting with
localized magnetic moments is central for numerous fields
in condensed matter such as nuclear magnetism [1], heavy
fermions [2], or ferromagnetic semiconductors [3–6].
Nuclear spins embedded in metals offer an ideal platform
to study the interplay between strong electron correlations
and magnetism of localized moments in the RKKY regime.
In two dimensions the magnetic properties of the localized
moments [7,8] depend indeed crucially on electron-
electron interactions [9–13]. In one-dimensional (1D) sys-
tems such as single wall carbon nanotubes (SWNTs) elec-
tron correlations are even more important. For metallic
(armchair) SWNT they lead to Luttinger liquid physics
[14–16]. Recently, SWNTs made of 13C, forming a nuclear
spin lattice, have become experimentally available [17–
20]. Motivated by this we study here nuclear magnetism in
metallic 13C SWNTs. We show that even a weak hyperfine
interaction can lead to a helical magnetic order of the
nuclear spins (see Fig. 1) coexisting with an electron
density order that combines charge and spin degrees of
freedom. The ordered phases stabilize each other, and the
critical temperature undergoes a dramatic renormalization
up into the millikelvin range due to electron-electron in-
teractions. In this new phase the electron spin susceptibility
becomes anisotropic and the conductance of the SWNT
drops by a universal factor of 2.

The drastic restructuring of the electron wave functions
through the renormalization is very different from the case
of two [7,8] or three dimensions [1] where it is, in com-
parison, weak. The same renormalization leads to consid-
erable anisotropy in the electron system: The nuclear
magnetic field spontaneously breaks the spin rotational
symmetry; it rotates in a plane, which we can associate
with the spin (x, y) directions (see Fig. 1). This plane is
singled out as an easy plane through the stabilization of the
electron density wave, and electron correlation functions
become anisotropic between the spin (x, y) plane and the

spin z direction. We illustrate this behavior below through
the calculation of the electron spin susceptibilities. We
emphasize that this anisotropy is a crucial feature of the
SWNT system studied here and appears spontaneously due
to strong renormalization of the RKKY interactions. This
distinguishes our system, in particular, from models with
built-in easy-axis anisotropy [21].
Model.—We assume that the electrons are confined in a

single mode c? in the directions perpendicular to the tube
axis. The nuclear spins I ¼ 1=2 of the 13C ions on a
circular cross section have identical overlaps with this
transverse mode, and so identical couplings to the elec-
trons. Through their indirect RKKY interaction over the
electron gas they are therefore locked in a ferromagnetic
alignment (see Fig. 1). This RKKY interaction, described
below, overrules furthermore the direct dipolar interaction
between the nuclear spins. The latter is very small [22],
�10�11 eV, and shall be neglected henceforth. This allows
us to treat the nuclear spins as a 1D chain of large ~I ¼ IN?
spins, composed of the sum of the N? � 50 spins around a
circular cross section. Because of this, Kondo physics,
which requires small quantum spins, can be excluded
from the beginning.
Hence, we model the SWNT by a 1D nuclear spin lattice

of length L coupled through the hyperfine interaction to a
1D electron gas. The Hamiltonian resembles that of a

Kondo lattice H ¼ Hel þ A
P

iŜi � Îi, where i runs over

the 1D lattice sites with positions ri, Îi ¼ ðÎxi ; Îyi ; Îzi Þ is

the effective nuclear spin of size ~I ¼ IN?, Ŝi ¼
ðŜxi ; Ŝyi ; Ŝzi Þ is the electron spin operator at site i, and A ¼
A0=N? is the on-site hyperfine interaction constant A0

weighted by the transverse electron mode. In contrast to
the usual Kondo-lattice model, Hel describes the interact-
ing electrons and is defined in Eq. (2) below.
The precise value of A0 in SWNTs is unknown.

Estimates in the literature [23] provide values of A0 �
10�7–10�6 eV, depending much on the curvature of the
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nanotube (higher values have been reported in [17]
though). This compares with the typical energy scales of
the electrons, which can be quantified by the value EF ¼
vFkF=2 (we set @ ¼ 1 throughout this Letter), where
kF=� ¼ nel is the electron density in the system and vF

( � 8� 105 m=s in SWNTs [14,15,24]) is the typical ve-
locity of electron excitations. Through the dependence on
nel, EF can vary between the meV to eV range.

Effective model.—Because of the small ratio A=EF, the
energy and time scales related to the electrons and nuclear
spins decouple, and we can treat both subsystems sepa-
rately. A Schrieffer-Wolff transformation ofH allows us to
obtain an effective Hamiltonian for the nuclear spins [7,8],

Heff
n ¼ 1

2

X
ij�

J�ij

N2
?
Î�i Î

�
j ¼ 1

L

X
q�

J�q

N2
?
Î��qÎ

�
q ; (1)

where � ¼ x, y, z, and J�ij ¼ A2
0�

��
ij a=2 is the effective

RKKY [25] interaction between nuclear spins. a is the
lattice spacing and provides the short distance cutoff of
the continuum theory. The sum over q ¼ n�=L for in-

teger n runs over the first Brillouin zone. ���
ij ¼

�ia�1
R1
0 dth½Ŝ�i ðtÞ; Ŝ�j ð0Þ�ie��t (for an infinitesimal �>

0) is the static electron spin susceptibility. We also have

defined Î�q ¼ P
ie

iriqÎ�i and J�q ¼ R
dre�irqJ�ðrÞ.

The effective electron Hamiltonian, on the other hand,
includes the effect of the feedback of the nuclear field on
the electrons. Since the spins ~I ¼ IN? are large, we can

choose Heff
el ¼ Hel þHOv, with HOv ¼ P

ihi � Ŝi and

hi ¼ AhÎii the nuclear Overhauser field.
Interacting electrons as Luttinger liquid.—We use a

bosonized Hamiltonian to describe the interacting electron
system of the armchair SWNT, which is naturally in the
Luttinger liquid state due to the linear electron dispersion
[14,15]. The unit cell of a graphite sheet contains two
carbon atoms, which results into a two-band description
of the bosonized system. Since mixing between the bands
is essentially absent [14,15] we shall, however, focus on a
single band only in order to avoid a heavy notation. The
bosonized single-band Hamiltonian reads [14,15,26]

Hel ¼
X
�¼c;s

Z dr

2�

�
v�

K�

ðr��ðrÞÞ2 þ v�K�ðr��ðrÞÞ2
�
;

(2)

where�c;s are boson fields such that�r�c;s

ffiffiffi
2

p
=� express

charge and spin density fluctuations, respectively. �c;s are
such that r�c;s=� are canonical conjugate to �c;s. vc;s ¼
vF=Kc;s are charge and spin wave velocities, and Kc;s are

the dimensionless Luttinger liquid parameters. For SWNTs
[14,15], Kc � 0:2. If the electron spin SU(2) symmetry is
maintained, Ks ¼ 1, otherwise Ks � 1.
Without feedback from nuclear magnetic field.—Let us

first assume that there is no feedback from the Overhauser
field on the electrons and set hi � 0. The electron system
forms a Luttinger liquid, for which the zero temperature
spin susceptibility has a singularity at momentum q ¼
�2kF induced by backscattering processes [26,27]. At
T > 0 this singularity turns into a steep but finite mini-

mum: The backscattering part of the spin operator Ŝxi is
expressed in the bosonization language by the operators

[26] Ôx
SDWðriÞ / e�2ikFriei

ffiffi
2

p
�c cosð ffiffiffi

2
p

�sÞ, such that Ŝx ¼
½Ôx

SDW þ Ôxy
SDW�=2 plus forward scattering terms. Similar

expressions [26] hold for Ŝy and Ŝz. We further assume that
J�q � Jq is isotropic and in particular Ks ¼ 1. The corre-

lators between those operators can be evaluated in the
standard way and we obtain (for q > 0)

Jqðg; vFÞ � �Cðg; vFÞðkBTÞ2g�2j�ð�Þ=�ð�þ 1� gÞj2;
(3)

where g ¼ ðKc þ K�1
s Þ=2, � ¼ g=2� i	Tðq� 2kFÞ=4�,

depending on the thermal length 	T ¼ vF=kBT with kB the
Boltzmann constant. � is Euler’s Gamma function and
Cðg; vFÞ ¼ A2

0a sinð�gÞ�2ð1 � gÞð2�a=vFÞ2g�2=8�2vF.

We have made the inessential assumption vc ¼ vs ¼ vF.
Note that Jq is independent of kF for a linear dispersion. A

density dependence of Jq requires a curvature of the elec-

tron dispersion, which partially restores Fermi liquid prop-
erties [28], a scenario which we disregard for metallic
SWNTs. A sketch of Jq is shown in Fig. 2.

FIG. 2. Sketch of the RKKY interaction Jq given by Eq. (3).

FIG. 1 (color online). Illustration of the helical nuclear magnetism (indicated by the blue ribbon) of the single wall 13C nanotube
(SWNT), which emerges below a critical temperature through strong renormalization of the hyperfine coupling by electron
correlations. The nuclear spins (red arrows) order ferromagnetically on a cross section of the SWNT and rotate along the SWNT
axis with a period �=kF in the spin xy plane (chosen here arbitrarily orthogonal to the SWNT axis).
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At temperatures T < T	
0 [defined in Eq. (6) below],

jJ2kF ðTÞj> kBT and the nuclear spins can—classically—

minimize the RKKY energy by aligning in a spiral order
I0i ¼ IN?½cosð2kFriÞex þ sinð2kFriÞey�, where ex;y are

vectors defining the spin (x, y) plane. We shall henceforth
assume that this order is established, and show that this
assumption is self-consistent. Fluctuations reduce this

maximal polarization, and in general jhÎiij< IN?. The
lowest lying excitations (to order 1=IN?) in the nuclear
spin system are magnons. Since Jij is long ranged the

energy cost of local defects, like kinks, scales with the
system size and is very high.

For a helimagnet, there exists a gapless magnon band
with the dispersion [8] !q ¼ 2ðIN?ÞðJ2kFþq=N

2
? �

J2kF=N
2
?Þ. Let mi ¼ hÎii � I0i=ðIN?Þ2 measure the compo-

nent of the average magnetization along I0i, normalized to
0 
 mi 
 1. Its Fourier component m2kF acts as an order

parameter for the spiral phase. Magnons decrease this
order parameter and we have [8]

m2kF ðTÞ ¼ 1� a

ðIN?ÞL
X
q�0

1

e!q=kBT � 1
; (4)

where the sum represents the magnon occupation number.
In the continuum limit L ! 1 the integrand is divergent as
1=q2 for q ! 0 (the q ¼ 0 mode is absent because the
system is not a ring), showing the absence of true long
range order in the 1D system. Despite its appearance the
divergence is not a consequence of the Mermin-Wagner
theorem [29,30], which forbids long range order in low-
dimensional systems for sufficiently short ranged interac-
tions. Since Jij is long ranged this theorem does not apply.

The present situation, however, is very different in that
the system has a finite length L� 2 
m imposed either
through the natural length of the nanotube or through an
external confining potential. At temperatures T < T	

0 we

find that L � 	T , and so the cost of exciting the first
magnon is already very high !q¼�=L � 2IjJ2kF ðTÞj=N?.
We can define a temperature TM0 providing the scale of the
excitation of the first magnons by imposing !q=kBT �
2IjJ2kF ðTÞj=N?kBT ¼ 1. For T > TM0 we can then sim-

plify Eq. (4) to

m2kF ðTÞ � 1� 1=IN?
eðTM0=TÞ3�2g � 1

� 1�
�
T

T	
0

�
3�2g

; (5)

where we have defined

kBT
	
0 ¼ ½2I2Cðg; vFÞ�2ðg=2Þ��2ð1� g=2Þ�1=ð3�2gÞ: (6)

For the SWNT this temperature satisfies the self-
consistency condition kBTM0 < kBT

	
0 � vF=L. We use

T	
0 as an estimate for the critical temperature. For a typical

SWNT T	
0 is very low. With the values given with Fig. 3 we

obtain T	
0 � 10 
K, too low for experimental detection.

Yet this analysis completely neglects the feedback of the

magnetic field on the electron gas. This leads to a strong
renormalization of T	

0 .

Feedback of nuclear magnetic field on electrons.—The
ordering of the nuclear spins leads to a spatially oscillating
Overhauser field hi ¼ AhIii that acts back on the electrons.
We choose the electron spin axis such that Ŝ � ex ¼ Ŝx and

Ŝ � ey ¼ Ŝy. The spatial oscillations of hi / e�2ikFri in

HOv perfectly cancel some of the spatial oscillations

of the Ôx;y
SDW operators of the Ŝx;yi . Neglecting the remain-

ing (irrelevant) oscillating terms we obtain HOv �P
iA0Im2kF cosð

ffiffiffiffiffiffiffi
2K

p
�þðriÞÞ, where we have introduced

[31] �þ ¼ ð�c þ �sÞ=
ffiffiffiffi
K

p
with the normalization K ¼

Kc þ 1=Ks. The Hamiltonian becomes of the sine-
Gordon type and HOv is relevant in the sense of the
renormalization group (RG): The �þ field is pinned at a
minimum of the cosine term ofHOv. The result is a density
wave that combines charge and spin degrees of freedom.
Fluctuations about the minimum are massive, with a mass
associated to an energy scale �. At commensurate electron
filling umklapp processes would become relevant too, and
lead to fully gapped charge and spin sectors. For SWNTs,
however, this would require high electron densities leading
to EF � 1:4 eV. This case is not considered here.
Within a perturbative RG approach we find that

�� ðA0Im2kF=EFÞ1=ð2�gÞvF=a: (7)

This mass gap � is the first important consequence of the
feedback. The second important consequence is the spon-
taneous generation of anisotropy because the spin (x, y)
plane is singled out by the Overhauser field. This is seen,
for instance, in the spin susceptibilities ���. Those can be
calculated in the same way as before (details are provided
in [31]) if we notice that the massive �þ field does not
contribute to the long-wavelength asymptotics. The finite
temperature expressions for the ��� are otherwise identi-
cal to the case without feedback, and the RKKY couplings
J�q can be obtained from Eq. (3) upon the following mod-

ifications: For �xx and �yy the exponent g is replaced by
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FIG. 3. (a) Magnetization m2kF ðTÞ [Eq. (5)]. Dashed line:
without feedback. Solid line: with feedback. Parameters for
the curves are [14,15,23,24] EF ¼ 0:1 eV, A0 ¼ 10�7 eV, vF ¼
8� 105 m=s, a ¼ 2:46 �A, Ks ¼ 1, Kc ¼ 0:2 (leading to g ¼
0:6, g0 ¼ 0:33), and L ¼ 2 
m. The vertical lines mark the
temperatures written next to them. (b) Characteristic temperature
T	 [Eq. (9)] as a function of the hyperfine constant A0. The curve

follows a power law T	 / A2=ð3�2g0Þ
0 ¼ A0:86

0 , and is plotted up to

the self-consistency limit T	 � vF=LkB ¼ 3 K.
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g0 ¼ 2Kc=KsK and the amplitude is reduced by a factor 2
because a term depending on �þ only drops out. For �zz

the exponent becomes g00 ¼ ðKc=Ks þ KcKsÞ=2K while
the amplitude remains unchanged. vF is replaced by v� ¼
ðvc=Ks þ vsKcÞ=K. This leads to

Jx;yq ¼ Jqðg0; v�Þ=2; Jzq ¼ Jqðg00; v�Þ: (8)

For Kc ¼ 0:2 and Ks ¼ 1 we have to compare g ¼ 0:6
with the strongly renormalized g0 ¼ 0:33 and g00 ¼ 0:17.

Let us finally note that correlators between �þ, �þ can
only be neglected as long as kBT < �, i.e., 	�1

T < ��1 with
� ¼ vF=� the correlation length. In Eq. (9) below we
define a critical temperature T	 similarly to T	

0 before.

For T � T	, m2kF � 1 (see Fig. 3), and we find that � �
kBT. At T ! T	, however, m2kF vanishes and so does �.

The order in electron and nuclear systems, therefore, van-
ishes simultaneously.

Consequences for magnetization and transport.—The
helical order still minimizes the energy and there remains
a gapless magnon band [8], !q ¼ 2IðJ02kFþq � J02kF Þ=N?,
where J0q ¼ Jxq ¼ Jyq. The previous discussion of the mag-
netization remains otherwise unchanged. Replacing Jq by

J0q in Eq. (6) leads to the renormalized critical tempera-

ture T	,

kBT
	 ¼ ½I2Cðg0;v�Þ�2ðg0=2Þ��2ð1�g0=2Þ�1=ð3�2g0Þ: (9)

The notable difference is the modified exponent. For the
parameters displayed with Fig. 3, we obtain the
change from 1=ð3� 2gÞ ¼ 0:625 to 1=ð3� 2g0Þ � 0:43.
Quite remarkably this considerably boosts the value of the
characteristic temperature from T	

0 � 10 
K to T	 �
1 mK. Note that T	 � vF=LkB is still satisfied. Fig-
ure 3 [(a), solid line] shows the result of the feedback. In

Fig. 3(b) we also show the dependence of T	 on A0, T
	 /

A2=ð3�2g0Þ
0 ¼ A0:86

0 .

The order furthermore modifies the transport properties
of the system. With the opening of the mass gap in the �þ
channel, half of the conducting modes are blocked and the
conductance decreases by the universal factor of 2. As an
illustration we consider a SWNT connected to metallic
leads. The conductance is given by [32–34] G ¼ 4e2=h,
where e is the electron charge, h the Planck constant, and
where 4 is the number of conducting channels (2 spin
projections and 2 bands). The pinning of the �þ field (in
each band) blocks 2 conductance channels and so reduces
the conductance precisely by the factor 2 (see [31] for
details). Such a reduction is a direct consequence of the
nuclear spin ordering and the Luttinger liquid physics of
the electrons, and should be detectable experimentally in
standard transport setups.

As a conclusion, we emphasize that the physics de-
scribed here is quite general and is also relevant for other
1D systems of the Kondo-lattice type.
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