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Edge Currents in Superconductors with a Broken Time-Reversal Symmetry
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We analyze edge currents and edge bands at the surface of a time-reversal symmetry breaking dx2�y2 �
idxy superconductor. We show that the currents have large Friedel oscillations with two interfering
frequencies:

���
2

p
kF from subgap states, and 2kF from the continuum. The results are based independently

on a self-consistent slave-boson mean-field theory for the t-J model on a triangular lattice, and on a
T-matrix scattering theory calculation. The shape of the edge-state band, as well as the particular
frequency

���
2

p
kF of the Friedel oscillations, are attributes unique for the dx2�y2 � idxy case, and may be

used as a fingerprint for its identification. Extensions to different time-reversal symmetry breaking
superconductors can be achieved within the same approach.
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Superconductors that break time-reversal symmetry
have attracted a great deal of attention recently. The most
prominent example is Sr2RuO4, which has a p-type com-
plex order parameter [1]. There have been theoretical
suggestions that NaxCoO2 � yH20 belongs to this class,
but with complex d-wave symmetry [2–4]. It is known
that interesting edge effects are induced by the surface in
such superconductors. First, the surface induces the ap-
pearance of an edge band inside the superconducting gap.
Second, a chiral edge current parallel to the surface ap-
pears. As shown in several independent semiclassical cal-
culations [5–8], the shape of the dispersion 
b of the edge
states depends on the symmetry of the superconductor and
may be used as a fingerprint for the latter. In this Letter, we
quantitatively address this problem and point out a novel
interference in the edge current which distinguishes be-
tween dx2�y2 � idxy�� d� id0� and complex p time-
reversal symmetry breaking superconductors. We perform
a self-consistent solution of the t-J model on a triangular
lattice which has a d� id0 superconducting phase as the
solution of its slave-boson mean-field theory [2– 4]. In
order to explain the novel results uncovered by the numeri-
cal solution, we analytically solve a quantum continuum
model by treating the quasiparticle scattering on the sur-
face using an extension of the T-matrix formulation of [9].

The results are summarized as follows (see Fig. 1): The
surface induces edge currents and an edge band in agree-
ment with the semiclassical prediction of two parts of a
parabola [8], 
b�kx� 	 ��sgn�kx��2k

2
x=k

2
F � 1�. As a sur-

prising novel result, the size and direction of the current
changes rapidly with distance from the surface. This is
interpreted as Friedel oscillations of two frequencies, 2kF

and
���
2

p
kF. The 2kF oscillations are the usual Friedel oscil-

lations of the continuum states. The
���
2

p
kF oscillations are

due to the zero energy mode of the subgap band, 
b 	 0,
and correspond to a quasiparticle scattering on the surface
at an incident angle of 45
 [6] [Fig. 1(a) inset]. Most
notably, the amplitudes of both oscillations are identical,
05=95(1)=017004(4)$23.00 01700
and comparable to the nonoscillating part of the current;
from the self-consistent numerical results we see that they
are, indeed, large enough to reverse the current direction in
some regions close to the surface. The overall magnitude of
the edge current, therefore, is considerably smaller than
could be expected naively. Our calculations lead to an
integral edge current I of the order of 60 nA, which also
corresponds roughly to its maximal amplitude. Such a
current may be captured by measuring the induced mag-
netic field B. For our model calculations, we estimate its
maximum at the surface as B 	 �0I=2��� 0:1 G, where
� is the coherence length of the superconductor.

The t-J model on a two-dimensional triangular lattice is
an example of a microscopic model with a d� id0 super-
conducting phase as the result of the slave-boson mean-
field theory [2–4]. We solve the mean-field theory self-
consistently in real space following the approach by [10] in
the presence of two surfaces on the top and bottom of the
system. The model Hamiltonian is the t-J model plus a
long-range Coulomb repulsion,
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�
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(1)

where hiji runs over the nearest neighbors lattice sites of an
equilateral triangular lattice, ci� are the electron operators,
and Si the spin 1=2 operator. The model is completed by
the constraint ni 	 ��c

y
i�ci� � 1. J > 0 is the antiferro-

magnetic exchange interaction, and t the hopping integral.
Because of the missing particle-hole symmetry on the
triangular lattice, the sign of t is important [2,3]. We
choose t=J 	 �3, corresponding to electron doping of
the system. Vi 	 Vc�j�i�nj � �n�=jri � rjj is the
Coulomb potential felt by the particle at the site i, where
�n is the average density, j runs over all lattice sites, and
Vc � 5J [10]. The long-range Coulomb interaction is nec-
essary to overrule the inherent tendency of the mean-field
4-1  2005 The American Physical Society
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FIG. 1. (a) Current (in dimensionless units) from the self-
consistent calculation (circles) and the prediction of Eqs. (10)
and (12) multiplied by an exponential decay factor exp��y=�cur�
(full line). The inset shows the quasiclassical Andreev scattering
on the surface leading to the

���
2

p
kF oscillations (full lines: particle

scattering; dashed lines: hole scattering). (b) Spectrum En;kx as a
function of the momentum kx; n is the quantization along the y
direction. Continuum states form the hatlike structures, the
subgap states have roughly parabolic forms. The small gap at
zero energy is a finite size effect due to the coupling between the
two edges.
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theory to phase separate. In a uniform system, Vi vanishes.
On the lightly doped triangular lattice, however, the
Coulomb interaction alone is not strong enough against
the phase separating instabilities. The key insight for a
stabilization is the correction of the mean-field theory by

a Jastrow-like modification of the hopping parameter t!

texp��wj
��������������������������������
�1�ni��1�nj�

q
��1� �n�j� for nearest neigh-

bor sites with w� 5. This factor suppresses the gain in
kinetic energy by clustering carriers on neighboring sites.
For small fluctuations in the carrier concentrations, it is
close to 1. Its precise form otherwise has not much
influence.

In the slave-boson formulation, the electron operator is
decomposed as ci� 	 fi�b

y
i , where fi� is a spin carrying

fermion, and bi a charge carrying boson operator. The
constraint ni � 1 becomes the identity ��f

y
i�fi� �

byi bi 	 1, which must be fulfilled at each site i, and which
can be included in the action with Lagrange multipliers �i.

In the superconducting phase, the bosons bi are con-
densed and directly related to the local carrier concentra-
tions, xi 	 �1 � ni� 	 b2

i . The (Jastrow-corrected) mean-
field theory can be derived by a variational ansatz [11], and
leads to a Hamiltonian for the fermion fields fi�, expressed
in terms of the xi, the hopping parameter �ij 	 hfyi�fj�i,
and the pairing parameter �ij 	 hfi"fj# � fi#fj"i. The the-
ory is solved self-consistently by iteration: For random
initial order parameters, we solve the Bogoliubov–
de Gennes equations by diagonalization of the
Hamiltonian. The resulting spectrum and wave functions
are used to reconstruct the order parameters and the local
densities. The Lagrange multipliers �i are calculated ex-
plicitly by minimizing the action with respect to the con-
densed bosons bi. This is repeated until convergence and
requires up to 1000 iterations.

We study lattices consisting in a strip with periodic
boundary conditions along the x direction and, to model
the two surfaces, open boundary conditions along the y
direction. To reduce the interference between the edges, we
choose systems in which the surfaces are far apart (typi-
cally �100 lattice sites). Finite size constraints are impor-
tant and distort the perfect d� id0 symmetry in that the
phase difference of �ij between lattice directions deviates
from 2�=3, or that the ratio Re�ij=Im�ij in the bulk
deviates from unity. To minimize these effects, we choose
a sufficiently large extension along the x direction of Nx 	
24. In Fig. 1(a) (circles) we show the resulting edge cur-
rent. It has oscillations with a large amplitude that lead at
some layers to the reversal of the current direction. The
spatial period of the oscillations is roughly twice the lattice
spacing, but beatings indicate a frequency mixture. The
multiplication of the displayed current by te= �h (e 	
electron charge) provides the current in amperes. With t 	
�3J and J 	 20 meV (as estimated for the NaxCoO2

superconductor as a candidate for the d� id0 symmetry
[2–4]), the overall current, integrated along the direction
01700
perpendicular to the surface, is about 60 nA (setting an
order of magnitude), and is concentrated within a few times
the decay length of �cur � 5a (with a � 3  A the lattice
constant for the equilateral triangular lattice).

Figure 1(b) shows the spectrum of the system as a
function of kx after a Fourier transformation of the real-
space result. We have suppressed the edge states at one of
the two surfaces by inspection of the support of the wave
functions. An asymmetric subgap band is clearly visible.
Its shape deviates slightly from the parabola predicted from
the semiclassical arguments as an effect of the discrete and
finite lattice and the variation of the magnitude of � close
to the edge. In particular, a small gap persists due to the
limited system size and the interference between the edges.
The gap closes with increasing distance of the surfaces.

A similar computation can be performed for a lattice
with a single site defect [12]. Instead of a band, a pair of
bound states appears at the defect site. For similar interac-
tion parameters, the edge current is concentrated on the
immediate neighbors of the defect site only, and has a value
of about 100 nA. This leads to a magnetic field of the order
of 1 G on the defect site.

The large amplitude of the oscillations seems to be
surprising, but can be derived within a continuum model
for the scattering on the surface. The calculation must go
4-2
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beyond the semiclassical arguments, and we follow the
T-matrix calculation by [9], which we extend for the
calculation of the current density j�y�. Even though we
focus on the d� id0 symmetry, the approach is general and
can be extended to any given symmetry of the supercon-
ductor. We consider a semi-infinite two-dimensional d�
id0 superconductor in the �x; y� plane with its surface at y 	
0, and the superconductor at y > 0. The current can be
obtained from the causal (time-ordered) Green’s function,
Gc�x;x0; t�, by the expression

j�x� 	
1

2m

X
�	";#

�rx �rx0 �Gc
��x;x0; t 	 0��jx0	x; (2)

with m the mass of the carriers. In contrast to [9], causal
instead of retarded Green’s functions must be used. For the
d� id0 superconductor, we write the gap function in the
simplified, position independent form �k 	 �e2i&, where
& is the angle of the momentum k to a given axis. Since we
intend here to provide an explanation to the observed
oscillations while keeping the calculation as simple as
possible, we assume j�j to be constant even in the vicinity
of the surface. The variability of � is taken into account,
however, in the self-consistent numerical solution above.
Since the amplitude of the gap is independent of the
direction, the orientation of the surface is of no importance.
In this approximation, the Fermi surface is assumed to be
cylindrical. The surface is modeled by a line of scattering
centers with elastic potentials V, which eventually we let
tend to infinity. The preserved translation symmetry along
the x axis allows us to keep the momenta parallel to the
surface, kx, so that the scattering equation reads, for a given
frequency !

G c
kx
�y; y0� 	 gc

kx
�y� y0� � gc

kx
�y�Tkxg

c
kx
��y0�; (3)

where the bold symbols denote functions in the particle-
hole Nambu space. The free causal Green’s function,
gc
kx
�y�, is

gc
kx
�y;!�	�

�N0

p
�����������������
�2�!2

p
� i0

e��ykF=4p��
����������������
1��!=��2

p

�f!cos�py��0��
X
(	�

cos�py�(2&��(g; (4)

where N0 is the density of states at the Fermi energy, kF the

Fermi vector, p 	
����������������
k2

F � k2
x

q
, and � the coherence length.

Here kx 	 kF cos�&�, p 	 kF sin�&�, & 2 �0; ��. The �� 	

�x � i�y are the Pauli matrices in the Nambu space; �0 is
the unit matrix.

The T matrix is defined by T�1
kx
�!� 	 V�z � gc

kx
�!�. To

model the surface, we let V ! 1. With $ 	
�������������������
�2 �!2

p
�

i0 and Eq. (4) this leads to

T 	
p$=�N0

!2��2cos2�2&��1� i0�
! ��cos�2&�

��cos�2&� !

� �
:

(5)
01700
In this expression we still have scattering between physical
y > 0 states and unphysical y < 0 states. It contains two
subgap bands with the energies 
�1;2�b �kx� 	 ��cos�2&�
for the states defined for y > 0 and y < 0, respectively.
The T matrix must be split into two parts acting on those
states separately. For the time-reversal symmetry breaking
superconductor, we expect an asymmetry of these bands
with respect to the sign of kx, leading to the only possible
choice


�1�b �kx�	�sgn�kx��cos�2&�	�sgn�kx��
�
2k

2
x

k2
F
�1

�
; (6)

and 
�2�b 	 �
�1�b . This is precisely the expression obtained
from the semiclassical models [5,8], and we can focus on
the subgap band 
�1�b �kx� � 
b�kx� only, relevant for y > 0.
The splitting is achieved by writing 1=��!� 
�1�b ��

�!� 
�2�b �� as the sum and difference of 1=�!� 
�1;2�b �,
such that the remaining factors in the T matrix (5) com-
pensate any unphysical singularity due to this decomposi-
tion. The T-matrix becomes, without the y < 0 part,

T kx�!� 	
p$=2�N0

!� 
b�kx��1 � i0�
1 sgn�kx�

sgn�kx� 1

� �
: (7)

In �kx; y;!� space, the current density (2) then reads (using
N0 	 m=2�)

j�kx; y;!� 	
2ikx
m

�gc
kx
�y;!�Tkx�!�gc

kx
��y;!�11

	
ikx

2p$

e��ykF=2p��
����������������
1��!=��2

p

!� 
b�1 � i0�
fcos2�py��!

� 
b�2 � �sin�2py�j sin�2&�j�!� 
b�

� �2sin2�py�sin2�2&�g: (8)

The ! integration leads to two contributions, the subgap
poles, which exist for ! 	 
b < 0 only, and an integral
running along the continuum state branch cut at !<��.
For the subgap states, we obtain (see also [8])

jsg�y�	
��

4�

Z kF

�kF

dkx
kx
p
e��y=��jcos�&�jsin2�py�

�jsin�2&�j%��
b�; (9)

with % the unit step function. Close to the surface, y � �,
we can replace the exponential by unity. At y � 0, the
current grows as y2. For ykF � 1 but still y � �, the
integrand oscillates rapidly, and, to leading order in
1=kFy, jsg can be estimated as

jsg�y� 	 ��kF=4���1=3
���
2

p
� sin�

���
2

p
kFy�=2kFy�; (10)

i.e., the spatial oscillations are determined by the zero
energy mode of quasiparticle scattering on the surface,
for which p 	 kF=

���
2

p
[6] [see Fig. 1(a), inset]. Constant

contributions at the artificial cutoffs at kx 	 �kF have been
neglected. For y exceeding the coherence length �, this
4-3
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current is suppressed exponentially. This allows us to
identify �cur 	 �.

In a time-reversal symmetry breaking superconductor
the continuum states carry a current, too. Their contribu-
tion is given from the ! integral running along the branch
cut at ��1;���. We restrict the integration over kx to
positive values, and keep only terms that are even in kx.
This yields (! ! �!)

jc�y� 	
N0

�m

Z kF

0

dkxkx
b
p

Z 1

�
d!

cos�ykF

2p�

������������������
�!��

2 � 1
q

��������������������
!2 � �2

p

�
�!2 � �2�cos2�py� � �2sin2�2&� cos�2py�

�!2 � �2� � �2sin2�2&�
:

(11)

The integral weight is dominated by the singularity
1=

�������������������
!2 � �2

p
and is concentrated at the physically relevant

values of ! � �. In this region, the last factor in Eq. (11)
varies slowly about cos�2py�, and we replace it by this
quantity. For y � �, the ! integration provides a Bessel
function that accounts for the required exponential decay.
At y 	 0, however, the ! integration reduces to the inte-
gration of 1=

�������������������
!2 � �2

p
, which is divergent. This is an

artifact of the approximation of a constant N0. The integral
must be cut off at the band edge where the density of states
vanishes and, therefore, is given solely by its value at ! 	

�,
R
d!=

�������������������
!2 � �2

p
j� 	 �=2. For y close to the surface,

we replace the ! integral by this value. The remaining kx
integration is elementary. We obtain for y � �, to leading
order in 1=kFy,

jc�y� 	 ��kF=4�� sin�2kFy�=2kFy: (12)

The full current density, j�y�, is the sum of Eqs. (10) and
(12), and shows Friedel-like spatial oscillations with the
two frequencies

���
2

p
kF and 2kF.

Even though details vary in real physical systems and, as
shown above, in fully self-consistent solutions, these ex-
pressions make the following precise statements: (i) The
edge-state dispersion is identical to the semiclassical re-
sults [5,8]. (ii) There are two interfering Friedel oscilla-
tions of the same amplitude with the frequencies

���
2

p
kF and

2kF, where the former is determined by the condition

b�kx�	0. (iii) Most notably, the amplitude of the oscilla-
tions is comparable to the nonoscillating term in the cur-
rent; i.e., it can reverse the direction of the current in some
regions close to the surface. The exact ratio of the ampli-
tudes cannot be captured with the present (not self-con-
sistent) calculation. Yet the self-consistent numerical cal-
culation above shows that this is, indeed, the case (Fig. 1).
(iv) The current amplitude is proportional to � and kF.

Friedel oscillations with the same two frequencies are
found for the carrier density, n�y�, since it connects to the
Green’s function through n�y� 	 �2i�Gc�y; y; t 	 0���11.

We also note that in the spin-zero subgap band of a px �

ipy superconductor with �k 	 �ei& [9] the same calcula-
01700
tion leads to 
b � kx, which vanishes at p 	 kF. This
provides a frequency 2kF for the Friedel oscillations from
the subgap contribution and is indistinguishable from the
continuum state oscillations.

From the spectrum in Fig. 1(b), we obtain kx � 2:2=a at

b 	 �, and kx � 1:6=a at 
b 	 0, with a ratio of pre-
cisely

���
2

p
. With these two values, and � taken from the

bulk of the lattice, we can superpose the numerical result
with the theoretical expressions (10) and (12). We com-
plete the theoretical expression by a decay factor e�y=�cur .
Keeping � and kF fixed, we fit the data for �cur, the
effective distance between the surface and the first lattice
layer, and the value of the nonoscillating part (replacing the
1=3

���
2

p
). The resulting curve shows a nice agreement be-

tween the theoretical and numerical currents [Fig. 1(a)].
We deduce a �cur � 5a, and a nonoscillating part, which is
an order of magnitude below the prediction of 1=3

���
2

p
. The

integration of both the theoretical and numerical currents
leads to an integral current of 60 nA.

To conclude, we have shown with two independent
calculations that two types of Friedel oscillations exist in
the time-reversal symmetry breaking superconductor, and
that they play an essential role in the surface effects. The
expected integral edge current and the induced magnetic
field is reduced by about an order of magnitude with
respect to the estimates for a nonoscillating prediction,
which has important consequences for experiments.
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