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We report exact nonperturbative results for the Fermi-edge singularity in the absorption spectrum of
an out-of-equilibrium tunnel junction. We consider two metals with chemical potential difference V
separated by a tunneling barrier containing a defect, which exists in one of two states. When it is in its
excited state, tunneling through the otherwise impermeable barrier is possible. Our nonperturbative
solution of this nonequilibrium many-body problem shows that, as well as extending below the
equilibrium threshold, the line shape depends on the difference in the phase of the reflection amplitudes
on the two sides of the barrier. These results have a surprisingly simple interpretation in terms of known
results for the equilibrium case but with (in general complex-valued) combinations of elements of the
scattering matrix replacing the equilibrium phase shifts.
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Developments in the fabrication and manipulation of
mesoscopic systems have allowed detailed and well-
characterized transport measurements for a large range
of devices including photon detectors, quantum pumps,
tunnel junctions, and carbon nanotubes. It is often the
case that such measurements explore nonequilibrium
effects particularly when the potential difference is
dropped across a narrow potential barrier or over a short
distance inside the metallic region [1-4]. While there is
often a very good theoretical description of much that has
been observed for systems close to equilibrium, there are
few exact nonperturbative theoretical results for systems
out of equilibrium.

A natural point to start, when studying nonequilibrium
effects in many-electron systems, is the Fermi-edge sin-
gularity (FES). It is probably the simplest nontrivial
many-body effect and is a generic feature of a Fermi
system’s response to any fast switching process as seen,
for example, in a photon-absorption experiment [5] and a
resonant tunneling device [6]. It is related to the ortho-
gonality catastrophe [7] and can be used to reformulate
the Kondo problem in terms of a succession of spin flips
which are treated as the switching of a one-body potential
between two different values [8].

Here we present exact nonperturbative results for the
FES in a nonequilibrium system. We obtain the asymp-
totic behavior of the absorption spectrum of a tunneling
device as a function of the applied bias V (see Fig. 1).
In this device, light is assumed to couple to a defect
within the barrier. The defect exists in one of two states
with energy separation E,. Tunneling is possible only
with the defect in its excited state. We compute the
absorption spectrum close to the threshold at w, = Ej —
Re(A(V)), for frequencies (v — wy) <K &, where & is of
order the bandwidth and Re(A(V)) is the combined en-
ergy shift of the two Fermi seas when the defect is in its
excited state [9].
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Typical line shapes for the case (w — wy) <K V illus-
trating the dependence on the reflection amplitudes and
phases are shown in Fig. 2. We find that the FES is
smoothed out on a frequency scale given by V logR where
R is the reflection probability of the barrier in its excited
state. This is in line with expectations from perturbative
treatments of other nonequilibrium tunneling problems
(these suggest that V1ogR plays the role of an effective
decoherence rate [10]). However, we also find that the
spectrum is sensitive to the difference in phases of the
matrix elements S, and S5,. This gives rise to a depen-
dence on the sign of the voltage V and is entirely an

FIG. 1. Energy levels in an idealized device to demonstrate
the out-of-equilibrium FES. The scattering potential for elec-
trons is characterized via the 2 X 2 matrix, S(€), connecting
scattering states in the two wires for particles with energy e.
S = S8 or §¢ depending on whether the defect is in its ground
(g) or excited (e) state (with excitation energy E;). S¢ is the
identity matrix and S¢ is an arbitrary unitary matrix. S{; and
S¢, correspond to the reflection and transmission amplitudes,
respectively. We will refer to the device operating as illustrated
here, with a negative potential —V (V > 0) applied to the left
electrode, as the forward-biased case.
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FIG. 2. Typical absorption spectra, p(w), in arbitrary units
for the out-of-equilibrium device sketched in Fig. 1. The
spectra depend on S, = VRe® and S5, = v/Re'®> [see (8)
and (6)], where R is the reflection probability.
(a) (ay, ap) = (0,1.5) with R = 0.9 (broken line) and R =
0.8 (solid line). As the reflection probability decreases, the
spectrum broadens but retains its asymmetric shape.
(b) R=0.5 with (a;, a;) =(0,1.5) (solid curve) and
(ay, ay) = (1.5,0) (broken curve). The spectrum is sensitive
to the difference in «; and «,. The difference between the two
curves would show up as differences in the spectra on reversing
the bias.

out-of-equilibrium effect, which we explain in terms of
generalized (complex) phase shifts at the Fermi energy.

The spectral function, p(w, V), for absorption by the
local defect in the barrier is given by [7]

plw, V) ~ Re f " Xt Vyewidt,, (1)
0

Here |0) is the ground state wave function of the complete
system (the filled Fermi seas in the two electrodes and the
defect in its ground state), while U(ts, 0) is the time-
evolution operator for the system between t = 0 and t =
t; with the defect in its excited state.

When V = 0 the response of the system is that of the
core hole problem considered in [5,7,11,12]

—i[Ey — A0)]t; — Blogits&,,  (3)

where B =Y ;_, ,(8;/)* Here e~ % are the eigenvalues
of the scattering matrix S¢ (see Fig. 1). The threshold is
shifted from E,, the energy separation in the two-level
system, by A(0), which is the shift of the ground state
energy of the two Fermi seas when the scattering defect is
in its excited state. This standard equilibrium result (3) is
well understood in terms of the low-lying particle-hole
excitations created by the rapid switching of the poten-
tial, with the principal contributions to the logarithm in
(3) from excitations with frequencies between t;l and &.

When a voltage is applied across the barrier with the
defect in its excited state and R # 1, a current will flow
and the system will become dissipative. For 1, < V71,
the spectral response will be dominated by excitations
with frequencies w >> V, involving states which do not
sense the potential drop across the barrier. As a result,
x(t;, V) will be unchanged from its value in equilibrium.

= (0lU(ts, 0)]0). 2

logx(t;, 0) =
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When 7, > V~!, the response is controlled by elec-
trons within the band of width V about the mean Fermi
energy. We find that

logx(ts, V) = —i[Ey — A(V)]t; — B'log(Vity) + D. (4)

Here the function A(V) is given by

A(V) = / 0 trlog(SE) p f Vilog(; uE) g s)

oo 277 0 i

This expression (5) for the (in general complex) energy
shift of the two Fermi seas, when the defect is in its
excited state, can be thought of as the generalization to
the out-of-equilibrium case of Fumi’s theorem [13]. The
first term (which is real) and the real part of the second
term describe the energy shift of the occupied states of
the two electrodes. The imaginary part of the second
term describes the finite lifetime of occupied states in
the left electrode, with energies between 0 and V, which
can decay by tunneling through the barrier.
The exponent B’ in (4) is given by

N R

The constant term D gives the contribution from excita-
tions with frequencies between V and &, which do not
sense the potential drop across the barrier. To logarithmic
accuracy [15],

D = Blogé&,/V. (7)

Writing = +/Re!*1 and comparing the forms for 3
and B in (3) and (6), we see that the quantity
—log(84,)/2i = —a;/2 + i(logR) /4 is acting as a com-
plex phase shift in the left electrode. Its real part, — /2,
characterizes the scattering in the electrode and in
(4) describes the effect of particle-hole excitations
in the band of width V from the Fermi energy. Its imagi-
nary part (logR)/4m characterizes the lifetime of the
excitation.

The absorption spectrum is found from the Fourier
transform of x(tz;, V) in (1). Measuring @ from w, =

— Re(A(V)), it is given by [16]

1 e
p(w) ~ e e Prtbosin[ Bl — (B — g — B, logQ].

®)

Here we have defined Qexpidpg = w/V — i(logR)/4m
and written B’ = B] + iB5. While the dependence on
B reflects the strength of the overall scattering on the
two sides of the barrier as in equilibrium, B is propor-
tional to logR and to the difference in the phases of the
two reflection amplitudes S{, and S%,. The sensitivity to
the sign of the phase shift difference, while unexpected,
is quite easy to understand. The exponent B’ in (6) is
related via Friedel’s sum rule to the charge, which the
system pulls in or ejects from the two electrodes in order
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to screen the potential characterized by S¢ [7,14]. In the
case of Fig. 2(b) with a, = O and a; > 0, the correspond-
ing potential in the left electrode is repulsive and will
expel charge ~a, /. In the forward-biased case (Fig. 1)
this charge moves away in both electrodes. However,
when the device is reverse biased, the states in the right
electrode are occupied and block the expulsion of charge
in this channel. As a result, the line shape [the solid line
in Fig. 2(b)] is sharper than in the forward-biased case
(dash-dotted line).

When R = 1, the term multiplying Q'~#1 in (8) is
proportional to the theta function 6(w) and describes
the usual sharp threshold in p(w). With R <1 it leads
to a smearing of the threshold (see Fig. 2). As pointed out
in [17], where a similar model was treated perturbatively
(see also [18,19]), this broadening of the threshold reflects
the existence of ‘“‘negative energy excitations” in the
system involving a hole in the left electrode and a particle
in the right electrode.

The effects we are describing should be visible in the
voltage dependence of the absorption line shape of de-
vices like the single-photon detector of [4], which con-
sists of a quantum dot in the quantum Hall regime
coupled via tunneling barriers to two electrodes on either
side of the dot. For magnetic fields in the range 3.4—-4.2 T,
the conductance through the dot can change from zero to
around 0.3e¢?/h when a photon is absorbed via cyclotron
resonance in the dot. From the perspective of the two
electrodes, the dot behaves as a tunneling barrier which
allows tunneling only in its excited state. Our approach
would actually need further development to account for
the momentum dependence of the scattering states (these
are the edge states in the quantum Hall liquids of the
source and drain) in this particular device, although the
qualitative arguments will still apply.

The derivation of the overlap x(z;) follows quite
closely that of Muzykantskii and Adamov [20]. We in-
troduce the operators a,(€) which annihilate particles on
the ith side of the barrier with energy € in eigenstates of
the system with the defect in its ground state (S = 1). The
effect of the time-evolution operator U acting between
t = 0 and #; on single-particle states all), where |) is the
true vacuum with no particles, is given by

Ual(e)l) = Z fde’aij(e, 6/)61;-[(6/)|>. ©)

One can show that, for states near the Fermi energy (see
[21], for example), o is given by

I o
oii(€ €) = e Holr — f S;i(Deledr (10)
27 )~

provided that the adiabaticity condition 72343 <1 is
satisfied. In (9) S(r) = S¢ for r <0 and t > 17, S(r) = §°
for 0 <7 <1y, and we have suppressed the explicit depen-

dence of S on energy. When computing the low frequency
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asymptotics, this becomes a slow dependence on (€ +
€')/2, and can be neglected.
The overlap x(;) can be written

x(t;) = (0|U|0) = det'c, (11

where the prime indicates that the operator determinant is
to be taken only over the occupied states in the two filled
Fermi seas. This reduces in the equilibrium case to the
determinant in [11]. With zero chemical potential in the
right electrode and treating the (nonequilibrium) Fermi
distribution as the diagonal operator f;;(e, €’) = 8;;6(e —
€)o{—[e + V(2 — i)]} allows us to write

x(tp) =det(1 — f + fo), (12)

logx(t;) = Tr{log(l — f + fo) — flogo] + Trflogo
= C(t;, V) + Trflogo, (13)

where the operator determinant is now the full determi-
nant taken over all states and the trace, Tr, is the trace over
energy and channels. The last term in the expression (13)
can be found by explicitly carrying out the integral in
(10). This gives o;(e, €) = 6;;6(e — €') — X;;(e — €).
The logarithm can then be expanded as a power series
in the matrix X [22]. After evaluating X" term by term
and then resumming we obtain Trflogo = —i[E, —
A(0)]t; + (Vity/2ai)(logS);. The difference between
this and —i[Ey — A(V)]t; in (5) is contained in the func-
tion C(t7, V). 5
To evaluate C(V, t;) we introduce S(#, A) where

S(t, ) = exp(AlogS(1)), (14)

so that S(z, 1) = S(). We now apply the following gauge
transformation:

a(e) — a(e 1) = elVa(e), (15)

S(t, A) — S(t, A) = e™LViS(s, A)e LV, (16)

Here L is the diagonal matrix with L;; = 1 and L,, = 0.
This has the advantage of eliminating the chemical po-
tential difference between the two electrodes at the ex-
pense of an added time dependence for § when ¢ € [0, trl.
After switching to the time representation (in which the
trace, Tr, becomes a trace over channels and an integral
over time) and substituting for o from (10), C(¢f, V) can
be written as

C(t;, V) = Trfol d)\[[(l —f+f§)‘f—f§—1]j—ﬂ.
7)

Using a parallel argument to that of [20], we find that
(I=f+ 97 =y (- yy' + /=) (18)
where Y. = Y(t * i0, A). Here Y(z, A) is an analytic (ma-

trix) function of complex z in the complement of the cut
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along the real axis between z = 0 and z = 74, and satisfies

Y_Y:'=38( A) and Y(z A) — const for |z] — co.
(19)

If there is no tunneling between electrodes (5S¢ diagonal),
this matrix Riemann-Hilbert (RH) problem can be shown
to be the same as the homogeneous part of that solved in
[7]. After substituting (18) into (17), using the fact that in
the time representation [after the gauge transformation
(15)] f(t,¢) = i[27(t — ' + i0)]"" and letting ¢ — ¢ to
compute the trace, Tr, we finally obtain

e ty [dYy |, dS

C(t, V) 277[0 d)tfo tr{ 7 Y:'S 7 }dt. (20)
Here tr denotes a trace over channel indices.

Solving for x(ts, V) is equivalent to solving for the
quantity Y(z, A). For small V, we can expand the expo-
nential factors in S(z, A) (see [14]) as e™V* = 1 + jVz. In
this case

Y(z, A) = exp[i,log<L >10g§(z, /\)} 2D
2170 z— 1y

solves the RH problem. For |z| — oo, the exponent (and
hence Y) tends to a constant as required. If Vi, < 1 we
can insert this result into (20) and compute the integrals
over t and A. This yields the equilibrium result (3).
Although there are corrections to the equilibrium (V =
0) solution for Y, which are linear in V¢, these cancel out
after taking the trace in (20). Corrections to C(t;, V) can
therefore be only of order (V,)* or higher.

For times 7, > V™1, a general solution to this type of
matrix RH problem is not known. The form (21) for Y is
still valid for 0<t<V~!and 1, >1>t, —V~'. The
integral over times close to the branch points of Y then
gives the contribution varying as D = log(&,/V) in (7).
However, although the form for Y in (21) still satisfies the
discontinuity condition along the cut, the exponent is
unbounded for large |z| and hence (21) is useless as a
starting point for solving for Y, for t > V~!. Following
the derivation of [20], we find that

Pyt A) when 1 < 0

Y (1, )= <(1) _’)’(f: A) i(t,A) when0<t<t,
U (1, A) when 1, <t

(22)

is asymptotically correct for #>> V~!. Here (1, A) =
St A)/S1(t, A) and ¢, (¢, A) = (¢ + i0, A) where

1 ~ ~% 1 ~ o~k
Wz, A) = exp(|: 0gs11(s22 7o+ Og(sn.szz 73}102% : : )
LTy

dari 4]
(23)

The corresponding function Y(z, A) is not analytic across
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vertical cuts in the complex z plane through the points
z =0 and z = 17, with discontinuities which decay as
eVl or e VI==hl (These factors show that we cannot
describe the reverse bias case by taking V <0 in (22).
Instead, Y, takes a different form for negative V.) After
inserting the solution (22) in (20) and computing the
integrals over A and ¢, we obtain the first two terms in
(4). The term obtained after differentiating vy in (22) and
adding to the term from Trf logo in (13) leads after some
algebra to the term —i[E, — A(V)]t;. Differentiating
i(ty, A) in (22) leads to the term proportional to
logVi,;. The constant term is derived using the form
(2D for Y, valid for small # and 7 — 7, as discussed above.
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