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We show that one-dimensional electron systems in the proximity of a superconductor that support

Majorana edge states are extremely susceptible to electron-electron interactions. Strong interactions

generically destroy the induced superconducting gap that stabilizes the Majorana edge states. For weak

interactions, the renormalization of the gap is nonuniversal and allows for a regime in which the Majorana

edge states persist. We present strategies of how this regime can be reached.
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Introduction.—The possibility of realizing Majorana
bound states (MBS) at the ends of one-dimensional (1D)
conductors formed by topological insulator edge states,
semiconductor nanowires or carbon nanotubes in the prox-
imity of a superconductor [1–8], as well as by quasi-one-
dimensional superconductors [9] has led recently to much
activity. An important factor for the interest is the potential
application of the Majorana edge states (MES) as elemen-
tary components of a topological quantum computer
[7,10–13]. In a nanowire the Majorana edge modes
(MEM) exist because of the p-wave nature of the induced
superconductivity, which is the result of the projection of
the superconducting order parameter onto the band struc-
ture of the wire, consisting of helical, i.e., spin (or Kramers
doublet) filtered left and right moving conducting modes.
In such a setup, the MES appear as particle-hole symmetric
Andreev bound states at both ends of the wire, with a
localization length � inversely proportional to the induced
superconducting gap �, and their wave function overlap is
proportional to expð�L=�Þ with L the wire length. The
independence and the particle-hole symmetry of the two
bound states is only guaranteed if this overlap is vanish-
ingly small; therefore, large L and � are required.

Electron-electron interactions strongly renormalize the
properties of a one-dimensional conductor [14]. In particu-
lar, it has been shown that classifications of the topological
phases in interacting and noninteracting systems differ
greatly [15,16]. We focus on interaction effects in system
with helical conduction states that are in contact with a
superconductor. We show that the induced gap � is sub-
stantially reduced, and thus the MES gets delocalized.
Remarkably, within the renormalization group analysis
we show that it is possible to map the interacting system
by refermionization onto an effective noninteracting fer-
mion system before the strong coupling limit is reached.
Because of this, we not only can prove the existence
of the MES in the interacting system, but also can quanti-
tatively describe their wave function and extension �.
Counterintuitively, the relevant gap size determining � is
not the strong coupling value but the value � ¼ �ðl1Þ

(see below) at which the system is mapped on the effective
noninteracting system. This result gives a precise prescrip-
tion by howmuch � increases for given interaction strength
and induced gap size �.
In the following, we first illustrate the effect of electron

interactions on the MBS using the fermion chain model of
Ref. [10]. In particular, we show that for strong interactions
the gap can entirely close and the system becomes equiva-
lent to a gapless free electron gas. Motivated by this, we
turn to a continuum theory for the nanowires, allowing us
to include the interactions more effectively and to move
beyond the restriction to a half-filled chain.
Fermionic chain.—The prototype model for MES is a

chain with N sites described by the Hamiltonian [10,17]

H ¼ � XN�1

i¼1

½tcyi ciþ1 þ �cyi c
y
iþ1 þ H:c:� ��

XN
i¼1

ni; (1)

where ci are tight-binding operators of spinless fermions,
t > 0 is the hopping integral, �> 0 the triplet supercon-

ducting gap, � the chemical potential, and ni ¼ cyi ci. In
terms of the Majorana fermion basis [18] �1

i ¼ ci þ cyi
and �2

i ¼ iðci � cyi Þ, the model is rewritten as H ¼
�i

P
N�1
i¼1 ½wþ�2

i �
1
iþ1 � w��1

i �
2
iþ1� � i �2

P
N
i¼1 �

2
i �

1
i , with

w� ¼ ðt��Þ=2. At t ¼ � and � ¼ 0, the only
nonzero interaction is wþ, and the ground state corre-
sponds to pairing of Majorana fermions between neighbor-
ing sites �2

i �
1
iþ1, with an excitation gap of 2wþ. In the open

chain, �1
1 and �2

N no longer appear in H and remain
unpaired. They form the two MBS that are localized on a
single lattice site at each edge of the wire and can be
occupied at no energy cost. For � � 0 or � � t, the two
MEM are coupled to the bulk system and their spatial
extension becomes larger, on the order of ��
a= lnjwþ=wj, with w ¼ maxfj�j; jw�jg and a the lattice
constant [10]. In the finite system, the overlap of the two
Majorana states at both ends of the chain is proportional

to e�Na=�, and the two states are independent only for
Na � �.
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In such a system, interactions between the fermions
critically affect the existence and stability of the MES.
Indeed, they lead not only to a further coupling of the
MES to the bulk system, but also can substantially reduce
the bulk gap size. As an illustration, we include into the
model the repulsive nearest neighbor interaction H0 ¼
U
P

N�1
i¼1 ðni � 1=2Þðniþ1 � 1=2Þ, with U > 0. It is now

straightforward to show that interactions can entirely close
the superconducting gap. For strongly interacting t ¼ � ¼
U=4 we can map H by a Jordan-Wigner transformation to
the spin chain H ¼ t

P
N�1
i¼1 ð�x

i �
x
iþ1 þ �z

i�
z
iþ1Þ, where

�x;y;z
i are spin 1=2 operators (normalized to �1) defined

by ci ¼ 1
2 ð�x

i þ i�y
i Þ
Q

j<i�
z
j. By a further Jordan-Wigner

transformation to new fermion operators ~ci ¼ 1
2 �

ð�z
i þ i�x

i Þ
Q

j<i�
y
j we then see that H ¼

�2t
PN�1

i¼1 ð~cyi ~ciþ1 þ ~cyiþ1~ciÞ, which describes a free gap-

less fermion gas in which the localized states have disap-
peared. Although we have selected special interactions
strengths, it is well known that in one dimension the
renormalization due to weaker interactions can drive
the system into such a gapless phase. To quantitatively
include this renormalization and to allow a treatment be-
yond the half-filled (� ¼ 0) case, we use in the following a
continuum description, first at half-filling, then away from
half-filling.

Continuum model.—For the continuum theory, we focus
on a quantum wire with Rashba spin-orbit interaction in a
magnetic field with proximity induced singlet supercon-
ductivity [3–6]. We first discuss the noninteracting case by
reducing the previously considered models [3–6] to a
minimal model that captures the same physics in a trans-
parent way. The noninteracting part of the Hamiltonian for
the quantum wire can be written as a sum of two parts,

H0 ¼ Hð1Þ
0 þHð2Þ

0 , where Hð1Þ
0 is given by

Hð1Þ
0 ¼

Z
dr�y

�

��
p2

2m
��

�
���þ�Rp�

x
����Z�

z
��

�
��;

(2)

where @ ¼ 1, �� is the electron operator for spin �, the
summation over repeated spin indices, �, �, is assumed, r
is the coordinate along the wire, p ¼ �i@r, �R is the spin-
orbit velocity, and �Z is the Zeeman energy of the mag-
netic field applied along the spin z direction perpendicular
to the spin-orbit selected spin x direction. The second part,

Hð2Þ
0 , includes the induced singlet superconducting term

with order parameter �S and is expressed as, Hð2Þ
0 ¼

i
R
dr�S�

y
��

y
���

y
�=2þ H:c: Without interactions, Hð1Þ

0

has the eigenvalues �� ¼ p2=2m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�RpÞ2 þ ð�Z=2Þ2
p

and corresponding eigenmodes ��ðpÞ. Expanding the
singlet superconducting term in this eigenbasis leads to
superconducting order parameters of the triplet (within��
and �þ subbands) as well as of the singlet type (mixing
�� and �þ subbands). The MES require triplet pairing
[2–7,19,20], which is achieved by tuning the chemical

potential to lie within the magnetic field gap such that
only the �� subband is occupied. In Ref. [6], MEM

were derived using the full Hamiltonian Hð1Þ
0 þHð2Þ

0 and

were shown to exist in the limit �Z >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

S þ�2
q

. The

same physics is also obtained by restricting to the occupied
�� subband, which will be assumed in the following.

For �Z � �S, �RkF, with kF � ffiffiffiffiffiffiffiffiffiffiffi
m�Z

p
, the pairing then

takes the compact form [2–7,19,20] Hð2Þ
0 � ð�=kFÞ�R

dr�y�ðrÞp�y�ðrÞ þ H:c:, with the effective triplet super-
conducting gap � ¼ �Sð�RkF=�ZÞ.
In the following we work in the diagonal basis [21] with

the fermions confined in the r > 0 region. The open bound-
ary condition forces the fermion fields to vanish at both
ends of the wire. In terms of the slowly varying right,RðrÞ,
and left, LðrÞ, moving fields, the field ��ðrÞ acquires the
form, ��ðrÞ ¼ eikFrRðrÞ þ e�ikFrLðrÞ. The noninteract-
ing case can therefore be written in terms of RðrÞ only as
H0 ¼

R
L
�L drR

yðrÞHRðrÞ, with

H ¼ �i vF

2 @r ��sgnðrÞ
��sgnðrÞ i vF

2 @r

� �
(3)

and RðrÞ ¼ ½RðrÞ;Ryð�rÞ�T . Using RðrÞ ¼
ðei3	=4= ffiffiffi

2
p ÞP�½u�ðrÞ; v�ðrÞ�T��, where the normalized

functions u�ðrÞ and v�ðrÞ satisfy the eigenvalue equation

H ½u�ðrÞ; v�ðrÞ�T ¼ �½u�ðrÞ; v�ðrÞ�T , we obtain H0 ¼P
���

y
���. For � ¼ 0 there exists a localized mode at

each edge. At r ¼ 0 it is of the form u�¼0ðrÞ /
e�2�jrj=vF , with v0ðrÞ ¼ iu0ðrÞ. The operator correspond-
ing to the edge mode, �0 ¼

R
L
�L dru0ðrÞRðrÞ, satisfies the

Majorana condition �0 ¼ �y
0 . Thus the Majorana edge

mode obtained by combining the right and left modes is
given by

�M
�¼0ðrÞ ¼ C�0 sinðkFrÞe�r=�; (4)

for L � �, where C is the normalization constant and
� ¼ vF=2� the localization length. Note that in 1D the
decay is purely exponential.
Interaction effects.—To quantitatively include the inter-

actions we bosonize the Hamiltonian, taking into consid-
eration that the low-energy physics is described by a single
species of fermions in the�� subband. Using the standard
procedure [14], the bosonic Hamiltonian reads,

H ¼
Z dr

2

�
vKð@r
Þ2 þ v

K
ð@r�Þ2 þ 4�

	a
sinð2 ffiffiffiffi

	
p


Þ

� U

	2a
cosð4 ffiffiffiffi

	
p

�� 4kFrÞ
�
; (5)

where a is the lattice constant, the @r� field describes the
density fluctuations and 
 is the conjugated field. The
quadratic part in Eq. (5) includes the repulsive interaction
VðrÞ between the fermions (K < 1). The sine term in

Eq. (5) is due to the triplet superconducting term Hð2Þ
0

and the cosine term describes umklapp scattering.
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For fermions on a lattice near half-filling, 4ðkF �
	=2aÞL � 1 and the oscillatory part inside the cosine
term can be neglected. The interactions then lead to the
renormalization of the coupling constants �, U, and K,
which by standard renormalization group (RG) theory [14]
is expressed by the RG equations, ðlnKÞ0 ¼ ð�2=2KÞ �
2Ky2, �0 ¼ ð2� 1=KÞ�, and y0 ¼ ð2� 4KÞy; where 0
denotes derivative with respect to the flow parameter
l ¼ ln½a=a0�, with a0 being the initial value of the lattice
constant. �ðlÞ and yðlÞ are dimensionless quantities at
length scale a, defined as �ðlÞ ¼ 4a�ðlÞ=vF and yðlÞ ¼
UðlÞa=	vF. The initial values of the rescaled parameters
are given by K0, �0, �0, U0, and y0. For K < 1=2 the
umklapp term is relevant and superconductivity irrelevant,
leading to a Mott phase, whereas for K > 1=2 the opposite
is true and the system is superconducting. Near K ¼ 1=2
the low-energy physics depends critically on the relative
strength of �0 and y0. A large �0 compared to y0 favors
superconductivity over the Mott phase and vice versa. An
interesting scenario corresponds to the line of fixed points
�0 ¼ y0 and K0 ¼ 1=2, where the parameters remain in-
variant under the RG flow. Following Refs. [14,22], we find
that under a change of quantization axis the theory is
described by a quadratic Hamiltonian. Therefore, similar
to the discrete model with t ¼ � ¼ U=4, the spectrum is
gapless. The MES are thus absent on the line of fixed
points, as well as in the Mott phase. On the other hand,
in the superconducting phase, KðlÞ grows as well and
eventually crosses Kðl1Þ ¼ 1 at the scale aðl1Þ. As we
show below, this allows us to refermionize the system
and to prove the existence of the MES.

Away from half-filling, the umklapp term can be ne-
glected, allowing us to set y ¼ 0. The remaining RG
equations reduce to the standard Kosterlitz-Thouless
(KT) equations under the change of variables K ! 1=2 �K

and � ! ��=
ffiffiffi
2

p
[14]. The flow equation of�ðlÞ differs from

�ðlÞ due to the difference in the factor of aðlÞ and is given
by, d�=dl ¼ ð1� K�1Þ�. Its solution acquires the form,

�ðlÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8½KðlÞ � K0� � 4 ln½KðlÞ=K0� þ �2

0

q
�0 exp½l� : (6)

The equation for the separatrix is obtained by choosing
�0 ¼ 0 and K0 ¼ 1=2 in Eq. (6). For small deviations of K
from an arbitrary initial value K0, l is given by,

l � K0ffiffiffiffi
�

p cot�1

�
�þ k0ðk0 þ xÞ

x
ffiffiffiffi
�

p
�
; (7)

where x ¼ ðK � K0Þ=K0, k0 ¼ 2K0 � 1, and � ¼ �2
0=2�

k20. The solutions given by Eqs. (6) and (7) are obtained by
integrating the KT equations. For all the different K0’s
considered in Fig.1, � reduces from its initial value and
acquires its minimum at K ¼ 1. Note that near K ¼ 1, �
shows very little variation. For the strongly repulsive case,
K0 ¼ 0:5, � is reduced by an order of magnitude as K
reaches K & 1. In particular, for K � 0:5 and x � 1,

Eq. (7) can be approximated as l � ð2K0=�
2
0Þx and thus

� has an exponential drop. More generally, the exponential

decay persists as long as x � �2
0=ð2maxfk0;

ffiffiffiffiffiffiffij�jp gÞ is sat-
isfied. At x� �2

0=ð2maxfk0;
ffiffiffiffiffiffiffij�jp gÞ, one has to consider

the full form for l as given by Eq. (7).
Refermionization.—We stress that the mere reduction of

� does not tell much about the MES yet. Indeed, their
existence and the shape of their wave function has been
derived in a noninteracting system only, and their fate
under interactions remains still to be shown. To achieve
this, we first note that although everywhere in the repulsive
regime (K < 1) K has a monotonic increase and � a
monotonic decrease, the flow can be divided into two
regions based on the initial values of �0 and K0. In the
first region, characterized by initial values (K0, �0) with
K0 > 1=2 (screened regime) or with K0 < 1=2 together

with �0 > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0 � lnð2K0eÞ

p
(i.e., above the separatrix),

the flow is toward the strong coupling regime �, K ! 1.
Under the RG, � decreases to a minimum at the length
scale aðl1Þ at which Kðl1Þ ¼ 1, and continues to increase
afterwards. We note that K ¼ 1 marks a special line where
all interactions have scaled to zero, and our bosonic theory
can be mapped via the refermionization procedure into an
effective noninteracting fermionic system with a super-
conducting gap �ðl1Þ. Thus, instead of continuing the RG
flow to the strong coupling limit we stop the flow at
Kðl1Þ ¼ 1 and solve the problem exactly using the renor-
malized superconducting gap �ðl1Þ. This is justified since
the long wavelength physics remains invariant along the
flow trajectory. While it would be difficult to extract infor-
mation about the true electrons from the refermionization
mapping, it allows us to prove the existence of the MES.
The edge wave functions calculated in this way is
described very well by Eq. (4) with � ¼ v=2�, and �

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). RG flow of �=�0 as a function of K for
�0 ¼ 0:05vF=a0 and the three initial values K0 ¼ 0:5, K0 ¼
0:6, and K0 ¼ 0:8. The solid lines are obtained numerically from
the KT equations and the dashed lines from Eqs. (6) and (7) [the
dashed line with the steepest decay for K0 ¼ 0:5 marks an
exponential drop, obtained from Eq. (6) with l � ð2K0=�

2
0Þx].

The red dotted line indicates the non-interacting limit, K ¼ 1,
and the vertical arrows indicate the position where � ¼ 1 is
reached.
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given by �ðl1Þ. For initial K0 and �0 the value of �ðl1Þ is
quantitatively calculated using Eqs. (6) and (7). Our con-
clusions on the shape of MES have indeed been confirmed
by a numerical approach [23].

To preserve the Majorana property of the edge states and
so their usefulness for quantum computational application
[2,10], the two Majorana states at each end of the system
must have minimal overlap, i.e., 2�ðl1ÞL=v � 1. This can
be achieved by increasing the wire length L by at least the
factor �0=�ðl1Þ as compared with the naive noninteracting
picture. This result is valid if the RG flow crosses K ¼ 1,
which occurs if the length scale aðl1Þ is shorter than any
cutoff length, i.e., aðl1Þ<minfL; LT; aðl�Þg [where l� is
defined as �ðl�Þ ¼ 1 and LT ¼ v=kBT is the thermal
length]. If, however, aðl	Þ ¼ minfL; LT; aðl�Þg< aðl1Þ,
the RG is cut off before K ¼ 1 is reached. Since from
Fig. 1 we see that in most cases still �ðl	Þ � �ðl1Þ, we
expect that the MES persist and can be approximated by
Eq. (4) with � ¼ �ðl	Þ. This conclusion is also supported
by numerics [23].

The second region is the unscreened regime with K0 <

1=2 and �0 < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0 � lnð2K0eÞ

p
. Here the flow is towards

the line of Luttinger-liquid fixed points, � ¼ 0 and K0 <
K < 1=2. In a realistic scenario the flow is stopped before
the fixed points are reached at a length scale given by
aðl	Þ ¼ minfL; LTg. If aðl	Þ ¼ LT , then �ðl	Þ< kBT and
thermal fluctuations overcome superconductivity. On the
other hand, if aðl	Þ ¼ L, then the superconducting term is

renormalized down to �ðl	Þ � �0ðL=a0Þ1�1=K0 . In either
case, the bulk spectrum remains gapless and all correla-
tions exhibit power-law decay. Thus, the MES which re-
quire the presence of gapped bulk modes are absent.

One way to ensure a gapped phase in the bulk is to
consider a larger value for �0. A large �0 may be difficult
to achieve as the proximity induced gap �S is further
suppressed by the small ratio, �RkF=�Z. Moreover, in
contrast to K0, controlling and scaling up the strength of
the superconducting order parameter is nontrivial. A sim-
pler alternative would be to apply gates on top of the wire
to screen the interactions and to increase K0 to a larger K0

0

that pushes the initial point (K0
0, �0) above the separatrix,

�0 > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0

0 � lnð2K0
0eÞ

q
or beyond K0

0 > 1=2, so that the

flow is towards the strong coupling regime. After the first
preprint of this paper appeared on the arXiv server, other
groups arrived at similar conclusions [23–25].

Potential candidate systems for the observation of MES
are the helical conductors formed at the boundaries of
topological insulators [26,27], InAs nanowires with
strong spin-orbit interaction [2,6,28,29], quasi-1D
unconventional superconductors [9], carbon nanotubes

[8], and quantum wires with nuclear spin ordering [30].
The latter two systems may be particularly interesting
because they are readily available and support helical
modes without external magnetic fields.
We acknowledge discussions with C. Bourbonnais,

O. Starykh, and L. Trifunovic. This work is supported by
the Swiss NSF, NCCR Nano and NCCR QSIT, and
DARPA QuEST.
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