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The interaction between localized magnetic moments and the electrons of a one-dimensional conductor can
lead to an ordered phase in which the magnetic moments and the electrons are tightly bound to each other. We
show here that this occurs when a lattice of nuclear spins is embedded in a Luttinger liquid. Experimentally
available examples of such a system are single wall carbon nanotubes grown entirely from 13C and GaAs-
based quantum wires. In these systems the hyperfine interaction between the nuclear spin and the conduction
electron spin is very weak; yet it triggers a strong feedback reaction that results in an ordered phase consisting
of a nuclear helimagnet that is inseparably bound to an electronic density wave combining charge and spin
degrees of freedom. This effect can be interpreted as a strong renormalization of the nuclear Overhauser field
and is a unique signature of Luttinger liquid physics. Through the feedback the order persists up into the
millikelvin range. A particular signature is the reduction in the electric conductance by the universal factor of
2.
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I. INTRODUCTION

The interaction between localized magnetic moments and
delocalized electrons contains the essential physics of many
modern condensed matter systems. It is on the basis of
nuclear magnets,1 heavy fermion materials of the Kondo-
lattice type,2 and ferromagnetic semiconductors.3–6 In this
work we focus on the interplay between strong electron-
electron interactions and the magnetic properties of the lo-
calized moments. Low-dimensional electron conductors are
ideal systems to examine this physics: the nuclear spins of
the ions of the crystal �or suitably substituted isotopes� form
a lattice of localized moments; these spins couple to the con-
duction electron spin through the hyperfine interaction, and
the confinement of the electrons in a low-dimensional struc-
ture enhances the importance of the electron-electron inter-
actions.

In previous work we have studied the magnetic properties
of the nuclear spins embedded in a two-dimensional �2D�
electron gas of a GaAs heterostructure,7,8 and in 13C substi-
tuted single-wall carbon nanotubes9 �SWNTs� as a specific
example of a one-dimensional �1D� conductor. In this work
we focus on 1D more generally than in Ref. 9: we cover not
only the case of SWNTs but also of GaAs-based quantum
wires or different �yet not in detail discussed� 1D conductors
under the assumption that the electrons are in the Luttinger
liquid �LL� state as a result of their interactions. In these
systems the coupling between the nuclear spins and the con-
duction electrons has remarkable consequences.

Indeed, below a crossover temperature T* �in the mil-
likelvin range for the considered systems� the nuclear spins
form a spiral, a helimagnet �see Figs. 1 and 2�, caused by the
effective Ruderman-Kittel-Kasya-Yoshida �RKKY� interac-
tion induced by the electron system. The ordered nuclear
spins create an Overhauser field that acts back on the elec-
tron spins. This feedback is essential: it enhances an instabil-
ity of the electron conductor toward a density wave order,
and the electronic states are restructured. A gap appears in

one half of the low-energy modes and leads to a partial elec-
tron spin polarization that follows the nuclear spin helix. The
gap can be interpreted as a strong renormalization of the
Overhauser field, and so as a strong renormalization of the
hyperfine coupling constant for the gapped collective elec-
tron modes. The remaining gapless electron modes in turn
further strengthen the RKKY coupling between the nuclear
spins. The transition temperature T* of the nuclear spins can
therefore lie much above the temperature that would be
found without the feedback �called T

0
* below�. In SWNTs,

for instance, the feedback leads to an enhancement of T* by
about four orders of magnitude.

This means that below T* there is a temperature range
where the nuclear order and the electron order exist only
through their mutual stabilization. The nuclear spins and the
electrons form a combined ordered phase, even though the
energy and time scales in both systems differ by orders of
magnitude. We remark that the order is unstable in the ther-
modynamic limit due to long-wavelength fluctuations. For

FIG. 1. �Color online� Illustration of the helical nuclear magne-
tism of the SWNT, which is triggered by the RKKY interaction over
the electron system �not shown�. The nuclear spins �red arrows�
order ferromagnetically on a cross-section of the SWNT and rotate
along the SWNT axis with a period � /kF=�F /2 in the spin xy plane
�chosen here arbitrarily orthogonal to the SWNT axis�. The blue
ribbon is a guide to the eye for the helix. The feedback of this
nuclear magnetic field strongly renormalizes the electron system
through the opening of a partial gap due to a strongly renormalized
Overhauser field and so modifies the RKKY interaction. Through
this strong coupling of electron and nuclear systems the combined
order persists up into the millikelvin range. As a particular conse-
quence the electric conductance of the SWNT is reduced by a factor
of precisely 2.
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any realistic sample length L, however, those fluctuations are
cut off, the order extends over the whole system, and T* is in
fact independent of L.

We discuss this physics here specifically for 13C SWNTs
and GaAs quantum wires because such systems have become
available for experiments recently: SWNTs with a purity of
13C up to 99% have been reported in Refs. 10–13. The
cleaved edge overgrowth method14,15 has made it further-
more possible to produce quantum wires on the edge of a
GaAs heterostructure with LL parameters as low as16

Kc=0.4–0.5. For both systems, we predict a feedback-
generated crossover temperature T* that lies in the range of
10–100 mK.

This work is related to several studies found in the litera-
ture: NMR experiments17 on 13C enriched SWNTs grown
inside regular SWNTs �Refs. 10 and 11� have revealed the
existence of a large gap of about 30 K in the spin response.
While the microscopic origin of this gap seems still be un-
resolved, the NMR response could be well modeled with a
partially gapped Tomonaga-Luttinger model.18,19 Interest-
ingly our microscopic theory predicts a spin excitation gap
for a part of the transverse electronic susceptibility, although
we consider isolated SWNTs and obtain a gap with a smaller
magnitude below 1 K.

The coupling between a quantum spin chain and a LL was
studied in Ref. 20, and it was shown that this system can
acquire gaps as well. Such a system is very different from
our model in that it involves a single chain of small quantum
spins with anisotropic coupling to the electrons. Such an an-
isotropy appears spontaneously in our case, and built-in an-
isotropy has a very different effect as discussed in Sec. VI D.
A spin gap also appears in a LL in the presence of Rashba
spin-orbit interactions.21,22 LLs with a gap in the spin sector
are known as Luther-Emery liquids,23 and the partially
gapped LL in our model has indeed a strong resemblance to
such a system. Yet the gap does not open in the spin sector
but involves a combination of electronic spin and charge
degrees of freedom, therefore, in addition breaks the usual
spin-charge separation of a LL. The RKKY interaction at
zero temperature was calculated for LLs in Ref. 24 and for
the case including Rashba spin-orbit interactions in Ref. 25.
The use of the hyperfine interaction of 13C to couple spin and
valley quantum numbers in carbon-based quantum dots was
explored in Ref. 26.

Very recent spin blockade measurements12 on quantum
dots formed by 13C SWNTs suggest that the hyperfine inter-
action constant A0 is by 102–103 larger than what is expected
from 60C data27 or band structure theory.28 However, this
interaction strength is inferred from the comparison with

models that were originally designed for GaARecently much
progresss quantum dots, and so the precise value of A0 re-
quires further investigation.29

The observation of LL physics has been reported for vari-
ous 1D conductors such as carbon nanotubes,30–32 GaAs
quantum wires,15,16,33–36 bundles of NbSe3 nanowires,37

polymer nanofibers,38 atomic chains on insulating
substrates,39 MoSe nanowires,40 fractional quantum Hall
edge states,41 and very recently in a bulk material conjugated
polymers at high carrier densities.42 If there is a coupling to
localized magnetic moments, we expect that the effect de-
scribed in this paper should be detectable in these systems as
well, with the exception of the chiral LLs of fractional quan-
tum Hall edge states because they lack the backscattering
between left and right moving modes that is crucial for the
effect. To overcome this restriction, two edges with counter-
propagating modes would have to be brought close together
by a constriction. Recently much progress has been made in
producing and tuning the properties of carbon nanotubes as
quantum wires or quantum dots,10–13,30,43–60 and ultraclean
SWNTs are now available.59,60

The outline of the paper is as follows: In the next section
we state the conditions for the discussed physics and present
the main results. A detailed account of the theory is then
given. In Sec. III we derive the effective model. The nuclear
order and its stability without the feedback is discussed in
Sec. IV. The feedback and its consequences are examined in
Sec. V. In Sec. VI we discuss the self-consistency of the
theory. The effect of the renormalization above the crossover
temperature is outlined in Sec. VII. In Sec. VIII we show that
the single-band description we have used in the preceding
sections is appropriate for SWNTs, which normally require a
two-band model. We shortly conclude in Sec. IX. The Ap-
pendixes contain the technical details. The numerical param-
eters we use and derive for the SWNTs and GaAs quantum
wires are listed in Table I. For a brief overview, we refer the
reader to Sec. II.

II. CONDITIONS AND MAIN RESULTS

We summarize in this section the conditions and the main
results of our work. This allows us to give an overview of the
physics to the reader without going into the technical details
and conceptual subtleties. These are then discussed in the
subsequent sections.

Two conditions for the described physics are important: a
1D electric conductor in the LL state confined in a single
transverse mode �in the directions perpendicular to the 1D
conductor axis�, and a three-dimensional �3D� nuclear spin
lattice embedded in this 1D conductor. Higher transverse
modes are split off by a large energy gap �t. The coupling of
the nuclear spins to the electrons is weighted by the trans-
verse mode, which eventually leads to a ferromagnetic lock-
ing of the N��1 nuclear spins on a cross section in the
transverse direction. Consequently these ferromagnetically
locked nuclear spins behave as a single effective large spin,
allowing us to use a semiclassical description �see Secs. III B
and III C�. This picture can be different for strongly aniso-
tropic systems, where the coupling to the electron spin favors

FIG. 2. �Color online� Illustration of the helical nuclear magne-
tism for a GaAs-based quantum wire. Compared with the SWNT
�Fig. 1� the number of ferromagnetically locked spins on a cross
section through the wire is much larger, and the wavelength � /kF of
the helical rotation along the wire is longer. The feedback effect
remains otherwise the same and the combined electron and nuclear
order persists into the millikelvin range as well.
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a different spin locking �see Sec. VI D�. However, the phys-
ics described here remains valid as long as this locked con-
figuration has a nonzero average magnetization.

In addition, we treat only systems in the RKKY �Ref. 61�
regime, which is indeed the natural limit for the electron–
nuclear-spin coupling. This regime is characterized by ener-
getics such that the characteristic time scales between the
slow nuclear and the fast electron dynamics decouple. This
makes it possible to derive an effective instantaneous inter-
action between the nuclear spins, the RKKY interaction,
which is transmitted by the electron gas. If A0 is the hyper-
fine coupling constant between a nuclear spin and an electron

state localized at the nuclear spin site, and if EF denotes the
typical energy scale of the electron system, the RKKY re-
gime is determined by the condition A0 /EF�1. This condi-
tion is naturally fulfilled in GaAs-based low-dimensional
conductors62 where A0 /EF�10−2 �for both Ga and As ions�
and in carbon nanotube systems grown entirely from
the 13C isotope �which has a nuclear spin I=1 /2�, where27,28

A0 /EF�10−6. Recent measurements on 13C nanotube quan-
tum dots12 suggest a much higher value though, but still such
that A0 /EF�10−3. An adjustment of this value, however,
might be necessary because it relies on models that were not
specifically tailored for 13C nanotubes.29 To clarify this dis-

TABLE I. Physical parameters for GaAs quantum wires and 13C single wall nanotubes used in this paper and the derived quantities
discussed in the text. Note that the values of the derived quantities have an O�1� uncertainty, which is unavoidable in any Luttinger liquid
theory due to the required ultraviolet cutoff �see also the discussion before Eq. �55��. Within this uncertainty we have kBT*�B*. Since 	
=L for SWNTs, increasing L �within limits� also increases A* and B*. Anisotropic hyperfine interactions can slightly reduce A* and B* �see
Sec. VI D�. Energy is converted into temperature by the relation 1 eV=̂11 604.5 K.

Physical quantity GaAs quantum wirea 13C single wall nanotubeb

Hyperfine �on site� coupling constant �A0� 1 K, 90 
eV 7 mK, 0.6 
eV

Nuclear spin I 3 /2 1 /2

Electron spin S=1 /2

Fermi vector kF 1�108 m−1 4�108 m−1

Fermi wavelength �F=2� /kF 63 nm 17 nm

Electron density nel=2kF /� 0.6�108 m−1 2.4�108 m−1

Fermi velocity vF 2�105 m s−1 8�105 m s−1

Fermi �kinetic� energy EF=�vFkF /2 7 meV 0.1 eV

Lattice spacing a 5.65 Å 2.46 Å

Nuclear spin density �1D� nI=1 /a 1.8�109 m−1 4.1�109 m−1

Electron fraction per nuclear spin nel /nI 0.04�1 /28 0.06�1 /17

System length L 2–40 
m 2 
m

Number of sites in transverse direction N� �50�50 �50

Luttinger liquid parameter �charge� Kc 0.5 0.2c

Luttinger liquid parameter �spin� Ks 1 1c

Approximate bandwidth �a=�vF /a 0.23 eV 2.1 eV

Longitudinal level spacing �L 3–70 
eV 260 
eV

Transverse level spacing �subband splitting� �t 20 meV 0.65 eV

Exponent g=gx,y,z �single-band expression� 0.75 0.6c

Exponent g=gx,y,z �SWNT two-band expression for T
0
*� 0.8c

Exponent g�=gx,y� 0.67 0.33c

Exponent gz� 0.33 0.17c

Crossover temperature �without feedback� T
0
* 53 mK, 5 
eV 2 
K, 0.2 neV

Crossover temperature �with feedback� T* 75 mK, 7 
eV 11 mK, 1 
eV

Renormalized hyperfine coupling constant �in the direction
of the nuclear spin polarization� A*=A0�	 /a�1−g �4.6 K, �400 
eV �0.25 K, �22 
eV

Upper bound for crossover temperature B*=SA*nel /nI �80 mK, �7 
eV �10 mK, �1 
eV

Electron spin polarization �fraction� �S	 /S 0.05 5�10−5

Electron spin polarization �on site� �Si	 /S= �nel /nI��S	 /S 0.002 3�10−6

Correlation length for gapped electrons 	 	=	�=0.2 
m 	=L=2 
m

aFrom Refs. 14–16, 35, and 67.
bFrom Refs. 27, 28, and 68–71.
cSee Sec. VIII for the use of the Kc and Ks within the two-band description of SWNTs.
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crepancy between the reported values of A0 further experi-
mental and theoretical work is required. We can speculate
though that a similar renormalization of A0 as presented in
this paper can also occur for the quantum dot system and
hence mimic a larger value of A0. Due to this, the band-
structure value A0 /EF�10−6 for the bare unrenormalized hy-
perfine interaction strength is used in this work.

The RKKY energy is minimized when the nuclear spins
align in the helimagnetic order. Through the separation of
time scales and due to the large effective nuclear spins, this
order can then be treated as a static nuclear magnetic field
acting on the electrons. Most remarkably, this interaction is
relevant in the renormalization group sense for the electron
system and leads to the opening of a gap in one-half of the
electron excitation spectrum. This gap can be interpreted as a
strong increase in the nuclear Overhauser field in the direc-
tion defined by the nuclear helimagnet, while the hyperfine
coupling in the orthogonal directions remains unrenormal-
ized. The gap in the electron system is the result of the strong
binding of collective electron spin modes to the nuclear mag-
netization. The resulting RKKY interaction is then mostly
carried by the remaining gapless electron modes and be-
comes much stronger. This leads to a further strong stabili-
zation of the nuclear helimagnet. Through this feedback the
combined order remains stable up into experimentally acces-
sible temperatures �see below�.

The strong renormalization is in fact possible due to an
instability of the LL toward a density wave order,63 which is
signaled by the divergence of the electron susceptibilities at
momentum 2kF. The same divergence is responsible for or-
dering the nuclear spins, and so the backaction of the Over-
hauser field on the electrons enhances the instability for a
part of the electron degrees of freedom. This results in the
partial order in the electron system. Due to this, the effect of
the feedback is strong even for very weak A0.

We emphasize that this feedback is a pure LL effect and
absent in Fermi liquids. It leads to a number of experimental
signatures �described below� that may be used to unambigu-
ously identify a LL without the need of fitting power laws to
measured response functions. Let us also mention that an

alternative test of the LL theory has been proposed for
strongly interacting 1D current rectifiers.64–66 Here a pure LL
signature is found in form of a specific asymmetric bump in
the I-V curve.

Table I lists the physical parameters we use for the nu-
merical estimates for the GaAs quantum wires and the 13C
SWNTs. With these values we find that the feedback effect is
most remarkable for the 13C SWNTs where the crossover
temperature for the nuclear helimagnet without the feedback,
T

0
* �Eq. �39��, would be close to a microkelvin. Through the

feedback, however, T
0
* is replaced by the correct T* �Eq.

�71��, which reaches into the experimentally accessible mil-
likelvin temperatures.98

For GaAs quantum wires the effect on the crossover tem-
perature is much less pronounced due to a less dramatic
modification of the LL parameters. Yet through the larger
ratio A0 /EF we already have T

0
*�50 mK, which increases

through the feedback to T*�80 mK. Figures 3–6 show the
dependences of these temperatures and of the nuclear mag-
netization on the variation in different system parameters.
Note that the large values of T

0
* and T* for the GaAs quan-

tum wires are due to the small value of Kc=0.5 we use from
Ref. 16 for high-quality quantum wires. The more common
quantum wires with weaker electron-electron interactions
and Kc�0.8 lead to T*�1 mK, as shown in Fig. 6. In this
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figure we also show the energy scale B* �Eq. �74��, which we
use as an upper bound for kBT*, below which our approach is
controlled. Further self-consistency conditions are discussed
in Sec. VI.

As a general rule, stronger electron-electron interactions
�i.e., smaller LL parameters Kc� lead to larger T* in a much
more pronounced way than a larger value of the hyperfine
constant A0. The explicit dependence can be read off from
Eq. �71� and is given by

kBT* = I�A0�D�
 �a

I�A0��
�1−2g��/�3−2g��

, �1�

where kB is the Boltzmann constant, I is the nuclear spin,
�a=�vF /a is on the order of the bandwidth �with vF the
Fermi velocity and a the lattice constant�, D� �Eq. �72�� a
nonuniversal dimensionless constant of about D��0.2–0.3
for the values in Table I and g�=2Kc / �Ks�Kc+Ks

−1�� �Eq.
�68��, where Kc and Ks are the LL parameters associated with
charge and spin fluctuations, respectively. Note that SWNTs
require a two-band description and so four different LL
parameters68,69 �Kc=KcS=0.2 and KcA=KsS=KsA=1; see Sec.
VIII�. While we take this into account when we neglect the
feedback, we show in Sec. VIII that the single-band descrip-
tion with Kc=0.2 and Ks=1 is quantitatively valid when the
feedback is taken into account and therefore can be used for
the determination of T*, and the renormalized hyperfine con-
stant A* below.

We stress that T* is independent of the system length L
for any realistic sample �provided that we have L�kF

−1 such
that the LL theory is applicable�. For very large L there

would be a crossover where T* is replaced by a L-dependent
quantity such that T*→0 as L→�. This crossover, however,
occurs only at L that lie orders of magnitude above realistic
sample lengths �see Sec. IV B and Appendix D�.

The order parameter for the nuclear helimagnet is the 2kF
Fourier component of the magnetization, which has close to
T* the behavior of a generalized Bloch law �Eq. �70��,

m2kF
= 1 − 
 T

T*
�3−2g�

. �2�

This magnetization may be detectable by magnetic sensors
with a spatial resolution smaller than the period of the helix
�F /2�10–30 nm such as, for instance, magnetic resonance
force microscopy.72,73

The nuclear spin ordering acts back on the electron sys-
tem and leads to a strong renormalization of the hyperfine
interaction between the nuclear spins and a part of the elec-
tron modes. We can capture this renormalization by the re-
placement A0→A* of the hyperfine constant. We emphasize
though that this replacement also requires a reinterpretation
of the role of A*: it no longer describes the local coupling
between a nuclear spin and an electron at a lattice site, but
the coupling of a nuclear spin to a fraction of the collective
electron modes in the LL. The modified A* has thus a similar
interpretation as the dressing of impurity scattering74,75 in a
LL that no longer corresponds to the backscattering of a
single particle but to the generation of collective density
waves near the impurity site. The renormalization is ex-
pressed by �Eq. �57��

A* = A0�	/a�1−g, �3�

where g= �Kc+Ks
−1� /2 and 	=min�L ,�T ,	�� is a correlation

length. Here �T=�vF /kBT is the thermal length, and
	�=a��a / IA0m2kF

�1/�2−g� is the correlation length for an infi-
nite system. We stress that that 	 cannot exceed L or �T. An
uncritical use of 	=	� exceeding L or �T can lead to self-
consistency violations of the theory as explained in Sec.
V A. Note that for noninteracting electrons �including Fermi
liquids� g=1 and so A0 remains unrenormalized. The in-
crease A0→A* is a direct consequence of LL physics.

For the systems under consideration we have
I�A*��kBT* and hence the electron spin modes following the
nuclear helimagnet �ferromagnetically or antiferromagneti-
cally according to the sign of A0� are pinned into a spatially
rotating spin density wave. This affects, however, only one-
half of the low-energy electron degrees of freedom. The re-
maining electron spins remain in their conducting LL state.
They do no longer couple to the ordered nuclear spins, yet
couple to fluctuations out of the ordered nuclear phase with
the unrenormalized hyperfine coupling constant A0. Those
conducting electrons carry then the dominant RKKY interac-
tion, which has a modified form leading to the stabilization
of the combined order up to the renormalized temperature
T*.
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FIG. 6. Crossover temperatures T
0
* �dashed line, Eq. �39��, T*

�full line, Eq. �71��, and the bound B* �dash-dotted line, Eq. �74��
for GaAs quantum wires as functions of the interaction strength,
expressed by the Luttinger liquid parameter Kc �keeping Ks=1�.
The noninteracting limit is Kc=1, smaller Kc0 correspond to in-
creasingly stronger repulsive interactions. The dotted line is the
continuation of T* beyond the energy scale set by B*, for which the
validity of the theory becomes uncertain. The curves of T* and T

0
*

cross at Kc�0.6 because the RKKY interaction J2kF
� defining T* has

a prefactor that is by 1 /2 smaller than in the case without the
feedback. Since nuclear spin order unavoidably leads to the feed-
back, T* defines the crossover temperature for the order even when
T

0
*T*. Note that close to Kc=1, Eqs. �39� and �71� diverge be-

cause the cutoff � in Eq. �A12� was neglected in the further evalu-
ation of the RKKY interaction. This is valid for Kc smaller than
�0.8. Reintroducing the cutoff self-consistently close to Kc=1
regularizes the divergence and leads to the displayed curves �see
Appendix A 1�.
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On the other hand, the gapped electrons have an
excitation gap that is directly given by the renormalized
Overhauser field, given by B

xy
* = Im2kF

A* /2. Therefore, the
nuclear magnetization m2kF

can be directly determined by

measuring the electronic excitation gap through, for
instance, tunneling into the system.15,16,35,36 Since A* itself
can depend on m2kF

through the correlation length 	�, we
have �Eq. �59��

B
xy
* � �m2kF

= 1 − 
 T

T*
�3−2g�� for m2kF

� m�

m2kF

�3−g�/�2−g� = 1 − 
 T

T*
�3−2g���3−g�/�2−g�

otherwise, � �4�

where m� is such that 	=	� for all m2kF
m�. Notice that for

SWNTs, we have m�1 and so we always have B
xy
* �m2kF

.
If, however, m��1, the crossover between the two different
scaling behaviors of B

xy
* can be tuned by varying either L or

�T, depending on which one is smaller.
Experiments detecting this phase can rely on two more

effects. First, the freezing out of one half of the conducting
channels of the electron system leads to a drop of the elec-
trical conductance by precisely the factor of 2 �see Refs. 9
and 76�. Second, the breaking of the electron spin SU�2�
symmetry through the spontaneous appearance of the nuclear
magnetic field leads to the emergence of anisotropy in the
electron spin susceptibility �see Ref. 76 and Appendix A�.
The susceptibilities are defined by Eq. �15� and evaluated in
Appendix A. From Eqs. �A25� and �A26� we find that for
momenta q close to 2kF and at T=0,

�x,y�q� � �q − 2kF�−2�1−g��, �5�

�z�q� � �q − 2kF�−2�1−gz��, �6�

with gz�= �KcKs
−1+KcKs� /2�Kc+Ks

−1� �Eq. �69��. For Ks=1 we
have gz�=g� /2. At temperatures T0, these power-law sin-
gularities are broadened at q�� /�T �Eq. �A16��. The quali-
tative shape of these susceptibilities is shown in Fig. 7.

III. MODEL AND EFFECTIVE MODEL

A. Model

We consider a system of conduction electrons and nuclear
spins expressed by the Kondo-lattice-type Hamiltonian,

H = Hel
1D + �

i

A0Si · Ii + �
ij,�,�

vij
��Ii

�Ij
�. �7�

We have chosen here a tight-binding description, where the
indices i and j run over the 3D lattice sites ri and r j of the
nuclear spins, with lattice constant a. The hyperfine coupling
between the nuclear and electron spin on site i is expressed
by the constant A0, the electron spin operator Si= �Si

x ,Si
y ,Si

z�,
and the nuclear spin operator Ii= �Ii

x , Ii
y , Ii

z�. For GaAs we
have I=3 /2 and for 13C this spin is I=1 /2. We shall gener-
ally set �=1 in this paper and reintroduce it only for impor-
tant results. We assume here an isotropic hyperfine interac-
tion. The case of anisotropy is discussed in Sec. VI D.

The Hamiltonian Hel
1D describes the 1D electrons �con-

fined in a single transverse mode� and is given in detail be-
low. In addition to the transverse confinement, we assume
that the 1D system has a length L on the order of microme-
ters that may be the natural system length or be imposed by
gates �see Table I�. In contrast to the usual Kondo-lattice
model, Hel

1D contains the here crucial electron-electron inter-
actions.

The last term in Eq. �7� denotes the direct dipolar inter-
action between the nuclear spins, or for the terms with i= j
the quadrupolar splitting of the nuclear spins �� ,�=x ,y ,z�.
Keeping this term would make the analysis of this model
cumbersome as we would have to solve a full 3D interacting
problem. Yet those interactions are associated with the small-
est energy scales in the system. The dipolar interaction has
been estimated to be on the order of62 10−11 eV�100 nK.
For all ions considered here, the quadrupolar splitting is ab-
sent in 13C and is otherwise the largest for As with a
magnitude77–79 �10−10 eV�1 
K. These scales are over-
ruled by the much stronger effective RKKY interaction de-
rived below and, in particular, are much smaller than the
temperatures we consider and that are experimentally acces-
sible. This allows us to neglect the dipolar and quadrupolar
terms henceforth.

Model �7� does not yet contain the confinement of the
electrons into a 1D conductor. Since we neglect the dipolar
interaction we can focus only on those nuclear spins that lie
within the support of the transverse confining mode. This
leads to a first simplification that is considered right below.

q2kF

Jα
q

0

2π/λT |Jα
2kF

(T )|

FIG. 7. Sketch of the RKKY interaction Jq
� �Eq. �23�� or equiva-

lently the spin susceptibility ���q� �Eq. �A16��.
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B. Confinement into 1D

In this work we consider only conductors, in which the
electrons are confined in a single transverse mode ��.
Higher transverse harmonics are split off by an energy �t.
For SWNT, this transverse level spacing is determined by80

�t=2�vF� / �C�, where C is the chiral vector describing the
wrapping of the nanotube. For a C= �n ,n� armchair nanotube
we have �C�=3naCC �with aCC=a /�3 the distance between
carbon ions�, and so �t= �2� /�3��a /n. Due to the armchair
structure, there are four nuclear spins per 3aCC on the cross
section so that the number of sites on the cross section is
N�=4n. For our choice N��50 we then find n�12, leading
to �t�0.65 eV. For the cleaved edge overgrown GaAs
quantum wires, the transverse subband splitting has been
reported14 to exceed 20 meV. These large values allow us to
focus on the lowest transverse mode �subband� only.

It is then advisable to switch from the 3D tight-binding
basis into a description that reflects the confinement into the
lowest transverse mode: Let �t0

,�t1
, . . . label a full set of 2D

orthonormal transverse single-electron wavefunctions such
that �t0

=��, and let �i be the 3D tight-binding Wannier
functions centered at lattice sites ri. We decompose the po-
sition vector r into a longitudinal part r� and the 2D vector
along the transverse direction r�. Similarly we decompose
the 3D lattice index i into the parts i� and i�. We then write
�i�r�=�i�

�r���i�
�r�� and perform the basis change of the

electron operators ci,�
† as

ci,�
† = �t0 = � �i�	ci�,�,�

† + �t1�i�	ci�,t1,�
† + ¯ , �8�

with �= ↑ ,↓, ci�,tn
the electron operators corresponding to

longitudinal coordinate i� and transverse mode tn, and

�tn�i�	 =� dr��tn
*�r���i�

�r�� �9�

for normalized wave functions �tn
and �i�

. With the condi-
tion that the electrons are confined in the �t0

=�� mode,
averages over the operators ci�,tn,�

† vanish for n�1. This al-
lows us to drop those operators from the beginning and to
use the projected electron operators ci,�

† = �� �i�	ci�,�,�
† . The

2D Wannier wavefunctions �i�
have their support over a

surface a2 centered at a lattice site, while �� extends over
N� sites in the transverse direction. The normalization im-
poses that ��i�

�r��2�1 /a2 and ����r��2�1 /N�a2 for r
within the support of these wave functions. Consequently
�� �i�	=Ci�

/�N� with Ci�
a dimensionless constant that is

close to 1 in the support of �� and vanishes for those i�

where ��=0 �possible phases of the Ci�
can be absorbed in

the electron operators ci�,�,�
† �.

The electron spin operator is quadratic in the electron
creation and annihilation operators and we obtain
Si=Si�,�

Ci�
2 /N�. The i� dependence in Hamiltonian �7� can

then be summed out by defining the new composite nuclear
spins,

Ĩi�
= �

i�

Ci�
2 Ii�,i�

, �10�

so that the Hamiltonian becomes

H = H1D = Hel
1D + �

i�

A0

N�

Si�,�
· Ĩi�

. �11�

This result is remarkable in that the complicated 3D Hamil-
tonian �7� is equivalent to the purely 1D system �11�, de-
scribing the coupling of the 1D electron modes to a chain of

effectively large spins Ĩi�
. Indeed, since �i�

Ci�
2 =N� is im-

posed by the normalization, the composite spin has a length

0� Ĩ� IN�. As shown below, the maximal alignment

Ĩ= IN� is energetically most favorable for the RKKY inter-
action, such that in the ordered phase the composite spin can
be treated as an effective spin of length IN�. The prefactor
1 /N� to the hyperfine constant A0 expresses the reduction in
the on-site hyperfine interaction by spreading out the single-
electron modes over the N� sites.

C. Interpretation of the composite nuclear spins Ĩi¸

It is important to stress that N� is large: for SWNT, N�

denotes the number of lattice sites around a circular cross
section and is on the order of N��50. GaAs quantum wires
have a confinement of about 50 lattice sites in both trans-
verse directions and so N��2500. In both cases N� is large
enough such that the physics of pure �small� quantum spins
does not appear. Accordingly, we shall treat the nuclear spin
fluctuations below within a semiclassical spin-wave ap-
proach corresponding to an expansion in 1 / IN�.

We note moreover that the interaction with the electron

spin acts only on the Ĩi�
mode. Since Ci�

�1 over most of the

support of ��, we have Ĩi�
��i�

Ii�,i�
. Hence, all individual

nuclear spins on a cross section couple identically to the

electrons. The RKKY interaction acts only on Ĩi�
and so any

nuclear order minimizing the RKKY interaction energy is
imposed simultaneously and identically on all nuclear spins
on a cross section. This leads to the ferromagnetic locking of
these nuclear spin shown in Fig. 8. Otherwise said, since the

electrons couple only to the transverse Fourier mode Ĩi�
de-

scribing the ferromagnetic alignment, any order due to the
interaction with the electrons can only maximize this Fourier
component and so lead to the ferromagnetic locking.

For SWNT, where Ci�
�C through rotational invariance

of �� on the circular cross section, the electrons couple only
to this ferromagnetic transverse component. For GaAs quan-
tum wires deviations from the ferromagnetic component are
concentrated at the boundary of the confinement described
by ��. The nuclear spins in this boundary layer are more
weakly coupled to the electron spin, with an amplitude re-
duced by the factor Ci�

2 �����ri�
��2�1, and hence are more

sensitive to fluctuations.

In the following we shall interpret Ĩi�
mainly as this fer-

romagnetic component. For GaAs quantum wires this either
means that we consider only very well confined wires where
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Ci�
=1 over essentially the whole transverse cross section, or

that we restrict our attention to only those nuclear spins
where Ci�

=1, and so effectively slightly reduce what we call
the cross section of the wire.

The case of an anisotropic hyperfine interaction is dis-
cussed in Sec. VI D. In this case spin configurations different
from the ferromagnetic alignment are possible. The de-
scribed physics, however, remains valid as long as these con-
figurations produce a finite nuclear magnetic field.

D. Effective Hamiltonians

From the above considerations we have seen that the
original 3D Hamiltonian is through the confinement of the
conduction electrons equivalent to the 1D Hamiltonian �11�,
which we rewrite here as

H = H1D = Hel
1D + �

i

A0

N�

Si · Ĩi, �12�

where i= i� now runs over the 1D sites of a 1D lattice of
length L with lattice constant a. Si�Si�,�

is now a 1D elec-

tron spin operator, and Ĩi=�i�
Ii,i�

is the ferromagnetic com-
ponent of the N� nuclear spins on the cross section, as dis-
cussed before. Note that even the reduced A0 /N� remains
much larger than the neglected dipolar interaction.

The fact that A0�EF and, in particular, A0 /N��EF,
shows that the time and energy scales between the electron
and nuclear spin systems decouple. �A more thorough inves-
tigation of this condition can be found in Sec. VI B� This
characterizes the RKKY regime, in which the nuclear spins
are coupled through an effective interaction carried over the

electron system. Indeed, a change in Ĩi induces a local elec-
tron spin excitation. The response of the electron gas to this
local perturbation is the electron spin susceptibility �ij, de-

scribing the propagation of the effect of the local perturba-
tion from site i to site j. At site j the electrons can couple

then to the nuclear spin Ĩ j, hence inducing the effective in-
teraction. The strict separation of time scales implies that this
interaction can be considered as instantaneous, and so only
the static electron susceptibility �ij��→0� is involved in the
interaction. This interaction can be derived in detail, for in-
stance, through a Schrieffer-Wolff transformation followed
by an integration over the electron degrees of freedom as in
Refs. 7 and 8. The result is the effective Hamiltonian for the
nuclear spins

Hn
eff = �

ij,��

Jij
��

N�
2 Ĩi

�Ĩ j
�, �13�

with � ,�=x ,y ,z and the RKKY interaction

Jij
�� =

A0
2

2
a2�ij

��, �14�

where �ij
�� is the static electron spin susceptibility

�ij
�� = −

i

a2�
0

�

dte−�t��Si
��t�,Sj

��0��	 �15�

for an infinitesimal �0 and the average determined by Hel.
Note the 1 /a2 in this definition, which allows us to pass to
the continuum limit �ij

��→����r� without further complica-
tion �see Appendix A 1�. We assume that the total spin is
conserved in the system, and so ����r�=������r�,
J���r�=���J��r�. In momentum space we obtain

Hn
eff =

1

N
�
q,�

Jq
�

N�
2 Ĩ−q

� Ĩq
�, �16�

with N=L /a, the Fourier transform Ĩq
�=�ie

−iqriĨi
�, and

Jq
� =

A0
2

2
a���q� =

A0
2

2
a� dre−iqr���r� . �17�

In this derivation of the RKKY interaction we have tacitly
assumed that the electrons are unpolarized. This will be no
longer the case once the feedback coupling between elec-
trons and nuclear spins has been taken into account. The
necessary modification to Eq. �16� is discussed in Sec. V E
and leads to Hamiltonian �66�.

This feedback is driven by the Overhauser field generated
by the nuclear spins acting back on the electrons. To model
this we rely again on the separation of time scales, which
allows us to treat the Overhauser field as a static external
field for the electrons. Hence, a mean field description of the
nuclear Overhauser field is very accurate. This leads to the
effective Hamiltonian for the electron system,

Hel
eff = Hel

1D + �
i

hi · Si, �18�

with hi=
A0

N�
�Ĩi	, and where the expectation value is taken

with respect to Hn
eff. The Hamiltonians Hel

eff and Hn
eff, and so

the properties of the electron and nuclear subsystems self-
consistently depend on each other.

FIG. 8. �Color online� Illustration of the cross section through
the 1D conductor. The N��1 nuclear spins within the support of
the transverse confinement of the electron wave function �central
colored region� are ferromagnetically locked and behave like a

single large spin Ĩ=N�I. The nuclear spins outside this support do
not interact with the electron system and are generally disordered
because their direct dipolar interaction is very weak.
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E. Electron Hamiltonian

The confinement of the conduction electrons in the single
transverse mode �� makes the electron Hamiltonian strictly
1D. Through this dimensional reduction electron-electron in-
teractions have a much stronger effect than in higher dimen-
sions. In particular, they lead to a departure from the Fermi
liquid paradigm, and often the LL concept, based on the
Tomonaga-Luttinger model, is the valid starting point to
characterize the system properties.

We therefore consider a 1D system of length L with
electron-electron interactions that are effectively short-
ranged due to screening by gates. Such a system allows a
description by the Tomonaga-Luttinger model, given by the
Hamiltonian63

Hel
1D = �

�=↑,↓
� drvF��L�

† �r�i � �L��r� − �R�
† �r�i � �R��r��

+ �
���

� drdr�U�r − r����
†�r����

† �r������r�����r� ,

�19�

where ����r� are the operators for left moving ��=L=−, with
momenta close to −kF� and right moving ��=R=+, with mo-
menta close to +kF� electrons with spin �= ↑ =+ and
�= ↓ =−. The positions r and r� run over a system of
length L such that L�� /kF, where 2kF /�=nel is
the electron density of the 1D conductor. The operator
���r�=�L��r�+�R��r� is the conventional electron operator.
The potential U�r−r�� describes the screened electron-
electron interaction.

For simplicity, we consider here a single-band description
of the 1D conductor. This is not correct for carbon nano-
tubes, which require a two-band model. In Sec. VIII, how-
ever, we show that the main conclusions and results are
quantitatively determined by the single-band model so that
we can avoid the more complicated two-band description
henceforth.

In Hamiltonian �19� we have assumed a linear fermionic
dispersion relation for the left and right moving electrons,
�q=�vF�q�kF� �setting the chemical potential 
=0�. If this
assumption is valid, we have with the bosonization
technique63,81 a powerful tool to evaluate the properties of
the electron system to, in principle, arbitrary strength of the
electron-electron interactions, leading to the LL description.

We assume here that this theory holds. Possible deviations
are discussed in Sec. VI A. The derivation of the bosonic
theory can then be done in the standard way63 by expressing
the fermion operators ��� in terms of boson fields ��� as

����r� =
���

�2�a
ei�kFrei�����r�, �20�

with ��� the Klein factor removing a �� ,�� particle from the
system and

��� =
1
�2

��c − ��c + ���s − ��s�� . �21�

Here �c,s are boson fields such that −��c,s
�2 /� measure the

charge and spin fluctuations in the system, respectively. The
boson fields �c,s are such that ��c,s /� are canonically con-
jugate to �c,s. Hamiltonian �19� can then be rewritten in
these boson fields as

Hel
1D = �

�=c,s
� dr

2�
 v�

K�

�����r��2 + v�K������r��2� ,

�22�

where Kc,s are the LL parameters for the charge and spin
density fluctuations, and vc,s are charge and spin density
wave velocities. The electron-electron interactions are in-
cluded in this Hamiltonian through a renormalization of Kc,s
and vc,s. The noninteracting case is described by Kc=Ks=1
and vc=vs=vF. Repulsive electron-electron interactions lead
to 0�Kc�1. If the spin SU�2� symmetry is preserved
Ks=1, otherwise Ks1. The case Ks�1 would open a gap in
the spin sector63,81 and is not considered here. For ideal LLs
one has vc,s=vF /Kc,s. With Eq. �22� we have furthermore
assumed that kF is not commensurate with the lattice spac-
ing. Altogether, this allowed us to drop irrelevant back-
scattering and umklapp scattering terms in Eq. �22�.

F. RKKY interaction

The calculation of the RKKY interaction, i.e., the calcu-
lation of the electron spin susceptibility, is standard in the LL
theory. We have outlined its derivation in Appendixes A and
B �the real space form of the RKKY interaction at T=0 has
been derived before in Ref. 24�, and from Eq. �A16� together
with Eq. �17� we obtain, for q0,

Jq
��g�,vF� � −

A0
2

�a
C�g��
 �a

kBT
�2−2g�

� �  g�
2

− i
�T

4�
�q − 2kF��

 2 − g�
2

− i
�T

4�
�q − 2kF���

2

. �23�

In this expression we have neglected an additional small
term depending on q+2kF and the small forward-scattering
contribution. We note, however, that J−q

� =Jq
�. Much of Jq

�

depends on the quantities

g = gx,y = �Kc + 1/Ks�/2, gz = �Kc + Ks�/2. �24�

For SWNTs these definitions must be modified due to the
existence of two bands, which we use for the case when the
feedback to the electron system is neglected. From the dis-
cussion in Sec. VIII we have

g = gx,y,z = �Kc + 3�/4. �25�

We stress, however, that the single-band values �24� are
quantitatively correct also for SWNTs when we take the
feedback into account �see below�.
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For Ks=1 it follows from Kc�1 that g��1. The prefactor
in Eq. �23� is given by

C�g� =
sin��g�

2
 2�1 − g��2��2g−4, �26�

we have introduced the thermal length

�T = �vF/kBT , �27�

and the energy scale

�a = �vF/a , �28�

which is on the order of the bandwidth.
A sketch of Jq

� is shown in Fig. 7. This interaction has a
pronounced minimum at q=�2kF with a width �� /�T, and
a depth of

J2kF

� = −
A0

2

�a
C�g��
 �a

kBT
�2−2g��  �g�/2�

 �1 − g�/2�
�2

. �29�

For �q−2kF�� /�T the zero temperature form of this curve
becomes quickly accurate: for q0 and combining Eqs.
�A15� and �17� we find

Jq
� � −

A0
2

�a

sin��g��
8�2 � 2

a�q − 2kF�
�2−2g�

, �30�

which can also be verified by letting T→0 in Eq. �23�.
The singular behavior at �2kF defines the real space form

J��r�. The latter can be obtained by Fourier transforming Eq.
�23� or by time integrating Eq. �A13�. The latter is done
explicitly in Appendix B. From Eq. �B5� we then find

J��r� = −
A0

2�T sin��g��
8�2a�vF

cos�2kFx�

�
 �a/�T

sinh���r�/�T��
2g�

F�1/2,g�;1;− sinh−2���r�/�T�� ,

�31�

where F is the Gaussian hypergeometric function, defined in
Eq. �B4�. For �r���T, which is the case most of the time for
the systems considered here, and for g1 /2 we obtain the
asymptotic behavior �see Eq. �B7� and Ref. 24�

J��r� � cos�2kFr��a/�r��2g�−1. �32�

Stronger electron-electron interactions lead to smaller g� and
so to an RKKY interaction that extends to longer distances.
Since the order discussed below is due to the long-range part
of the RKKY interaction, this leads to a better stabilization of
the order and consequently to a higher crossover tempera-
ture.

Let us note that Eq. �32� cannot be extended to g��1 /2,
where it would describe an unphysical growth of J�r� with
distance. This regime is actually not reached for conven-
tional LLs with Kc0 and Ks=1, yet with the feedback be-
low we obtain renormalized g���1 /2. Equation �32� then is
regularized by further temperature-dependent corrections
coming from the expansion of the hypergeometric function
�see Appendix B� or at low temperatures by cutoffs such as
the system length. Since the relevant temperatures deter-

mined below are such that L��T or at most L��T, the
values g���1 /2 then lead to a RKKY interaction that decays
only little over the whole system range.

IV. NUCLEAR ORDER

A. Helical magnetization

We have seen above that the ferromagnetic locking of the
N� nuclear spins in the direction across the 1D conductor

leads to a 1D nuclear spin chain of composite nuclear spins Ĩi
with maximal size IN��1. This allows us to treat the
nuclear subsystem semiclassically.7,8 Pure quantum effects
such as, for instance, for antiferromagnetic chains, the
Haldane gap for integer quantum spin chains82,83 or Kondo
lattice physics2 are absent since their effect vanishes expo-
nentially with increasing spin length.

In the present case the starting point is the classical
ground state of the nuclear spins described by Hamiltonian
�13�. The RKKY interaction Jq reaches its minimum at
q=�2kF, and the ground-state energy is minimized by fully

polarized Ĩi= IN� describing a helix with periodicity wave
vector 2kF. The corresponding ground states fall into two
classes of different helicity,

Ĩi� = IN��êx cos�2kFri� � êy sin�2kFri�� , �33�

where êx,y are orthogonal unit vectors defining the spin x and
y directions. Through the spontaneous selection of the direc-
tions êx,y any rotational symmetry of Hamiltonian �13� is
broken.

The simultaneous existence of both helicities cannot oc-
cur for these classical ground states because their superposi-
tion would result in a single helix, but with reduced ampli-
tude. A coherent quantum superposition of such states, on the
other hand, can be excluded because each state involves the

ordering of the large effective spins Ĩ= IN� over the whole
system length L, and hence 105–108 individual spins. This
symmetry breaking and so the selection of a single helicity is
in fact crucial for the feedback effect described in Sec. V. A
single helix leads to a partially gapped electron system,
while a superposition of the two helicities would result in an
entirely gapped electron system. The physics of the latter
case is interesting on its own, but does not occur in the
present case.

Transitions between both helical classes would involve a
reorientation of the entire nuclear system �and through the
feedback of the electron system as well�. Such a transition, as
well as the spontaneous emergence of domain walls, can be
excluded because its energy cost scales with the system size
due to the long-range RKKY interactions. The low-energy
fluctuations about the ground state are either rotations of the
entire nuclear spin system as a whole or magnons.

Rotations of the whole system do not reduce the local
magnetization, yet they may lead to a zero time average. Due
to the the aforementioned separation of energy scales be-
tween the nuclear and electron system, however, the momen-
tary nuclear spin configurations acts like a static nonzero
field on the electrons. Our analysis, therefore, is not influ-
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enced by these modes. Moreover a pinning of those modes
since they involve the rigid rotation of the entire system, is
very likely.

More important are magnons, which describe the low en-
ergy fluctuations to order 1 / IN�. The magnon spectrum for
the nuclear helimagnet is derived in Appendix C �see also
Ref. 8�. For the isotropic or anisotropic �when the feedback
on the electrons is considered� RKKY interaction there exists
a gapless magnon band with dispersion given by Eq. �C6�,

�q = 2�IN���J2kF−q
x − J2kF

x �/N�
2 . �34�

Let mi= �Ĩi	 · Ĩi� / �IN��2 measure the component of the aver-

age magnetization along Ĩi�, normalized to −1�mi�1. The
Fourier component m2kF

then acts as an order parameter for
the nuclear helical order. We can choose 0�m2kF

�1 by ro-
tating the axes êx,y if necessary. Magnons reduce this mag-
netization as follows:7,8

m2kF
= 1 −

1

IN�

1

N
�
q�0

1

e�q/kBT − 1
, �35�

where the sum represents the average magnon occupation
number, and the momenta q run over the first Brillouin zone
q� �−� /a ,� /a�.

B. Absence of order in infinite-size systems

In the thermodynamic limit L→� the sum in Eq. �35�
turns into an integral that diverges as L /a=N due to the
q→0 magnon occupation numbers, showing that long-
wavelength modes destabilize the long-range order. It is
noteworthy that this is not a consequence of the Mermin-
Wagner theorem.84 The Mermin-Wagner theorem forbids
long-range order in isotropic Heisenberg systems in low di-
mensions with sufficiently short-ranged interactions. An ex-
tension to the long-ranged RKKY interactions has been re-
cently conjectured85 for the case of a free electron gas. The
theorem thus cannot be applied for systems where the long-
range RKKY interaction is modified by electron-electron in-
teractions. Indeed, we have shown in previous work7,8 that in
this case long-range order of nuclear spins embedded in 2D
conductors becomes possible. In the present 1D case,
however, the divergence of the magnon occupation number
at q→0 provides a direct example where long-range nuclear
magnetic order is impossible in the L→� limit.

Realistically we always deal with samples of a finite
length L though. The singularity at q→0 is cut off at mo-
mentum � /L, and the q=0 is absent in samples that are not
rings. This means that the sum in Eq. �35� is finite, and a
finite magnetization is possible at low enough temperatures.
We shall actually see below that even though the cutoff at
� /L plays a significant role for the stability of the order in
realistic systems, the magnetization m2kF

is fully determined
by L-independent quantities. This is much in contrast to what
we would anticipate from the L→� limit.

C. Order in finite-size systems

The energy representation of the momentum cutoff at � /L
is the level spacing

�L = �vF/L . �36�

This level spacing must be carefully compared with any
other temperature scale characterizing the magnetization
m2kF

of Eq. �35�.
In particular, if kBT��L, the momentum quantization

� /L is larger than the inverse thermal length, � /�T. Since
the width of the minimum of J2kk+q

x is on the order of
� /�T �see Fig. 7�, the first possible magnon energy ��/L is
already very large and close to the maximal value
2I�J2kF

x � /N�. If we define a temperature TM0 at which
��/L /kBT�2I�J2kF

x � /N�kBT=1, we have for TTM0

m2kF
�T� = 1 −

1/IN�

e�TM0/T�3−2g
− 1

= 1 −
1

IN�


 T

TM0
�3−2g

,

�37�

with g=gx,y = �Kc+Ks
−1� /2 from Eq. �24� for GaAs quantum

wires and g= �Kc+3� /4 for SWNTs �see Sec. VIII�. We even-
tually write the magnetization as

m2kF
= 1 − 
 T

T0
*�3−2g

, �38�

where we have defined the temperature T
0
* by

kBT0
* = �IN��1/�3−2g�kBTM0 = 2I2�J2kF

x �

= 2I2C�g�
A0

2

�a

 �a

kBT0
*�2−2g  2�g/2�

 2�1 − g/2��1/�3−2g�

= I�A0�D
 �a

I�A0��
�1−2g�/�3−2g�

, �39�

where C�g� is defined in Eq. �26�, �a=�vF /a �Eq. �28��, and
where D is the dimensionless constant

D = sin��g� 2�1 − g��2��2g−4  2�g/2�
 2�1 − g/2��1/�3−2g�

.

�40�

Equation �38� can be considered as a generalized Bloch law
for the nuclear magnetization with an exponent 3−2g that
depends on the electron-electron interactions.

The arguments above are based on the assumption
kBT��L so that Eq. �38� is in principle only valid
if kBT

0
*��L. In Appendix D we show, however, that Eq. �38�

remains valid far into the range kBT�L. In particular, it
remains valid for GaAs quantum wires, where we find that
kBT

0
* ,kBT*��L, where T* is the resulting crossover tem-

perature when taking into account the feedback onto the
electron system �Eq. �71��. This means that the system length
L has no influence on the nuclear magnetization for any re-
alistic SWNT and GaAs quantum wire system.

D. T
0
* sets the only available energy scale

It may seem surprising that T
0
* does no longer depend on

N�. Yet we need to recall that the reduction of the RKKY
interaction J by 1 /N�

2 is compensated through the coupling
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of two composite spins containing each N� spins I. The cou-
pling energy therefore depends on �J /N�

2 �� �IN��� �IN��
= I2J, which no longer contains N� �see Fig. 9�. The cross-
over temperature �since the L dependence has been ruled out�
can then only depend on the energy scales that characterize
I2J. Since J is described by the width and the depth of its
minimum, which depend both on T, there is only one char-
acteristic temperature that can be self-consistently identified
by setting I2�J2kF

�T��=kBT. The result is T
0
* �up to the factor

2 in Eq. �39��, which consequently must set the scale for the
cross-over temperature, independently of the chosen ap-
proach, be it magnons �as here�, mean field or more refined
theories.

In the next section we see, however, that T
0
* is strongly

renormalized by a feedback coupling between the electron
and nuclear spin systems, which modifies the shape of Jq
itself. The feedback in addition introduces a second scale
through a partial electron spin polarization that acts like a
spatially inhomogeneous Zeeman interaction on the nuclear
spins.

V. FEEDBACK EFFECTS

A. Feedback on electrons

We have seen that the electrons enforce a helical ordering
of the nuclear spins, and we have assumed that this helical
ordering defines the spin �x ,y� plane �see Eq. �33��. In the
following, we analyze the feedback of the nuclear spin or-
dering on the electrons using the renormalization group �RG�
approach. Since the dynamics of the nuclear spins is much
slower than that of the electrons, we can safely assume that
the main effect of the nuclear spins is well captured by a
spatially rotating static magnetic field of the form:
B�r�=Bx cos�2kFr�êx+By sin�2kFr�êy, with Bx=By = IA0m2kF

.
Note that we explicitly �and arbitrarily� choose the
counterclockwise helicity for the helical ordering. The
effective Hamiltonian for the electron system then reads
Hel

eff=Hel
1D+HOv with Hel

1D given by Eq. �22� and

HOv =� drB�r� · S�r� �41�

is the coupling to the nuclear Overhauser field.
Using the standard bosonization formulas,63 HOv is ex-

pressed as

HOv =� dr

2�a
Bxy�cos��2��c + �s��

+ cos��2��c − �s� − 4kFr�� . �42�

where

Bxy = IA0m2kF
/2, �43�

and where we have not written the forward scattering part
because it has no influence. The last term is oscillating and is
generally incommensurate except for 4kFa=2�n, with n in-
teger. This special case would correspond to a fine tuning of
EF to about 1.7 eV for carbon nanotubes or 0.2 eV for GaAs
quantum wires, which is quite unrealistic for the systems we
consider here. We therefore assume in the following that
4kFa�2�n and hence drop the last incommensurate term in
Eq. �42�. The remaining cos��2��c+�s�� term has the scaling
dimension �Kc+Ks

−1� /2. For the systems under consideration
this operator is always relevant so that the interaction term is
always driven to the strong coupling regime. To see this
more clearly we change the basis of boson fields by intro-
ducing the boson fields �+ ,�− ,�+ ,�−, defined by

�c =
�Kc

�K
�Kc�+ −

1
�Ks

�−� , �44�

�s =
− �Ks

�K
 1

�Ks

�+ + �Kc�−� , �45�

�c =
− 1

�KcK
�Kc�+ −

1
�Ks

�−� , �46�

�s =
1

�KsK
 1

�Ks

�+ + �Kc�−� , �47�

where we have set

K = Kc + Ks
−1. �48�

The new fields obey the standard commutation relations
��!�x� ,�!��y��= i��!,!� sign�x−y� with ! ,!�=+,−. In this
basis, the electron Hamiltonian reads

Hel =� dr

2���
!=�

v!����!�2 + ���!�2� +
Bxy

a
cos��2K�+�

+ �vc − vs�
1

K
�Kc

Ks
����+����−� − ���+����−��� ,

�49�

with

N⊥N⊥

i j

Jij/N
2⊥

FIG. 9. �Color online� Illustration of the RKKY coupling be-
tween two large spins composed of N� individual spins at sites i
and j. The hyperfine interaction is reduced by distributing a single
electron over N� nuclear spins, A=A0 /N�, resulting in an RKKY
interaction Jij /N�

2 . This reduction by 1 /N�
2 is compensated because

N�
2 nuclear spins are mutually coupled through the same RKKY

interaction Jij.
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v+ = �vcKc + vsKs
−1�/K , �50�

v− = �vcKs
−1 + vsKc�/K . �51�

If vc=vs, the electron Hamiltonian separates into two inde-
pendent parts Hel=Hel

+ +Hel
− , where Hel

+ is the standard sine-
Gordon Hamiltonian, while Hel

− is a free bosonic Hamil-
tonian. The cosine term is relevant and generates a gap in the
“�” sector. If vc�vs the terms in ��+��− and ��+��− are
marginal and are much less important than the strongly rel-
evant cosine term. In a first approximation, we neglect these
terms. We will come back to this point in Sec. V C below.
The RG equation for Bxy then reads63

dBxy

dl
= 
2 −

Kc

2
−

1

2Ks
�Bxy = �2 − g�Bxy , �52�

where l is the running infrared cutoff and

g = K/2 = �Kc + Ks
−1�/2. �53�

We use this g for both GaAs quantum wires and SWNTs, in
contrast to the g of Eq. �25� that must be used for SWNTs in
the absence of the feedback. As explained in Sec. VIII, this is
due to the fact that the feedback acts on each of the two
Dirac cones of the the SWNT dispersion relation separately
and hence effectively splits the two bands of the SWNT into
separate single-band models within each cone.

Under the RG flow, Bxy�l� grows exponentially as does the
associated correlation length 	=a�l�=ael. The flow stops
when either 	 exceeds L or �T, or when the dimensionless
coupling constant63 y�l�=Bxy�l� /�a�l�, with �a�l�=�vF /a�l�
becomes of order 1. From the latter condition we obtain a
correlation length

	 = 	� = a�y�0��−1/�2−g� = a�Bxy/�a�−1/�2−g�. �54�

We emphasize that with the cutoff criterion y�l��1 the mag-
nitude of the resulting Bxy has an O�1� uncertainty. In fact,
we use here a different cutoff criterion as in Ref. 9, namely,
�a instead of EF. While the use of both cutoffs is generally
justified for the perturbative RG scheme used here �the cutoff
must be on the order of the bandwidth�, we notice that when
using EF we obtain for the GaAs quantum wires too large
values for Bxy that exceed EF. This is unphysical as it would
imply that more electrons are polarized than are contained in
the system, and so it just means that Bxy becomes comparable
to EF. The consistency of the RG scheme then requires that
the RG flow must be stopped earlier, and the natural scale in
the kinetic part of Hamiltonian �49� is set by �a.63 Due to the
resulting smaller gap Bxy, however, for SWNTs the correla-
tion length 	 would exceed the system length L at the new
cutoff scale �while 	�L in Ref. 9�. Hence, for SWNTs the
flow is cut off even earlier at L.

B. Renormalized Overhauser field and gap for electron
excitations

Independently of the precise form of the correlation
length 	 we can always write y�l�=y�0��	 /a�2−g. Since fur-
thermore �a�0� /�a�l�=a /	, we obtain the following result

for the gap, i.e., the renormalized Overhauser field
B

xy
* =Bxy�l�,

B
xy
* = Bxy�	/a�1−g, �55�

with

	 = min�L,�T,	� = a�Bxy/�a�−1/�2−g�� . �56�

Since Bxy�A0 we can translate this directly into a renormal-
ized hyperfine interaction constant

A* = A0�	/a�1−g. �57�

It is important to notice that even though A* can be called a
“renormalized hyperfine interaction” it no longer can be in-
terpreted in the same way as A0. It does not describe the
on-site interaction between a nuclear spin and an electron
spin but results from the reaction of the entire electron sys-
tem to the ordered nuclear spin system. We can see this as
analogous to the strong growth of an impurity backscattering
potential in a LL,74,75 which then no longer corresponds to
the coupling between the impurity and an electron but in-
volves a collective screening response by the electron sys-
tem.

The values of A* are listed in Table I. Since IA*�kBT, for
all temperatures within the ordered phase, we find that pre-
cisely one half of the degrees of freedom, the �+ fields, are
gapped, while the �− fields remain in the gapless LL state.
As we have shown in Ref. 76, this has the direct conse-
quence that the electrical conductance through the 1D system
drops by the factor of precisely 2. Since the gap is identical
to the nuclear Overhauser field, and so proportional to the
nuclear magnetization m2kF

, it in addition allows to directly
measure the nuclear magnetization through a purely elec-
tronic quantity, the gap B

xy
* . Using Eq. �2� for m2kF

, which
shall be proved explicitly in Eq. �70� below, we can rewrite
the gap as

B
xy
* =

IA*

2
1 − 
 T

T*
�3−2g�� , �58�

with T* given by Eq. �1�, or Eq. �71� below. For SWNTs A*

is independent of m2kF
, and so the gap B

xy
* is directly propor-

tional to the magnetization m2kF
. For the GaAs quantum

wires, A* is independent of m2kF
for small magnetizations

such that 	�L, and the correlation length is set by L. For a
magnetization m2kF

m����a / IA0��L /a�2−g we have
	��L and A* becomes a function of m2kF

. The gap therefore
follows the curve
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B
xy
* � �m2kF

= 1 − 
 T

T*
�3−2g�� for m2kF

� m�

m2kF

�3−g�/�2−g� = 1 − 
 T

T*
�3−2g���3−g�/�2−g�

otherwise. � �59�

Notice that the value m� for the crossover magnetization can
be tuned by the system length L. If �T�L, the L in the
definition of m� is replaced by �T.

The physical meaning of the gapped field �+ is best seen
by rewriting it in terms of the original boson fields ��� using
Eq. �21�,

�+ = ��c + �s�/�K = ��R↓ + �L↑�/�2K . �60�

A gap in the � sector means that a linear combination of the
spin ↓ electron right movers and spin ↑ electron left movers
is gapped. This combination is pinned by the nuclear helical
state. This can be seen as the analog of a spin/charge density
wave order except that it involves a mixture of charge and
spin degrees of freedom. As shown in Sec. V D, this pinned
density wave corresponds to an electron spin polarization
following the nuclear helical order.

C. Corrections by the marginal terms

The results of the RG analysis above remain almost un-
changed if we take into account the terms ��+��− and
��+��−. To support this assertion, we have checked nu-
merically that that y=Bxy /�a reaches its cutoff scale, while
the other coupling constants remain almost unchanged. Fol-
lowing Ref. 63, we then expand the cosine term up to second
order. This provides a mass term �Bxy for the �+ mode.
Within this approximation, the �+ and �+ bosonic fields can
be exactly integrated out in the quadratic action. This leaves
us with an effective Hamiltonian Heff

− for the fields �− ,�−,
which has precisely the same form as Hel

− up to some irrel-
evant terms,

Heff
− = v−

eff� dr

2�
 1

K−
eff���−�r��2 + K−

eff���−�r��2� , �61�

but with the renormalized parameters K−
eff=�1− and

v−
eff=v−

�1− , with

 =
Kc

4Ks

�vc − vs�2

�vcKc + vsKs
−1��vcKs

−1 + vsKc�
. �62�

For the systems under consideration the factor �1− is
slightly less than 1 and this renormalization has indeed no
quantitative consequences.

D. Electron spin polarization

The pinning of the �+ modes leads to a partial polariza-
tion of the electron spins. This polarization follows the helix
of the nuclear Overhauser field and is parallel �for a ferro-

magnetic A0� or antiparallel �for an antiferromagnetic A0� to
the nuclear spin polarization.

Within the LL theory, the form of this polarization can be
found very easily. The forward scattering contribution of
Sz���s has a zero average. There remain the backscattering
parts given by the OSDW

� operators in Eqs. �A5�–�A7�. Since
averages over exponents consisting of single boson fields
vanish in the LL theory, �ei�−	= �ei�−	=0 �up to finite size
corrections on the order of a /L�, only the contribution to the
spin density average consisting uniquely of the e�i�2K�+ op-
erators are nonzero because �+ is pinned at the minimum of
the cosine term in Eq. �49�. For A00 this minimum is at
�2K�+=−� and for A0�0 at �2K�+=0. The two back-
scattering parts depending only on �+ are

��L↑
† �r��R↓�r�	 =

e2ikFr

2�a
ei�2K�+ = −

e2ikFr

2�a
sgn�A0� , �63�

and the conjugate ��R↓
† �r��L↑�r�	. This leads to the LL result

for the electron spin polarization density �with S=1 /2�

�S�r�	LL = − S
sgn�A0�
�a �cos�2kFr�

sin�2kFr�
0

� . �64�

The correct prefactor, the polarization density, cannot be ob-
tained from the LL theory, which only provides the dimen-
sionally correct prefactor 1 /�a. This unphysical result is a
direct consequence of neglecting bandwidth and band curva-
ture effects in the LL theory, which can lead to a violation of
basic conservation laws. Concretely we obtain here an elec-
tron polarization �1 /a which largely exceeds the electron
density �kF in the system. To cure this defect, we use the
following heuristic argument in the spirit of Fröhlich and
Nabarro.1 The process of opening the gap B

xy
* in the �+ field

is carried mostly by the electrons within the interval B
xy
*

about the Fermi energy �using a free-electron interpretation�.
Hence, the polarization is on the order of B

xy
* /EF. Note that

the factor 1 /2 in B
xy
* = I�A*�m2kF

/2 can now be interpreted as
showing that only one-half of the electron modes is gapped.
When going to the tight-binding description this amplitude
must in addition be weighted by the ratio of electron to
nuclear spin densities nel /nI, expressing that the number of

electrons is much smaller than the number of nuclear spins Ĩ
in SWNT’s and GaAs quantum wires. This leads to our es-
timate of the local electron polarization
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�Si	 � −
ISA*m2kF

2EF

nel

nI �
cos�2kFri�
sin�2kFri�

0
� . �65�

This argument gives us furthermore an upper bound to the
effective hyperfine coupling constant, IA*�EF /2, telling
that at most half of the electrons can be polarized. Further
bounds and self-consistency checks are discussed in Sec. VI.

For the chosen systems, this electron polarization is small.
Assuming m2kF

=1, we find for GaAs quantum wires
��Si	� /S=2�10−3 and for SWNTs ��Si	� /S=3�10−6 �see
Table I�.

E. Feedback on nuclear spins

The partial helical polarization of the electrons naturally
modifies the susceptibilities and so the RKKY interaction. In
addition, according to the principle actio=reactio, the polar-
ized electrons together with the renormalized coupling con-
stant A* create a magnetic field that acts back on the nuclear
spins, hence polarizing them. Therefore the stabilization of
the nuclear order has now two ingredients: The minimum of
the RKKY interaction as before �yet with a modified shape�,
and the Zeeman-like �but helimagnetic� polarization by
A*�Si	.

We stress that these are two different energy scales and, in
particular, the Zeeman-like energy does not provide an upper
bound to the RKKY scale. Indeed, both expressions are of
order A0

2 because �S	�A* /EF as shown just above, and so
they do not follow from a first and a second order perturba-
tive expansion. In addition, we have seen in the previous
section that the electron polarizations are indeed very small.
Therefore we shall see below that the RKKY interaction is
dominated by the gapless �− modes and hence involves dif-
ferent electrons than �S	. The bounds for the validity of the
perturbation theory are, in fact, imposed differently. As this
is an important criterion of controllability of the theory, we
analyze it in Sec. VI B. We show there that the perturbative
expansion is indeed justified for SWNTs and GaAs quantum
wires.

The modified Hamiltonian for the nuclear spins then be-
comes

Hn
eff = �

i

A*�Si	
N�

· Ĩi + �
ij

Jij�
�

N�
2 Ĩi · Ĩ j . �66�

In the derivation of the modified RKKY interaction J� we
suppress any occurrence of �Si	 because such terms are of
order O�A0

3� and are neglected in the perturbative expansion.
Fluctuations involving the gapped fields �+ and �+ have fur-
thermore a much reduced amplitude due to the gap IA* and
can be neglected compared with the RKKY interaction car-
ried by the gapless modes �− and �− only. Fluctuations of the
gapped fields become in fact important only at temperatures
kBT IA*, which is much larger than the characteristic tem-
peratures of the ordered phase �see Table I�. This allows us to
neglect any occurrence of �+ and �+ in the RKKY interac-
tion. The details of the modification of the susceptibilities are
worked out in Appendix A 2.

The result is a susceptibility, and so a Jq, of a gapless LL
described by �− and �− of the same form as Eq. �23� with
modified exponents g�→g�� that are determined by the pref-
actors of the �− and �− fields in transformations �44�–�47�
and a modified velocity vF→v−. Since the nuclear Over-
hauser field singles out the spin �x ,y� plane over the z direc-
tion, anisotropy appears between �x=�y and �z. This is ex-
pressed not only in different exponents gx,y� �gz� but also in
that the amplitudes of �x,y are only 1 /2 of that of �z because
one-half of the correlators determining �x,y depend only on
�+, while all correlators for �z depend on �− and �−.

From the results of the detailed calculation in Appendix A
2 we then see that the new RKKY interaction Jq�

� has pre-
cisely the same form as Eq. �23� with the replacements

Jq�
x,y = Jq

x,y�gx,y� ,v−�/2, Jq�
z = Jq

z�gz�,v−� , �67�

and the exponents

g� = gx,y� = 2Kc/Ks�Kc + Ks
−1� , �68�

gz� = �KcKs
−1 + KcKs�/2�Kc + Ks

−1� , �69�

satisfying gx,y,z� �g and gz��gx,y� �for Ks=1 we have precisely
gz�=gx,y� /2� for the nanotube and quantum wire systems. Note
that this single-band result is also quantitatively valid for the
SWNTs, as explained in Sec. VIII.

For the exponents we have quite generally gx,y� gz�. To-
gether with the difference in amplitudes we see that
�Jq�

x,y�� �Jq�
z�. Naively this would mean that the system could

gain RKKY energy by aligning the nuclear spins along the z
axis. However, this would destroy the feedback effect and so
lead to a large overall cost in energy. The helical order in the
�x ,y� plane is therefore protected against fluctuations in the z
direction. Since this is another important self-consistency
check, a detailed analysis can be found in Sec. VI C.

F. Modification of the crossover temperature

The analysis above shows that the ground-state magneti-
zation of the nuclear spins remains a nuclear spin helix con-
fined in the spin �x ,y� plane even when the feedback is taken
into account. The order parameter for the helical order re-
mains m2kF

. Thermally excited magnons reduce this order
parameter in the same way as before. As long as the gap B

xy
*

remains much larger than kBT the gapped modes �+ and �+
remain entirely frozen out, and the reaction of the electron
system is described by only the ungapped modes �− and �−,
leading to the RKKY interaction Jq�

� as derived just above in
Sec. V E. The evaluation of the magnon occupation number
leading to Eq. �38� remains otherwise identical upon the re-
placement J2kF

→J2kF
�� with �=x ,y. Since �Jq

z � �Jq
x,y�, there is

now a second magnon band �q
�2� with negative energies at

q�2kF �see Appendix C�. This usually means that the as-
sumed ground state is unstable. But in the same way as
stated in the previous paragraph, the feedback protects the
ordered state against such destabilizing fluctuations. The de-
tails are again worked out in Sec. VI C, and as a consequence
we can neglect this second magnon band �q

�2� entirely.
Let us now look at the influence of the electron polariza-

tion on the nuclear spins. The effective magnetic field cre-
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ated by the electrons is Bel= �A*�Si	�. With the polarizations
estimated in Eq. �65� we obtain for GaAs quantum wires
Bel�0.3 
eV�4 mK, and for SWNTs Bel�36 neV
�0.4 
K. Both scales are very small compared with the
values of T* we shall obtain from the modified RKKY inter-
action right below. Hence, we can entirely neglect these
magnetic fields, and so the gap they generate in the magnon
spectrum.

The magnon band is thus of the same type as Eq. �34�,
and repeating the analysis of Sec. IV C we obtain a magne-
tization of the form

m2kF
= 1 − 
 T

T*
�3−2g�

, �70�

with the crossover temperature �combining Eqs. �39� and
�67��

kBT* = I�A0�D�
 �a

I�A0��
�1−2g��/�3−2g��

, �71�

where g� is given by Eq. �68�, again �a=�vF /a �Eq. �28��,
and

D� = 
v−

vF
��1−2g��/�3−2g��

� sin��g�� 2�1 − g���2��2g�−4

2

 2�g�/2�
 2�1 − g�/2�

�1/�3−2g��

,

�72�

with v− from Eq. �51�. These expressions replace the mag-
netization m2kF

in Eq. �38� and the temperature T
0
* in Eq.

�39�. As noted in Sec. V B the m2kF
can be directly detected

by measuring the electron excitation gap B
xy
* .

VI. SELF-CONSISTENCY CONDITIONS AND
GENERALIZATIONS

The strong renormalization of the system properties
through the feedback between the electron and nuclear sys-
tems below T* requires a reexamination of the underlying
conditions. We start with discussing the validity of the LL
theory, which forms the starting point of our analysis. The
validity of the renormalized RKKY treatment is examined
next. This is followed by the investigation of the stability of
the nuclear helimagnet to a macroscopic realignment of the
nuclear spins in the z direction that seems to be favored by
the anisotropy of the modified RKKY. We show that the
nuclear helimagnet is stabilized through the feedback. Fi-
nally, we show that intrinsic anisotropy in the hyperfine in-
teraction does not change our conclusions as long as it main-
tains a finite magnetization along a cross section through the
1D conductor. The validity of using a single-band model for
SWNTs is discussed in Sec. VIII.

A. Validity of Luttinger liquid theory

The LL theory defined by Eq. �22� is an exact theory for
1D electron conductors with a perfectly linear electron dis-

persion relation. The eigenstates of such a system are
bosonic density waves. Including electron-electron interac-
tions does not change the nature of these eigenstates but
leads mainly to a renormalization of the LL parameters Kc
and Ks. Realistically, however, the dispersion relation is not
perfectly linear and restricted to a finite bandwidth, and
electron-electron interactions can have a more substantial in-
fluence. In such a situation the LL theory remains valid as
long as �for the considered physical quantities� the bosonic
density waves remain close to the true eigenstates and decay
only over a length scale exceeding the system length.

Deviations from LL behavior induced by the electron
band curvature close to �kF was investigated in Refs.
86–88. Let us encode this curvature in a mass m* such that
the electron dispersion reads "q=vFq+q2 /2m*, where q is
measured from �kF. Defining then the parameter
"= ��−"q� / �q2 /2m*� it was shown87 that deviations from LL
behavior become important at �"�#1 provided that �q��kF.
In our case, the electron correlation functions are evaluated
in the static limit �=0, and by setting qm=2vFm* this con-
dition becomes �q�$qm.

For armchair SWNTs we estimate89 m*�0.2m0 �with m0
as the bare electron mass� within a few 0.1 eV about the
Dirac points. This mass is very large, reflecting the almost
perfect linear dispersion of the armchair SWNTs. Accord-
ingly this leads to a qm�3 nm−1�kF or to an energy scale of
about 2 eV. Hence, qm� �q� for any �q��kF. For GaAs quan-
tum wires the effective mass at the  point is90

m*=0.067m0, and so qm=2�m0vF /�=2.3�108 m−1. This is
slightly larger than kF and again we find that qm� �q� for any
�q��kF. Therefore, for both systems the curvature-induced
deviations from the LL theory are negligible.

A different curvature-induced deviation from standard LL
theory occurs at very low electron densities, leading to the
so-called incoherent LL �see, e.g., Refs. 58 and 91–93 and
references therein�. At these densities the Coulomb energy
Epot largely overrules the kinetic energy Ekin of the electrons
�expressed by a ratio R=Epot /Ekin�1�, and the electrons or-
der in a Wigner crystal, while the electron spins form a
Heisenberg chain. Such a system still allows a bosonized
description,91,92 yet with a large splitting between spin and
charge excitation energies. Realistic temperatures lie above
the spin excitation energies but can lie below the
charge excitation energies. The charge fluctuations then
remains in a LL state, while the spin fluctuations have an
incoherent behavior. The ratio R depends much on the band
mass m of the system. For a quadratic dispersion we have
Ekin=kF

2 /2m�nel
2 /2m. For a potential energy Epot=nele

2 /�
�with e as the electron charge and � as the dielectric constant�
we obtain R=Epot /Ekin�m /nel. The incoherent LL regime
can therefore be reached in systems with a large mass and a
low electron density.58 In the GaAs /AlGaAs heterostructure
of the quantum wires we have90 ��12 and Ekin=EF. With
the values from Table I we find that R=nele

2 /�EF�0.2, ex-
cluding the incoherent LL.

For a linear spectrum such as in the SWNTs the criterion
above does not apply. Indeed, for a linear dispersion
Ekin�nel and so the ratio R=Epot /Ekin is independent of den-
sity. Electron interactions then primarily modify the dielec-
tric constant � and so Kc. This leads to a much weaker de-
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pendence of R on the interaction strength and makes the LL
description valid for, in principle, arbitrary electron-electron
interactions. For SWNTs we have the estimate68,70 ��1.4
leading to R=e2 /��vF��0.6, allowing us to exclude the
incoherent LL as well.

B. Validity of RKKY approximation and bounds on T*

The RKKY approximation is valid under two conditions.
First, as it is a perturbative expansion in powers of A0, we
must verify that higher perturbative orders remain smaller
than the lower perturbative orders. Related to this we must
examine that the energy scale kBT* obtained from the RKKY
interaction does not violate bounds imposed by the original
Hamiltonian �7�. Second, the separation of time scales be-
tween the electron and nuclear spin systems must be guaran-
teed in order to be allowed to interpret the RKKY interaction
Jq� as instantaneous for the nuclear spins.

1. Upper bound on T*

The perturbative derivation of the RKKY interaction61 or
equivalently its derivation through a Schrieffer-Wolff
transformation7,8 consists in an expansion in A0. The lowest
order is proportional to A0, the scale of the second order is
set by Jq�A0

2 /EF, higher orders scale in further powers of
A0 /EF, and so the condition of validity of perturbation theory
is usually set equal to the condition �A0� /EF�1. This condi-
tion is perfectly met for the SWNTs or the GaAs quantum
wires. Yet, there are a few subtleties. First, in the absence of
the feedback, we have Jq= �A0

2 /EF�� �number�, and the latter
number can become very large. Its maximum defines indeed
the scale kBT

0
*. Through the Schrieffer-Wolff transformation

we have in addition eliminated the term in the Hamiltonian,
which is linear in A0, and so there is no longer a proper “first
order” expression to which we can compare Jq. Hence, the
validity of the RKKY scale kBT

0
* must be checked in a dif-

ferent way.
If we entirely neglect the electron Hamiltonian, i.e.,

H=�iA0Si ·Ii, we can ask which maximal energy scale can
be obtained from the hyperfine Hamiltonian for the nuclear
spins. Obviously this scale is obtained by polarizing all elec-
trons such that H=�iA0�nel /nI�Sê ·Ii, with S=1 /2, nel /nI as
the ratio of electron to nuclear spin densities, and ê an arbi-
trary unit vector �that may or may not be position depen-
dent�. For temperatures smaller than the field
B

0
*= �A0�Snel /nI all nuclear spins are aligned along ê because

a mismatch with the fully polarized electrons costs the on-
site energy B

0
*. Essential for this argument is that flipping a

nuclear spin out of its alignment costs only energy from the
hyperfine interaction. The electron system is assumed to be
energetically unaffected by this process �the hyperfine inter-
action conserves the total of nuclear and electron spins and
so the electron spin changes as well�. Otherwise said, the
electron Hamiltonian Hel is independent of the electron po-
larization. Within this framework the RKKY coupling be-
tween the nuclear and electron spins corresponds just to a
more sophisticated way of treating the nuclear spin fluctua-
tions. Since the electron state has no influence by assump-
tion, the maximal energy scale set by B

0
* cannot be overcome

by any characteristic temperature obtained through the
RKKY interaction. This argument therefore applies directly
to the case when we neglect the feedback between the
nuclear spins and the LL. The condition then becomes

kBT0
* � B0

* = SA0
nel

nI
. �73�

With the values from Table I we can verify that this condi-
tion is indeed satisfied.

The situation is of course very different if both systems
are tightly bound together. In this case, one pays not only the
energy B

0
* but also the energy resulting from the modification

of the electron state. Through the feedback between both
systems, this extra cost in energy is roughly taken into ac-
count through the renormalized hyperfine coupling constant
A* �see Eq. �57��. If we assume that A* fully describes the
maximal electron response to the hyperfine coupling, then
the scales obtained from the modified RKKY description
again cannot overcome this scale. Hence, we have the modi-
fied condition

kBT* � B* � SA*
nel

nI
. �74�

We must interpret this inequality with caution though. Only
one half of the low-energy electron modes contribute to the
renormalization of A*. The Coulomb interaction between the
remaining electrons, which in fact substantially modifies the
RKKY interaction and determines T*, is not taken into ac-
count. Yet, this modified RKKY interaction is a direct con-
sequence of the strong coupling to the nuclear system as
well, and so the scale B* may still require further adjustment.
A hint for this is seen for instance in Fig. 6, where kBT*

exceeds B* for Kc�0.5.
Nonetheless we use Eq. �74� as an upper bound to kBT*

since we do not know if such an extrapolation beyond B*

remains valid within the RKKY framework. However, we
interpret Eq. �74� as assuring the validity of the theory, and
not necessarily as a maximal upper bound on kBT*.

If we look again at Table I we see that kBT*�B* for the
selected values of GaAs quantum wires and SWNTs �within
the O�1� uncertainty�. Hence, the fluctuations of the gapless
modes stabilize the nuclear order up to the scale B* set by
the gapped modes. This equality of the scales for the param-
eters of Table I is actually a coincidence, as can be seen from
Fig. 6.

Note that if B* is controlled by the cutoff 	=L, increasing
the system length also increases B* because more electrons
are involved in the feedback effect. In SWNTs, for instance,
	=L and B*� �L /a�1−g= �L /a�0.4. This means that doubling L
corresponds to an increase of B* by about 1.3. Since T* is
independent of L such a control of the bound B* may be
quite useful.

2. Separation of time scales

The RKKY interaction requires that the electron response
to a change in the nuclear spin configuration is instanta-
neous, and so a strict separation of time scales between both
systems is mandatory. The dynamics of the nuclear spins is
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described by Hamiltonian �66� and consists of two parts. The
precession of the nuclear spins in the magnetic field gener-
ated �self-consistently� by the polarized electrons and the
renormalized coupling constant A*, and the dynamics from
the RKKY interaction Jq�. The former leads to an energy
scale A*�S	��A*�2 /EF, which needs to be compared with
EF. This results in the condition

A* � EF. �75�

Notice that this argument is very different from the previous
argument leading to Eqs. �73� and �74�, as it requires the
physical, fully self-consistent averages, not a maximal en-
ergy condition. From Table I we see that condition �75� is
met for SWNTs and GaAs quantum wires. Since A* /EF mea-
sures essentially the proportion of electron spin polarization
�see Sec. V D�, it means that only a very small fraction of the
electrons is polarized.

On the other hand, the time scale set by Jq� can be identi-
fied with the dynamics of the fluctuations it describes, and so
with the magnon dynamics. We therefore compare the maxi-
mal magnon velocity with the Fermi velocity vF. For tem-
peratures T#T*, the maximal magnon velocity vm is ob-
tained by the slope of �q at the momentum cutoff q=� /L.
We can then use the T=0 expression for Jq, as it sets an
upper bound to the slope, and obtain from Eqs. �30�, �34�,
and �67�

vm

vF
�

�2 − 2g��sin��g���2/��3−2g�vF

16�2v−

I

N�

A0
2

�a
2
L

a
�3−2g�

.

�76�

The first three factors are small and can overcome the large
last factor. Indeed, for SWNTs we have vm /vF�10−9 /N�,
and for GaAs quantum wires �with L=10 
m�
vm /vF�10−3 /N�. The already small prefactors are in addi-
tion strongly suppressed by the number N� of nuclear spins
in the direction across the 1D system. The small values for
vm mean that q=� /L lies already in a region where �q is
essentially flat. This is, in fact, the same criterion we have
used for the determination of T*. The necessary separation of
time scales is therefore fulfilled by the systems under con-
sideration.

C. Stability of the planar magnetic order

We have observed in Sec. V E that quite generally
�Jq�

z�� �Jq�
x,y� because of the smaller exponent gz� and the

larger prefactor of Jq�
z. Naively, this means that the nuclear

spin system can gain RKKY energy by forming an Ising-like
configuration along the spin z direction. An alignment in this
direction, however, would destroy the feedback described
above, and so destroy the net energy gain from the planar
�x ,y� order in both the electron and spin systems. To keep
this feedback and the energy gain active, a deviation from
the planar order of the nuclear spins is not possible.

Indeed, the narrow minimum of Jq�
z at q=2kF implies

that if there is a magnetization mz along the spin z
direction it has only q=�2kF Fourier components,
because they are energetically most favorable. The reality

of the expectation value of each nuclear spin then
imposes that we can write the ground-state expectation val-

ues in the form �Ĩi	= IN�m2kF
�cos�2kFr�êx+sin�2kFr�êy�

+ IN�mz sin�2kFr+��êz, where 0�mz�1 is the magnetiza-
tion along the z direction and � an arbitrary phase. For

mz�0 we see that a full polarization ��Ĩi	�= IN� is no longer
possible in general. Instead, the maximally possible polariza-
tion is determined by the condition m2kF

2 +mz
2=1. Choosing

such a m2kF
also minimizes the nuclear spin energy for a

fixed mz so that we can consider the latter condition as being
fulfilled when seeking the absolute ground-state energy.

Using the bosonization approach63 in the same way as in
Sec. V E we see that the new mz component leads to an
Overhauser field for the electron system of the form
Bz sin��2�c�sin��2�s� with Bz= IA0mz which is relevant un-
der the RG, plus oscillating terms which can be
neglected. This new term competes against the term
Bxy cos��2K�+�=Bxy cos��2��c+�s�� �with Bxy = IA0m2kF

� in
the RG because it involves the field �s which is conjugate to
�s. By the uncertainty principle, the pinning of both fields is
impossible, and generally the term with the larger amplitude,
Bxy or Bz, dominates the RG flow to the strong coupling fixed
point.63

To our knowledge there is no method allowing a precise
evaluation of this RG flow. The following estimate, however,
is sufficient for our needs. At the cutoff scale determining
B

xy
* , both Bxy and Bz have flown to strong coupling, although

through the competition we have B
xy
* �mz�0��B

xy
* �mz=0�.

The scaling dimension of Bz is 2−Kc /2−Ks /2 and so for
Ks=1 identical to the scaling dimension of Bxy �Eq. �52��.
Hence, the initial ratio Bz /Bxy =mz /m2kF

remains, up to small
corrections, constant throughout the RG flow. This allows us
to estimate the decrease of B

xy
* to be proportional to mz,

which leads to a cost in the electron ground state energy per
lattice site on the order of �Ecost=B

xy
* −B

xy
* �mz��mzBxy

*

�with B
xy
* =B

xy
* �mz=0��. This cost must be compared with the

gain in nuclear spin energy per lattice site, given by
�Egain� I2mz

2�J2kF
�z −J2kF

�x,y�� I2mz
2�J2kF

�z �. Since �Egain�mz
2 and

�Ecost�mz the relation �Egain��Ecost is most likely for
small mz and definitely always fulfilled if I2�J2kF

�z ��B
xy
* . Since

close to T* �see Table I� we have B
xy
* �kBT*� I2�J2kF

�z �, we
conclude that any mz�0 is energetically highly unfavorable
and so the helical order in the spin �x ,y� plane is stable.

With this argument we also see that the second magnon
band derived in Eq. �C7�, �q

�2�=2I�Jq
z −J2kF

x � /N�, which has
�q

�2��0 at q�2kF, is of no importance. Any macroscopic
occupation of these negative energy states, which would nor-
mally signify an instability of the assumed ground state, is
energetically forbidden. The remaining �q

�2�0 describe 2kF
fluctuations in the z direction. Their effect is the same as the
fluctuations in the �x ,y� plane described by the first magnon
band �q

�1� in Eq. �C6�; yet they involve large momenta �2kF.
Due to this we can neglect this second magnon band entirely
in this theory.

Let us finally note that a pure mz magnetization �with the
�x ,y� component m2kF

=0� would lead to a similar feedback
effect as the helical magnetization and open up a gap in the
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�c+�s sector. This would lead to a spatially oscillating
Ising-like average magnetization in the z direction. In con-
trast to the �x ,y� helical magnetization, the condition ��Ii	�
=NI is then fulfilled only when cos�2kFri�=1. The resulting
nuclear magnetic energy lies therefore much above the en-
ergy from the �x ,y� magnetization; the minimum is only
about half as deep as in the latter case, and thus such a state
is not assumed by the system in the ground state.

D. Anisotropic hyperfine coupling

The strong feedback between the nuclear spins and the
electrons occurs only if there is a nonzero Overhauser field
on every cross section through the 1D conductor. This was
ensured by the ferromagnetic locking of the nuclear spins by
the coupling to the single transverse electron mode. Aniso-
tropy in the hyperfine interaction can perturb this situation,
and a reinvestigation of this very important first assumption
on the nuclear spins becomes mandatory.

Here we focus on the case of carbon nanotubes, in which
indeed anisotropy is present through the dipolar interaction
between the electron and nuclear spins on the curved
surface.28 Rotational symmetry imposes that if anisotropy is
present, it occurs between the radial direction �r�, the tangen-
tial direction on the circular cross section �t�, and the direc-
tion along the tube axis �c�. Writing the nuclear and electron
spin operators in this local basis, Ii= �Ii

r , Ii
t , Ii

c� and Si
= �Si

r ,Si
t ,Si

c�, the hyperfine Hamiltonian can be written as

H = �
i

�ArIi
rSi

r + AtIi
tSi

t + AcIi
cSi

c� , �77�

where i runs over the 3D nuclear spin lattice. We assume
henceforth that28 Ar=−2At=−2Ac�2A00, and neglect the
Ac term as it turns out to be smaller than the couplings in the
plane spanned by the r and t components. Let us identify this
plane with the spin �x ,y� plane and rewrite the local compo-
nent in an global spin basis as Si

r=Si
x cos�%i�+Si

y sin�%i�, Si
t=

−Si
x sin�%i�+Si

y cos�%i�, and analogously for the Ii operators,
where %i is the polar angle of site i on the circular cross
section �see Fig. 10�. The Hamiltonian can then be written in
the form

H = A0�
i

�Si
x,Si

y��1 + 3 cos�2%i��z + 3 sin�2%i��x�
Ii
x

Ii
y � ,

�78�

with �x,z as the Pauli matrices. As in Sec. III B we assume
that the electrons are confined in a single transverse mode,
which allows us to sum over the transverse components of
the indices i for the nuclear spins. We see then that the elec-
tron spin couples only to the ferromagnetic component of the
total nuclear spin on the circle, I0,i�

� =�i�
Ii�,i�
� , and the 2%i

modes Ic,i�
� =�i�

cos�2%i�Ii�,i�
� and Is,i�

� =�i�
sin�2%i�Ii�,i�

� . Since
Si�,i�
� =Si�

� /N�
2 we have

H =
A0

N�
2 �

i�
�
�=x,y

Si�
��I0,i�

� + 3�zIc,i�
� + 3�xIs,i�

� � . �79�

The coupling to the electron spin, therefore, acts simulta-
neously on these three nuclear spin modes only. For the feed-

back it is essential that these modes carry a finite magneti-
zation. This is actually the case as we can see by assuming
an electron spin at a cross section i� polarized in the Sx=
+1 /2 direction. The Hamiltonian Hi�

for the nuclear spins on
this cross-section then becomes

Hi�
=

A0S

N�
2 �

i�

�Ii�,i�
x ,Ii�,i�

y �
1 + 3 cos�2%i�
�

3 sin�2%i�
� � . �80�

The energy is minimized when at each position �i� , i�� the
nuclear spin is opposite to the vector on the far right in Eq.
�80�. This configuration is shown in Fig. 10 and has a net
magnetization along the x direction of m=−0.17. Hence, the
coupling to the single transverse electron mode enforces a
nuclear Overhauser field of the same type as in the isotropic
case.

Through the reduced magnetic field, we see from Eq. �55�
that the gap B

xy
* is smaller compared with the isotropic value

by �0.17�1/�2−g��0.2. This affects the feedback only if the
smaller gap becomes comparable to kBT*. Since, however,
B

xy
* �10 
eV�100 mK for the isotropic case �see Table I�,

even with this reduction, it remains on a scale that is larger
than T*�10 mK. Yet it also lowers the limiting scale B*

below kBT*, and so the true T* may be a bit lower as well.
However, since B* depends directly on L for SWNTs �see
Sec. VI B�, choosing a longer sample length will push B* up
to higher values, and so T* may keep its original value.

VII. RENORMALIZATION ABOVE T*

For temperatures above T* thermal fluctuations destroy
the nuclear helimagnet, but there remains the separation of
time scales between the nuclear and electron systems. This
implies that any random fluctuation at time t into a nonzero
Fourier component m2kF

�t� of the nuclear magnetization trig-

FIG. 10. �Color online� Illustration of the nuclear spin configu-
ration minimizing the energy of Eq. �80� for the case of a complete
electron polarization S pointing upwards in the figure. The figure
shows how the sign of the hyperfine constant changes when going
around the nanotube cross section. The overall magnetization of this
configuration is m=−0.17 �along x, normalized to −1�m�1�. See
also Ref. 28.
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gers a renormalization of the electronic properties in the
same way as before and leads to an instantaneous Over-
hauser field B

xy
* �t�= Im2kF

�t�A*�t� /2.
Any detection of this Overhauser field would have to rely

on the measurement of nonvanishing quantities such as
�B

xy
* �2. We emphasize though that the renormalization occurs

only for the q=�2kF Fourier modes of the magnetization.
Close to T* thermal fluctuations may still occur preferably in
the vicinity of the minimum of Jq at q=�2kF. However, as
T is raised away from T* the relative weight of the
q=�2kF modes with respect to the other �N−2� Fourier
modes rapidly drops and approaches 1 /N at high tempera-
tures. Except for a T in the close vicinity of T* the renormal-
ized Overhauser field is probably not detectable.

On the other hand, as long as kBT remains below the
maximally possible B

xy
* = I�A*� /2, the m2kF

fluctuations spo-
radically open a gap for one-half of the electron modes
whenever B

xy
* �t� exceeds kBT. This temporarily freezes out of

one-half of the conduction channels76 and so reduces the
time averaged electric conductance of the system. The reduc-
tion is given by a temperature dependent factor f between
1 /2 and 1, with the limits f =1 /2 at T→T* and f =1 when
crossing through kBT� I�A*� /2. Note that if the correlation
length 	 is given by the system length L, increasing L also
increases A* �see Eq. �57��, and so the onset of f�1 occurs
already at higher temperatures.

VIII. VALIDITY OF THE ONE-BAND DESCRIPTION FOR
CARBON NANOTUBES

The band structure of armchair carbon nanotubes consists
of two Dirac cones �or two valleys� centered at the
momenta71 K=�2� /3a �folded into the first Brillouin
zone�. Hence, the LL theory depends not only on spin and L
or R movers but also on an index �=1,2 labeling the two
Dirac cones. We have neglected this additional quantum
number � in the previous sections with the argument that,
once the feedback is included, the results obtained from the
single band �single cone� description employed so far are
quantitatively the same. In this section this shall be explicitly
shown.

A. Luttinger liquid theory for nanotubes

Without electron-electron interactions SWNTs of the arm-
chair type have the effective low energy Hamiltonian80

H0 =� dr�
��

��R��
† �− i � ��R�� − �L��

† �− i � ��L��� ,

�81�

where ���� is the electron operator of �=L ,R movers in
cone � with spin �, and ��=������� is the full electron
operator. This theory can be bosonized within each cone in
the usual way68–70 by introducing the boson fields ��� and
��� with �=c ,s. In particular, −��c�

�2 /�=&c�
f , where

&c�
f =�������

† ���� is the forward-scattering part of the den-
sity operator in cone �. The basic bosonization identity �20�
is now enriched by the index �,

���� =
����

�2�a
ei��kF+�kv�r+�i�/�2���c�−��c�+���s�−��s���, �82�

where kF is measured from the crossing point of the two
branches of the corresponding Dirac cone, and so the posi-
tion of these Dirac cones in the Brillouin zone has to be
taken into account through the additional phase factors �ikvr
with kv=4� /3a �modulo any reciprocal lattice vector�.

The electron-electron interactions considered here are
density-density �Coulomb� interactions and can be split into
a part depending only on the forward-scattering densities &c�

f

and a term depending on backscattering �→−�, intercone
scattering �→−�, and umklapp scattering. The latter pro-
cesses lead to a gap in the system, but with a magnitude that
is exponentially suppressed with an increasing diameter of
the tube.70 At realistic temperatures this gap is only impor-
tant for very narrow tubes and can be excluded here. Indeed,
from Ref. 70 the dominating gap is determined by
mb=�0 exp�−��vF /�2b�, where �0=7.4 eV is the band-
width of the � electrons, and b�0.1 ae2 /R is the intervalley
scattering amplitude with e the electron charge and R the
radius of the SWNT. For �n ,n� armchair SWNTs we have80

R= �C� /2�=�3an /2�, with C as the chiral vector
�see also Sec. III B�. Putting in numbers �see Table I�
we find mb��0 exp�−2.2n�, and for n=13 we have
mb�3 peV�30 nK. We notice, however, that b has an order
1 uncertainty,70 and can become larger for very well screened
interactions. LL physics at the millikelvin temperatures con-
sidered here is valid for gaps that lie below these tempera-
tures, which therefore requires a sufficiently wide nanotube
and a not too short screening length �yet short enough to
allow a local description for the interaction�. In addition, the
experiments of Ref. 30 show no indication for such a gap
down to a temperature T=1.6 K, confirming the LL picture.

The system is then describable by a LL where only the
forward scattering interaction part remains of importance. It
is of the form

V =� drdr�V�r − r���&c1
f �r� + &c2

f �r���&c1
f �r�� + &c2

f �r���

� � drU���c1�r� + ��c2�r��2, �83�

where U can be related to a charging energy and V�r� is
sufficiently screened to allow a local description �yet see the
preceding paragraph�.

The interacting Hamiltonian can then be diagonalized
through boson fields that describe the symmetric S and anti-
symmetric A parts of density fluctuations between the
�=1,2 cones, ��S= ���1+��2� /�2 and ��A= ���1−��2� /�2.
Similar definitions hold for the ��� fields. The electron-
electron interaction acts only on the symmetric �c ,S� sector.
Therefore the LL theory remains that of a noninteracting
system in the �c ,A�, �s ,S�, and �s ,A� sectors �more precisely,
it remains that of almost a noninteracting system due to
slight renormalizations through the backscattering interac-
tion�. The bosonic Hamiltonian for the nanotube then takes
the form
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H = �
�P
� dr

2�
 v�P

K�P
����P�2 + v�PK�P����P�2� , �84�

where P=S ,A. Here KcA�KsS�KsA�1, while KcS is
strongly renormalized by the interaction and typically is
about68–70 KcS�0.2. The velocities are given by
v�P=vF /K�P.

Correlation functions computed with this theory are con-
sequently described by power laws with exponents com-
posed of all four LL parameters K�P. Of particular interest
for us are the backscattering amplitudes appearing in the spin
operators Sx and Sy, for instance, for spin-flip backscattering
R→L,

�L�↑
† �R�↓ � e2ikFre�i/�2���L�↑+�R�↓�

= e2ikFrei�2��c�+�s��

= e2ikFrei��cS+��cA+�sS+��sA�, �85�

for intercone scattering �=1→2,

�L2↑
† �L1↓ � e2ikvre�i/�2���L2↑−�L1↓� = e2ikvrei�−�cA−�cA+�sS+�sS�,

�86�

�R2↑
† �R1↓ � e2ikvre�−i/�2���R2↑−�R1↓� = e2ikvre−i�−�cA+�cA+�sS−�sS�,

�87�

and for the combinations L→R together with �=1→2 or
�=2→1,

�L2↑
† �R1↓ � e2i�kF+kv�re�i/�2���L2↑+�R1↓�

= e2i�kF+kv�rei��cS−�cA−�sA+�sS�, �88�

�L2↓
† �R1↑ � e2i�kF+kv�re�i/�2���L2↓+�R1↑�

= e2i�kF+kv�rei��cS−�cA+�sA−�sS�, �89�

�L1↑
† �R2↓ � e2i�kF−kv�re�i/�2���L1↑+�R2↓�

= e2i�kF−kv�rei��cS+�cA+�sA+�sS�, �90�

�L1↓
† �R2↑ � e2i�kF−kv�re�i/�2���L1↓+�R2↑�

= e2i�kF−kv�rei��cS+�cA−�sA−�sS�. �91�

All these expressions enter the susceptibility and lead to
power-law divergences at the momenta 2kF, 2kv, and
2�kF�kv�. The operators involving backscattering L↔R de-
pend all on �cS and three of the other fields, leading to the
same exponents g= �KcS+3� /4�0.8. Equations �86� and �87�
do not depend on �cS and so lead to correlators with a larger
exponent, and so a shallower minimum for the RKKY inter-
action.

This means that the RKKY interaction Jq between the
nuclear spins has 3 equal minima and so the helical order is
in principle not a simple helimagnet but involves the super-
position of the three spatial frequencies. Yet this, once again,
neglects the feedback on the electron system, which selects
only the 2kF frequency as relevant for the feedback and for
lowering the ground state energy, as we shall see next.

B. Feedback from the nuclear Overhauser field

Let us assume that the Overhauser field consists of the
spatial frequencies 2kF and 2�kF�kv� associated with the
minima of the susceptibility. For completeness we keep also
here the local minimum at 2kv, and so write the coupling of
the nuclear magnetic field to the electron spin as

�
i=1

4

Bi�Sx�r�cos�2kir + �i� + Sy�r�sin�2kir + �i�� , �92�

with k1=kF, k2=kv, k3=kF+kv, and k4=kF−kv, the corre-
sponding amplitudes Bi�mki

proportional to the ki compo-
nents of the magnetization, and �1 , . . . ,�4 arbitrary angles,
which we can set to zero because they can be absorbed by
suitable shifts of the boson fields. Using Eqs. �85�–�89� to
express Sx,y in terms of the boson fields, we are led to the
interaction

B1�cos��2��c1 + �s1�� + cos��2��c2 + �s2���

+ 2B2 cos��cA − �sS�sin��cA − �sS�

+ 2B3 cos��cS − �cA�cos��sA − �sS�

+ 2B4 cos��cS + �cA�cos��sA + �sS� + oscillating terms.

�93�

The terms proportional to B1 are precisely the combinations
�+��c+�s used previously and lead to a gap in each Dirac
cone separately. The terms proportional to B2 involve fields
that are conjugate to each other, and so this interaction re-
mains always critical and can be neglected. The arguments
proportional to B3 and B4 are relevant and open gaps in the
corresponding boson fields. Their effect is, however, quite
different from that of the B1 part.

Indeed, for the B1 part, the opening of the gap in the
�+��c+�s channels leaves still the combination �c−�s gap-
less �see Eq. �42��. Both combinations appear in the suscep-
tibilities �x,y and correspond to the processes L↑ ↔R↓ and
L↓ ↔R↑. Hence, even with the gap for �c+�s there remains
�at T=0� a power-law singularity at 2kF in �x,y due to
�c−�s with the consequences discussed in the previous sec-
tions. This is much different for the B3 and B4 processes.
Because of the mixing between the Dirac cones, the pro-
cesses L↑ ↔R↓ and L↓ ↔R↑ have the different momentum
transfers of 2�kF+kv� and 2�kF−kv�, respectively. The open-
ing of a gap for one of those processes entirely eliminates the
steep minimum of �x,y�q� at the corresponding momentum
q=2�kF�kv� and so eliminates this energy minimum of the
nuclear spins. Consequently, the nuclear spins will reorient
themselves into one of the remaining energy minima, i.e. the
amplitudes B3 and B4 vanish. The only remaining minima are
then those of B1. With vanishing B3 and B4, however, the
corresponding gaps vanish as well. Hence, even though the
B3,4 energy minima exist, they cannot be populated by the

nuclear spin modes Ĩq because this immediately opens gaps
and costs energy. This is very similar to the stabilization
effect discussed in Sec. VI C. Therefore, any nuclear spin
order with 2�kF�kv� is unstable, and the only stable mini-
mum for the feedback is the nuclear helical order at 2kF.
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C. Validity of the single-band model

Since the cos��2��c�+�s��� interaction terms in each
Dirac cone �=1,2 are highly RG relevant, we can evaluate
their effect in each cone separately. Transforming into the
�=1,2 basis, the Hamiltonian takes the form

H =� dr

2��
��
� v��

K��

������2 + v��K��������2

+
B

a
cos��2��c� + �s��� + vF�KcS

−2 − 1� � �c1 � �c2�
�94�

for �=c, s, �=1,2, and with Kc�=�KcS
2 / �1+KcS

2 ��KcS
=0.2, Ks�=1, and v��=vF /K��. Without the last Dirac cone
mixing term this Hamiltonian is identical to two copies of
the single-band Hamiltonian �49�. The coupling between the
Dirac cones is, however, marginal in the same sense as the
gradient products in the last term of Eq. �49� and has only a
tiny influence on the opening of the gap by the cosine term in
each cone separately. Hence, for the evaluation of the gap we
can safely neglect this coupling. The size of the gap is then
determined by replacing Kc and Ks in Sec. V A by
Kc=Kc1=Kc2�0.2 and Ks=1.

The resulting low-energy Hamiltonian then depends only
on the gapless fields �−,� and �−,�, defined as in Eqs.
�44�–�47�, and is given by

H− =� dr

2�� �
�=1,2

v−����−,��2 + ���−,��2�

+ vF�KcS
−2 − 1�

Kc

KsK
� �−,1 � �−,2�

=� dr

2�
v−� �

�=1,2
����−,��2 + ���−,��2�

+ 2' � �−,1 � �−,2� , �95�

with '=vF�KcS
−2−1�Kc /2v−KsK= �1−KcS

2 � /2�1+2KcS
2 ��0.44.

This Hamiltonian is diagonalized by the symmetric and an-
tisymmetric combinations �S= ��−,1+�−,2� /�2 and
�A= ��−,1−�−,2� /�2, and similarly for the � fields. We obtain

H− =� dr

2� �
P=S,A

 vP

KP
���P�2 + vPKP���P�2� , �96�

with KS=�1+'�1.20, KA=�1−'�0.75, and vP=v− /KP.
The single-band model used in the previous sections can

be applied if it produces the same results as model �96�. The
essential quantities are the susceptibilities �x,y,z evaluated
with the remaining gapless fields for the 2kF backscattering
of Eq. �85�. In the single-band model the LL constant is
K−=1. From Eq. �85� we see that only the combinations
�S��A and �S��A appear �the prefactors are the same as in
the single-band model up to negligible corrections�. The
�S��A lead to exponents depending on �KS+KA� /2�0.97
and the �S��A lead to exponents depending on

�KS
−1+KA

−1� /2�1.08. Since both values are very close to 1,
the two-band theory leads indeed to the same conclusions as
the single-band theory.

In fact, the single-band theory can be interpreted as ne-
glecting the coupling between the Dirac cones, which is the
approximation used in Ref. 9. As we have seen above, with
the feedback this becomes very accurate because the relative
coupling strength ' between the two cones �Eq. �95�� is
much reduced. Indeed, corrections to the decoupled systems
appear only at '2 �from expanding KS+KA or KS

−1+KA
−1�. The

value of '�0.44 is small enough compared with the original
�KcS

−2−1��24 in Eq. �94� so that the coupling between the
Dirac cones has a negligible effect.

IX. CONCLUSIONS

We have shown in this paper that the hyperfine interaction
between a lattice of nuclear spins and Luttinger liquid leads
to order in both systems in the form of a nuclear helimagnet
and a helical spin density wave for half of the electron
modes. A strong feedback between the electrons and nuclear
spins stabilizes this combined order up to temperatures that
are within experimental reach, even though the hyperfine in-
teraction generally is very weak. The feedback is a direct
consequence of Luttinger liquid behavior and is absent for
noninteracting electrons or Fermi liquids.

This leads to several remarkable effects that should be
detectable experimentally and that may be used for a direct
proof of Luttinger liquid physics. �i� The helical magnetiza-
tion m2kF

resulting from the nuclear spin ordering follows the
modified Bloch law of Eq. �2�. �ii� The helical electron spin
density wave resulting from the renormalization triggered by
the nuclear Overhauser field has an excitation gap propor-
tional to m2kF

or to some power of m2kF
depending on the

Luttinger liquid parameters �see Eq. �59��. Measuring this
electronic excitation gap is a direct way of measuring m2kF

.
�iii� The pinning of one half of the electron conduction
modes causes a reduction in the electric conductance by the
factor of 2 when cooling down through the crossover tem-
perature T*. �iv� Finally, the strong binding of the nuclear
helimagnet to the electron modes leads to anisotropy in the
electron spin susceptibility between the �x ,y� plane of the
nuclear helimagnet and the orthogonal z direction.

We refer the reader to Sec. II for a complete summary of
our results and the main conclusions. The physical mecha-
nism for magnetic ordering described here was worked out
for two experimentally available systems, 13C single wall
nanotubes, and GaAs-based quantum wires. We note, how-
ever, that we expect similar physics for a large class of
Kondo-lattice-type systems coupled to a Luttinger liquid de-
fined by the conditions listed in Sec. II.
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APPENDIX A: ELECTRON SPIN SUSCEPTIBILITY

In this appendix we evaluate the electron spin suscepti-
bilities for the cases without and with the feedback from the
nuclear Overhauser field.

1. Without feedback from Overhauser field

Without the Overhauser field the electron system is de-
scribed by a standard LL.

We define the static electron spin susceptibility in the 1D
tight-binding basis as �see Eq. �15��

�ij
�� =

− i

a2 �
0

�

dte−�t��Si
��t�,Sj

��0��	 , �A1�

with an infinitesimal �0. For the further calculation it is
more convenient to pass to the continuum description where
the tight-binding operators Si

��t� /a are replaced by the fields
S��r , t�,

����r − r�� = − i�
0

�

dte−�t��S��r,t�,S��r�,0��	 . �A2�

From the conservation of total spin we have ���=�����.
The spin operators split into forward scattering, Sf

��r�, and
backscattering parts, Sb

��r�. While the forward scattering con-
tribution to the susceptibility remains regular, the back-
scattering contribution has �at zero temperature� a singularity
at momenta q=�2kF. Since this singular behavior domi-
nates the physics described in this work, we thus keep only
the backscattering part. We then define

��
�r,t� = − i�Sb

��r,t�Sb
��0,0�	 , �A3�

such that ���r� is the �→0+ i� Fourier transform of
���r , t�=(�t����

�r , t�−��
�−r ,−t��=2(�t�Im�i��

�r , t��, with
( the step function. The operators Sb

� are given by

Sb
� =

1

2 �
�,��=↑,↓

����
� ��L�

† �R�� + �R�
† �L��� , �A4�

with �� as the Pauli matrices. Using the bosonization iden-
tities �20� and �21� we see that these spin operators can be
written in the form63 Sb

�= �OSDW
� + �OSDW

� �†� /2, where

OSDW
x =

e−2ikFr

2�a
ei�2�c�ei�2�s + e−i�2�s� , �A5�

OSDW
y = i

e−2ikFr

2�a
ei�2�c�ei�2�s − e−i�2�s� , �A6�

OSDW
z =

e−2ikFr

2�a
ei�2�c�ei�2�s − e−i�2�s� . �A7�

We have omitted in the latter expressions the Klein factors
because they drop out in the averages. We then find

�x
�r,t� =

− i cos�2kFr�
�2�a�2 �ei�2��c�r,t�+�s�r,t��e−i�2��c�0�+�s�0��	 ,

�A8�

�y
�r,t� =

− i cos�2kFr�
�2�a�2 �ei�2��c�r,t�−�s�r,t��e−i�2��c�0�−�s�0��	 ,

�A9�

�z
�r,t� =

− i cos�2kFr�
�2�a�2 �ei�2��c�r,t�+�s�r,t��e−i�2��c�0�+�s�0��	 .

�A10�

The determination of these averages is a standard calculation
in the bosonization technique. At zero temperature, we
obtain63

��
�r,t� =

− i cos�2kFr�
�2�a�2 
 a

r − vFt + i�
�g�
 a

r + vFt − i�
�g�

,

�A11�

with gx=gy = �Kc+Ks
−1� /2, gz= �Kc+Ks� /2, and �0 a short

distance/time cutoff. For g� well below 1 we can choose �
infinitesimal and proceed analytically as below. For g�#1,
the singularities in Eq. �A11� become too pronounced and
the cutoff plays an increasingly important role. We then must
include a finite � and proceed numerically with the further
calculation below and the subsequent evaluation of, for in-
stance, the crossover temperature T* �see caption of Fig. 6�.
For g�#0.8, however, such a cutoff is not required. For the
explicit analytic expressions below we keep therefore an in-
finitesimal �.

The finite temperature expressions are

��
�r,t� =

− i cos�2kFr�
�2�a�2 � �a/�vF

sinh
 �

�vF
�r − vFt + i����

g�

�� �a/�vF

sinh
 �

�vF
�r + vFt − i����

g�
, �A12�

where �=1 /kBT. Twice the imaginary part of these suscep-
tibilities determines ���r , t�. We have at zero temperature

���r,t� = − (�t�(�vt − �r��
sin��g��cos�2kFr�

2�2a2 � a2

r2 − v2t2�g�
,

�A13�

and at finite temperature

���r,t� = − (�t�(�vt − �r��
sin��g��cos�2kFr�

2�2a2

�� �a/�vF

sinh
 �

�vF
�r − vFt�� �

g�

�� �a/�vF

sinh
 �

�vF
�r + vFt�� �

g�
. �A14�

Further Fourier transforming to �q ,�� space and taking the
�→0+ i� limit leads to63
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���q� = −
sin��g��
4�2vF

�
!=�

� 2

a�q + !2kF�
�2−2g�

�A15�

at zero temperature and

���q� = −
sin��g��
4�2vF

 2�1 − g��
 �vF

2�a
�2−2g�

�
!=�

��  
g�
2

− i
�vF

4�
�q + !2kF��

 
2 − g�
2

− i
�vF

4�
�q + !2kF���

2

�A16�

at finite temperature, where  is Euler’s gamma function.

2. With feedback from the Overhauser field

We have seen in Sec. V A that the feedback from the
nuclear magnetic field strongly renormalizes the electron
system and opens a gap B

xy
* for the field �+��c+�s. Because

the fluctuations of this mode are frozen out at kBT�B
xy
* , the

response of the electron system to external perturbations is
modified. In particular, this affects the electron spin suscep-
tibility ��, and here most importantly the exponents g, which
become smaller and anisotropic. The calculation of �� in this
situation has been carried out in Ref. 76 �see also Ref. 24�.
For completeness we outline this calculation here again.

Let us set r̄= �r , t�, �̄��r̄�=−i2��a�2���r , t�. We focus first
on �x. Using relations �44�–�47� and Eq. �A5� we can then
write

�̄x�r̄� = cos�2kFr����ei�2K�+�r̄�,e−i�2K�+�0��	

+ ��ei�2K��−�r̄�−i�2K��+�r̄�,ei�2K��−�0�+i�2K��+�0��	� ,

�A17�

with K�=4Kc /KsK and K�= �Kc−Ks
−1� /K, and where we have

used the invariance of Hamiltonian �49� under a simulta-
neous sign change of all the boson fields.

Since Hamiltonian �49� is quadratic in the boson fields all
these averages are fully determined by the two-point
correlators63

��−
*�q,���−�q,��	 =

�v−

��� i��2 − v−
2q2 �A18�

for the massless field and

��+
*�q,���+�q,��	 =

�v+

��� i��2 − v+
2q2 − �B

xy
* �2

�A19�

for the massive field. The sign of the infinitesimal shift �i�
is determined by the time order of the operators. The
corresponding �� correlators �important for �z� can be ob-
tained, for instance, through the equations of motion
�t���r , t�=v�����r , t�.

The correct treatment of the singularity in Eq. �A18� at
���v−q�→0 results in the singular power laws �at T=0� of
�� of the LL theory and so leads to a contribution to the

susceptibility entirely equivalent to those of Appendix �A1�.
This singularity is absent in Eq. �A19� and hence the

power law singularities are broadened to resonances with a
width and height determined by B

xy
* . The precise evaluation

of the expressions is cumbersome. Approximations can be
found in Refs. 18, 19, 94, and 95. For our purpose, however,
this evaluation is not required because the physics of the
combined electron-nuclear spin system is entirely dominated
by the singular behavior of the �− correlators at q=2kF, pro-
vided that kBT�B

xy
* , which is a necessary condition anyway

that is indeed satisfied for the considered systems.
To see this in detail, let us expand Eq. �A17� in powers of

�+. The lowest nonzero term in �+ is

cos�2kFr��2K���+�r̄�,�+�0��	

+ 2K���ei�2K��−�r̄��+�r̄�,e−i�2K��−�0��+�0��	� . �A20�

The Fourier transform of the first term can be directly evalu-
ated with Eq. �A19�. In the limit �→0 and q→�2kF it
tends to a constant �1 / �B

xy
* �2 and so contributes only insig-

nificantly to �x�q�. The second term leads to a sum of ex-
pressions of the type

cos�2kFr�eK���−�r̄��−�0�	��+�r̄��+�0�	 . �A21�

The fields �− are gapless and so lead to power laws of form
�A15� �replacing q2 by �2 /v−

2 −q2 and the exponent by
1−K��. The Fourier transform of the latter expression is then
a convolution of the form

� dq�d��� 1

��2 − v−
2q�2�1−K�

�
1

�� − ���2 − v+
2�q� − q��2 − �B

xy
* �2 , �A22�

with q�=q�2kF. In the static limit �→0 and at
q→�2kF, the �� integral is dominated by the poles at
��=��v+

2q�2+ �B
xy
* �2 and the integrable weak singularities

at ��=�v−q�. A potential singular behavior must thus
come from the poles. If we focus on the pole at
��=�v+

2q�2+ �B
xy
* �2 we obtain

�
1

�B
xy
* �2�1−K�� � dq�

1

�v+
2q�2 + �B

xy
* �2

. �A23�

The remaining integral leads to an arcsinh, which has an
ultraviolet divergence that has to be cut off at 1 /a. More
importantly, however, the result has no infrared divergence,
meaning that this expression remains regular at q�→0, with
a value determined by B

xy
* .

From this calculation we conclude that the Fourier trans-
form of Eq. �A20� remains regular at �→0, q�→0. Since
the Hamiltonian is quadratic in the boson operators higher
order correlators are products of the latter results and so re-
main fully regular. We have therefore shown that the singular
behavior of the susceptibility �x�q� is fully controlled by the
massless fields �− only. This allows us to entirely neglect the
gapped fields and approximate the susceptibility by

BRAUNECKER, SIMON, AND LOSS PHYSICAL REVIEW B 80, 165119 �2009�

165119-24



�̄x�r̄� = cos�2kFr���ei�2K��−�r̄�,e−i�2K��−�0��	 , �A24�

which is of precisely the same form as the susceptibility of a
standard LL as discussed in Appendix A 1. The difference is
the modified exponent K�, the velocity v−, and an amplitude
reduced by 1 /2 because the second term in Eq. �A17� de-
pends on �+ only and drops out. From the results of Appen-
dix A 1 and Hamiltonian �61� we obtain, for instance, at zero
temperature,

�x�q� = −
1

2

sin��gx��
4v−�

2  2�1 − gx�� �
!=�

� 2

a�q + !2kF�
�2−2gx�

,

�A25�

with gx�=K� /2.
The evaluation of �y�q� leads to precisely the same result,

�y�q�=�x�q� and, in particular, gy�=gx�.
The susceptibility �z�q� is different in that it involves dif-

ferent boson fields. From Eq. �A7� we see that �z depends on

the combination �c+�s= 1
�K

�Kc�+−�Kc

Ks
�−+�++�KcKs�−�,

where we have used Eqs. �44�–�47�. Neglecting the gapped
fields �+ and �+ then leads to

�z�q� = −
sin��gz��
4v−�

2  2�1 − gz�� �
!=�

� 2

a�q + !2kF�
�2−2gz�

,

�A26�

The prefactor 1 /2 of �x,y is here missing and the exponent is
gz�= �Kc /Ks+KcKs� /2K. The extensions to finite temperatures
are obtained in precisely the same way as in Appendix A 1.

APPENDIX B: REAL SPACE FORM OF RKKY
INTERACTION

The real-space form J��r� of the RKKY interaction can be
found by time integrating the susceptibility ���r , t�, given in
Eq. �A14�. This integration was evaluated in the limit
�r���T in Ref. 24. Here we determine ���r� and so J��r� in
the general case. For convenience we shall drop the index
�=x ,y ,z in this section.

The stationary real space form ��r� corresponds to the
�=0 Fourier transform of ��r , t�, which from Eq. Eq. �A14�
is determined by the integral

��r� = −
sin��g�cos�2kFx�

2�2a2 �
�r�/vF

�

dt� �a/�vF

sinh
 �

�vF
�r − vFt�� �

g

�� �a/�vF

sinh
 �

�vF
�r + vFt�� �

g

. �B1�

Setting y= tvF / �r�, 	=��r� /�vF and using the relation
sinh�a+b�sinh�a−b�=sinh2�a�−sinh2�b� we can rewrite this
as

��r� = −
sin��g�cos�2kFr�

2�2a2 
 �a

�vF
�2g �r�

vF
�

1

�

dy�sinh2�	�

− sinh2�	y��−g. �B2�

A further change of variable y→z=sinh2�	� /sinh2�	y� leads
to

��r� = −
sin��g�cos�2kFr�

2�2a2 
 �a

�vF
�2g �r�/vF

2	 sinh2g�	�

��
0

1

dzzg−1�1 − z�−g�1 + z/sinh2�	��−1/2, �B3�

which is the standard form for the Gaussian hypergeometric
function �Ref. 96, Sec. 15.3.1�,

F�a,b;c;z� =
 �c�

 �b� �c − b��0

1

dzzb−1�1 − z�c−b−1�1 − wz�−a.

�B4�

Hence, noting that vF�=�T is the thermal length,

��r� = −
sin��g�cos�2kFx��T

4�2a2vF

 �a/�T

sinh���r�/�T��
2g

�F�1/2,g;1;− sinh−2���r�/�T�� . �B5�

The hypergeometric function has the asymptotic expansion
for �w�→� �Ref. 96, Sec. 15.3.7�,

F�a,b;c;w� =
 �b − a� �c�
 �b� �c − a�

�− w�−a�1 + O�w−1��

+
 �a − b� �c�
 �a� �c − b�

�− w�−b�1 + O�w−1�� .

�B6�

For g1 /2 we obtain from this expansion the asymptotic
behavior for �r���T �cf. Ref. 24�,

��r� � −
1

4�avF

 �g − 1/2�
 �g���

cos�2kFr�
 a

�r��
2g−1

. �B7�

For g�1 /2 the latter equation must be complemented by
further corrections from Eq. �B6�. The RKKY interaction is
eventually determined by J�r�=A2a��r� /2, with r running
over the sites of the nuclear spin lattice.

APPENDIX C: MAGNON SPECTRUM

The magnon spectrum about the helical ground state of
the nuclear spins can be evaluated by mapping the helical
state back onto a ferromagnet. This allows us to use the
standard results97 for spin waves in anisotropic ferromagnets.
We focus on the � helicity in Eq. �33�. The case for the
opposite helicity is equivalent.

The mapping is achieved by noting that the ground state
�33� can be mapped onto a ferromagnetic alignment along
the spin êx direction by defining the local transformation

Ĩi=RiÎi with
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Ri = � cos�2kFri� sin�2kFri� 0

− sin�2kFri� cos�2kFri� 0

0 0 1
� . �C1�

In the classical ground state we then have Îi��IN� ,0 ,0�.
The RKKY Hamiltonian �13� becomes in terms of these new
spin vectors

Hn
eff = �

ij,��

Ĵij
��

N�
2 Îi

�Îi
�, �C2�

with Ĵij
��=�'Ri

'�Rj
'�Jij

' . Here the RKKY couplings are gen-
erally assumed to be anisotropic as Jij

x =Jij
y �Jij

z , which cov-
ers both the isotropic case without the feedback, and the
anisotropic case with the feedback on the electron system. In
Fourier space the latter Hamiltonian becomes

Hn
eff =

1

N
�

q�0,��
 Jq−2kF

x

N�
2 R−

�� +
Jq+2kF

x

N�
2 R+

�� +
Jq

z

N�
2 R0

��� Î−q
� Îq

�,

�C3�

with

R+ = R−
* =

1

2� 1 i 0

− i 1 0

0 0 0
�, R0 = �0 0 0

0 0 0

0 0 1
� . �C4�

The magnon description is obtained by replacing the spin

operators Îq
� with the Holstein-Primakoff97 boson operators

aq. This leads to Îq
x = �IN��N�q,0− 1

N�pap+q
† ap, Îq

y

= �IN� /2�1/2�a−q
† +aq�, and Îq

z =−i�IN� /2�1/2�a−q
† −aq�. Ne-

glecting terms involving more than two aq operators results
in a Hamiltonian that is equivalent to Eq. �C3� up to correc-
tions of order 1 / IN�. Since N��1 this approximation is
very accurate. We then obtain

H = E0 +
2

N
�
q0

�aq
†,a−q�
hq

�1� hq
�2�

hq
�2� hq

�1� �
 aq

a−q
† � , �C5�

with E0= �N�I��N�I+1�N�J2kF

x /N�
2 �, hq

�1�= �−2J2kF

x +J2kF−q
x

+Jq
z� /N�

2 , and hq
�2�= �J2kF−q

x −Jq
z� /N�

2 . Finally diagonalizing
this Hamiltonian leads to two magnon bands with disper-
sions

�q
�1� = 2I�J2kF−q

x − J2kF

x �/N�, �C6�

�q
�2� = 2I�Jq

z − J2kF

x �/N�. �C7�

The first magnon band is gapless and dominates the fluctua-
tions about the nuclear ground state. The second magnon
band is gapped at q=0 with a gap of the size ��J2kF

x �. Since
quite generally through the feedback �J2kF

z � �J2kF

x � we have,
however, �q

�2��0 at q�2kF. This normally leads to an insta-
bility of the ground state and so normally means that the
assumption of the ordered ground state is not valid. How-
ever, as shown in Sec. VI C, in the present case such a de-
stabilization would destroy the feedback that stabilizes the
order and so causes the anisotropy Jq

z �Jq
x. This destruction

would have a very high cost in ground-state energy. There-
fore the occupation of the �q

�2��0 modes by a macroscopic
magnon number is not possible. The remaining �q

�2�0
modes can then be captured by the same treatment as the �q

�1�

modes. Yet as they involve large momenta �2kF, they are
neglected in the present treatment.

APPENDIX D: MAGNETIZATION FOR SYSTEMS WITH
SMALL LEVEL SPACING

For systems with a large enough length L such that the
consistency relation �L�kBT

0
* �or T*� put forward in Sec.

IV C no longer holds, we need to reexamine carefully the
derivation of Eqs. �38� and �70� for the magnetization m2kF

.
This situation is indeed met for typical GaAs quantum wires
�see Table I� where �L�kBT

0
*. In this case the singularity in

the magnon occupation number in Eq. �35� may be con-
trolled by the cutoff at q=� /L, i.e. by �L instead of the
L-independent scale kBT

0
* �or kBT*�. Here we show, however,

that this singularity dominates the magnetization and hence
modifies the crossover temperature only for L that lie many
orders of magnitude above any realistic length. The result
�70�, therefore, remains valid and robust also for �LkBT

0
*,

and, in particular, also for �L�kBT*.
To see this we focus on the q→0 part only in the magnon

occupation number in Eq. �35� and neglect the contributions
�q�2I�J2kF

� /N� that have led to Eqs. �38� and �70�
before. For simplicity we discuss only the case without
feedback, and note that the conclusion is the same
for the case with the feedback. For q�� /�T we
have �q�2I�J2kF

� /N� and the dispersion �q can be
well approximated by a parabola, �q /kBT=Dq2,

with D= ��kBT�−1d2�q /dq2�q=0=2IC̄vF
2�kBT�2g−5 /N�, and C̄

=C�g ,vF� 4�g /2���2−2 sin2��g /2��1�g /2�� /16�4. Here �1
is the polygamma function.

We then ask under which conditions the following ap-
proximation holds:

2

IN�N
�
q0

1

e�q/kBT − 1
�
? 2a

IN�N
�
�/L

�/�T dq

2�

1

eDq2
− 1

. �D1�

At T�T
0
*�T*� the integrand at q=� /�T is small and we can

push the upper integral boundary to infinity. Setting then
x=�Dq and X=�D� /L=��/L /kBT we have to evaluate

Q�X� = �
X

� dx

ex2
− 1

= �
0

�

dx 1

ex2
− 1

−
1

x2�
+ �

X

� dx

x2 − �
0

X

dx 1

ex2
− 1

−
1

x2�
= − 1.294 +

1

X
+

X

2
+ O�X2� . �D2�
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At the considered temperatures T�T
0
*, X is a small number,

and we can keep the 1 /X contribution only. This leads to

m2kF
�
?

1 −
2a

ILN�
�D��/�T�

1
���/L/kBT

�D3�

=1 −
2akBT

ILN���/L
= 1 − 
 T

T
L
*�5−2g

, �D4�

where

kBT
L
* = �C̄I2�2/La�1/�5−2gx� �D5�

is an L-dependent characteristic temperature. This tempera-
ture defines the crossover temperature if T

L
*�T

0
*. Putting in

numbers corresponding to GaAs quantum wires �see Table I�
we see, however, that T

L
*�T

0
*. For T�T

0
*, therefore,

the T
L
* dependent contribution to m2kF

is negligible.
Only at entirely unrealistic lengths L�1 m we obtain
T

L
*�T

0
*. For any realistic sample, therefore, T

L
* and so

L do not affect magnetization and crossover temperature
even for �L#kBT

0
* and Eq. �38� remains valid. As

stated above the same holds for the case with feedback where
T

0
* is replaced by T* and the magnetization is given by Eq.

�70�.

1 H. Fröhlich and F. R. N. Nabarro, Proc. R. Soc. London, Ser. A
175, 382 �1940�.

2 H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,
809 �1997�.

3 H. Ohno, H. Munekata, T. Penney, S. von Molnar, and L. L.
Chang, Phys. Rev. Lett. 68, 2664 �1992�.

4 H. Ohno, Science 281, 951 �1998�.
5 T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55,

R3347 �1997�.
6 J. König, H.-H. Lin, and A. H. MacDonald, Phys. Rev. Lett. 84,

5628 �2000�.
7 P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 �2007�.
8 P. Simon, B. Braunecker, and D. Loss, Phys. Rev. B 77, 045108

�2008�.
9 B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102,

116403 �2009�.
10 F. Simon, C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zólyomi,

J. Kürti, P. M. Singer, and H. Alloul, Phys. Rev. Lett. 95,
017401 �2005�.

11 M. H. Rümmeli et al., J. Phys. Chem. C 111, 4094 �2007�.
12 H. O. H. Churchill et al., Nat. Phys. 5, 321 �2009�.
13 H. O. H. Churchill, F. Kuemmeth, J. W. Harlow, A. J. Bestwick,

E. I. Rashba, K. Flensberg, C. H. Stwertka, T. Taychatanapat, S.
K. Watson, and C. M. Marcus, Phys. Rev. Lett. 102, 166802
�2009�.

14 L. N. Pfeiffer et al., Microelectron. J. 28, 817 �1997�.
15 O. M. Auslaender et al., Science 295, 825 �2002�.
16 H. Steinberg et al., Nat. Phys. 4, 116 �2008�.
17 P. M. Singer, P. Wzietek, H. Alloul, F. Simon, and H. Kuzmany,

Phys. Rev. Lett. 95, 236403 �2005�.
18 B. Dóra, M. Gulácsi, F. Simon, and H. Kuzmany, Phys. Rev.

Lett. 99, 166402 �2007�.
19 B. Dóra et al., Phys. Status Solidi B 245, 2159 �2008�.
20 O. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. Lett. 77,

1342 �1996�.
21 V. Gritsev, G. I. Japaridze, M. Pletyukhov, and D. Baeriswyl,

Phys. Rev. Lett. 94, 137207 �2005�.
22 S. Gangadharaiah, J. Sun, and O. A. Starykh, Phys. Rev. B 78,

054436 �2008�.
23 A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 �1974�.
24 R. Egger and H. Schoeller, Phys. Rev. B 54, 16337 �1996�.

25 A. Schulz, A. De Martino, P. Ingenhoven, and R. Egger, Phys.
Rev. B 79, 205432 �2009�.

26 A. Pályi and G. Burkard, arXiv:0908.1054 �unpublished�.
27 C. H. Pennington and V. A. Stenger, Rev. Mod. Phys. 68, 855

�1996�.
28 J. Fischer, B. Trauzettel, and D. Loss, Phys. Rev. B 80, 155401

�2009�.
29 B. Trauzettel and D. Loss, Nat. Phys. 5, 317 �2009�.
30 M. Bockrath et al., Nature �London� 397, 598 �1999�.
31 Z. Yao, H. Postma, L. Balents, and C. Dekker, Nature �London�

402, 273 �1999�.
32 A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen,

M. Buitelaar, and C. Schönenberger, Phys. Rev. Lett. 87,
166801 �2001�.

33 Y. Tserkovnyak, B. I. Halperin, O. M. Auslaender, and A. Ya-
coby, Phys. Rev. Lett. 89, 136805 �2002�.

34 Y. Tserkovnyak, B. I. Halperin, O. M. Auslaender, and A. Ya-
coby, Phys. Rev. B 68, 125312 �2003�.

35 O. M. Auslaender et al., Science 308, 88 �2005�.
36 Y. Jompol et al., Science 325, 597 �2009�.
37 E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-

Zotov, Phys. Rev. Lett. 93, 176602 �2004�.
38 A. N. Aleshin, H. J. Lee, Y. W. Park, and K. Akagi, Phys. Rev.

Lett. 93, 196601 �2004�.
39 P. Segovia, D. Purdie, M. Hengsberger, and Y. Baer, Nature

�London� 402, 504 �1999�.
40 L. Venkataraman, Y. S. Hong, and P. Kim, Phys. Rev. Lett. 96,

076601 �2006�.
41 A. M. Chang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.

77, 2538 �1996�.
42 J. D. Yuen et al., Nature Mater. 8, 572 �2009�.
43 S. J. Tans et al., Nature �London� 386, 474 �1997�.
44 M. Bockrath et al., Science 275, 1922 �1997�.
45 J. Kong, C. Zhou, E. Yenilmez, and H. Dai, Appl. Phys. Lett. 77,

3977 �2000�.
46 E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, Nature

�London� 428, 536 �2004�.
47 P. Jarillo-Herrero et al., Nature �London� 429, 389 �2004�.
48 N. Mason, M. J. Biercuk, and C. M. Marcus, Science 303, 655

�2004�.
49 M. J. Biercuk et al., Nano Lett. 5, 1267 �2005�.

NUCLEAR MAGNETISM AND ELECTRON ORDER IN… PHYSICAL REVIEW B 80, 165119 �2009�

165119-27



50 J. Cao, Q. Wang, and H. Dai, Nature Mater. 4, 745 �2005�.
51 S. Sapmaz et al., Nano Lett. 6, 1350 �2006�.
52 E. Onac, F. Balestro, B. Trauzettel, C. F. J. Lodewijk, and L. P.

Kouwenhoven, Phys. Rev. Lett. 96, 026803 �2006�.
53 A. Cottet et al., Semicond. Sci. Technol. 21, S78 �2006�.
54 M. R. Gräber, W. A. Coish, C. Hoffmann, M. Weiss, J. Furer, S.

Oberholzer, D. Loss, and C. Schönenberger, Phys. Rev. B 74,
075427 �2006�.

55 M. R. Gräber et al., Semicond. Sci. Technol. 21, S64 �2006�.
56 H. I. Jørgensen, K. Grove-Rasmussen, J. R. Hauptmann, and P.

E. Lindelof, Appl. Phys. Lett. 89, 232113 �2006�.
57 C. Meyer, J. M. Elzerman, and L. P. Kouwenhoven, Nano Lett.

7, 295 �2007�.
58 V. V. Deshpande and M. Bockrath, Nat. Phys. 4, 314 �2008�.
59 F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature

�London� 452, 448 �2008�.
60 G. A. Steele, G. Gotz, and L. P. Kouwenhoven, Nat. Nanotech-

nol. 4, 363 �2009�.
61 C. Kittel, Quantum Theory of Solids �Wiley, New York, 1987�.
62 D. Paget, G. Lampel, B. Sapoval, and V. I. Safranov, Phys. Rev.

B 15, 5780 �1977�.
63 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-

versity Press, Oxford, 2004�.
64 D. E. Feldman, S. Scheidl, and V. M. Vinokur, Phys. Rev. Lett.

94, 186809 �2005�.
65 B. Braunecker, D. E. Feldman, and J. B. Marston, Phys. Rev. B

72, 125311 �2005�.
66 B. Braunecker, D. E. Feldman, and F. Li, Phys. Rev. B 76,

085119 �2007�.
67 A. Yacoby et al., Solid State Commun. 101, 77 �1997�.
68 R. Egger and A. O. Gogolin, Phys. Rev. Lett. 79, 5082 �1997�.
69 C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79,

5086 �1997�.
70 R. Egger and A. O. Gogolin, Eur. Phys. J. B 3, 281 �1998�.
71 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Prop-

erties of Carbon Nanotubes �Imperial College Press, London,
1998�.

72 H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat. Nano-
technol. 2, 301 �2007�.

73 C. L. Degen et al., Proc. Natl. Acad. Sci. U.S.A. 106, 1313
�2009�.

74 C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 �1992�.
75 A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 �1993�.
76 See Ref. 9 �supplementary online material EPAPS document No.

E-PRLTAO-102-025914�.

77 A. Abragam, The Principles of Nuclear Magnetism �Clarendon,
Oxford, 1961�.

78 G. Salis, D. D. Awschalom, Y. Ohno, and H. Ohno, Phys. Rev. B
64, 195304 �2001�.

79 C. R. Bowers et al., Solid State Nucl. Magn. Reson. 29, 52
�2006�.

80 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 �1997�.
81 A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-

tion and Strongly Correlated Systems �Cambridge University
Press, Cambridge, 1998�.

82 F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 �1983�.
83 I. Affleck, J. Phys.: Condens. Matter 1, 3047 �1989�.
84 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 �1966�.
85 P. Bruno, Phys. Rev. Lett. 87, 137203 �2001�.
86 M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman, Phys.

Rev. B 76, 155402 �2007�.
87 A. Imambekov and L. I. Glazman, Science 323, 228 �2009�.
88 A. Imambekov and L. I. Glazman, Phys. Rev. Lett. 102, 126405

�2009�.
89 M. J. Schmidt �private communication�.
90 S. Adachi, J. Appl. Phys. 58, R1 �1985�.
91 K. A. Matveev, Phys. Rev. Lett. 92, 106801 �2004�.
92 K. A. Matveev, Phys. Rev. B 70, 245319 �2004�.
93 G. A. Fiete, Rev. Mod. Phys. 79, 801 �2007�.
94 J. Voit, Eur. Phys. J. B 5, 505 �1998�.
95 P. B. Wiegmann, Phys. Rev. B 59, 15705 �1999�.
96 M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables
�Dover, New York, 1964�.

97 See, e.g., J. van Kranendonk and J. H. van Vleck, Rev. Mod.
Phys. 30, 1 �1958�; A. Auerbach, Interacting Electrons and
Quantum Magnetism �Springer-Verlag, New York, 1994�.

98 Note that we have chosen EF0 in Table I, corresponding to
electron carriers in the SWNT, while experimentally often hole
carriers �with EF�0� are used. SWNTs with a linear dispersion
relation �armchair type� are particle-hole symmetric and so the
results exposed here remain unchanged �see also Ref. 47�. Spin-
orbit interactions would break this symmetry, but recent experi-
ments have shown �Ref. 59� that they are weak compared with
EF in SWNTs. Moreover, it has been shown that under normal
conditions the LL state is stable under the inclusion of, for in-
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effect from the coupling to the nuclear spins is much more dra-
matic and overcomes the spin-orbit interaction, which we there-
fore neglect in this work.
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