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We demonstrate that spin current can be generated by an ac voltage in a one-channel quantum wire with
strong repulsive electron interactions in the presence of a nonmagnetic impurity and uniform static magnetic
field. In a certain range of voltages, the spin current can exhibit a power dependence on the ac voltage bias with
a negative exponent. The spin current expressed in units of � /2 per second can become much larger than the
charge current in units of the electron charge per second. The spin current generation requires neither spin-
polarized particle injection nor time-dependent magnetic fields.
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I. INTRODUCTION

The pioneering paper by Christen and Büttiker1 has stimu-
lated much interest to rectification in quantum wires and
other mesoscopic systems. Most attention was focused on the
simplest case of Fermi liquids.2,3 Recently, this research was
extended to strongly interacting systems where Luttinger liq-
uids are formed.4–7 One of the topics of current interest is the
rectification effect in Luttinger liquids in a magnetic field.3,6,7

In the presence of a magnetic field, both spin and charge
currents can be generated. So far, however, only charge cur-
rents in Luttinger liquids have been studied. In this paper, we
show that a dc spin current can be generated by an ac voltage
bias in a single-channel quantum wire.

In recent years, many approaches to the generation of spin
currents in quantum wires were put forward. Typically, both
spin and charge currents are generated, and the spin current
expressed in units of � /2 per second is smaller than the
electric current in units of e per second �e is the electron
charge�. Such a situation naturally emerges in partially po-
larized systems, since each electron carries the charge e and
its spin projection on the z axis is ±� /2. A proposal on how
to obtain a spin current exceeding the charge current in a
quantum wire was published by Sharma and Chamon8 who
considered a Luttinger liquid in the presence of a time-
dependent magnetic field in a region of the size of an elec-
tron wavelength. In a very different physical context, a spin
current without charge current was predicted for edge modes
in the quantum Hall effect in graphene.9 Pure spin currents
can also flow in open circuits, which cannot support charge
currents.10 In this paper, we show that the generation of a dc
spin current exceeding the charge current is also possible in
closed circuits without time-dependent magnetic fields. The
spin current can be generated in a spatially asymmetric Lut-
tinger liquid system in the presence of an ac bias. Interest-
ingly, in a certain interval of low voltages, the dc spin current
grows as a negative power of the ac voltage when the voltage
decreases.

The paper is organized as follows. The next section con-
tains a qualitative discussion. We briefly address the simplest
case of noninteracting electrons, discuss its differences from
the most interesting case of strong electron interaction, and
estimate at what conditions the effect can be observed. Sec-

tion III contains the details of the bosonization procedure
which we use to treat the electron-electron interaction. In
Sec. IV, we calculate analytically the spin and charge recti-
fication currents in the presence of a weak asymmetric po-
tential. Numerical results for a simple model with strong
asymmetric potential are discussed in Appendix A. Appendi-
ces B and C contain technical details of the perturbation
theory employed in Sec. IV.

II. MODEL AND PHYSICS OF THE PROBLEM

The rectifying quantum wire is sketched in Fig. 1. It con-
sists of a one-dimensional conductor with a scatterer in the
center of the system at x=0. The scatterer creates an asym-
metric potential U�x��U�−x�. The size of the scatterer aU

�1/kF is of the order of the electron wavelength. A spin
current can be generated only if time-reversal symmetry is
broken. Thus, we assume that the system is placed in a uni-
form magnetic field H. The field defines the Sz direction of
the electron spins. If the wire is sufficiently narrow, then the
effect of the magnetic field on the kinetic energy of electrons
can be neglected and the field enters the problem only via its
interaction with the spins. At its two ends, the wire is con-
nected to nonmagnetic electrodes, labeled by i=1,2. The left
electrode, i=1, is controlled by an ac voltage source, while
the right electrode, i=2, is kept on ground.

The magnetic field H breaks the symmetry between the
two orientations of the electron spin. In a uniform wire, this
would not result in a net spin current since the conductances

quantum wire
U (x)

±V contact

H aUi = 1
contact

i = 2

FIG. 1. Sketch of the one-dimensional conductor connected to
two electrodes on both ends. Currents are driven through a voltage
bias V that is applied on the left electrode while the right electrode
is kept on ground. The system is magnetized by the field H. Elec-
trons are backscattered off the asymmetric potential U�x�. U�x�
�0 in the region of size aU�1/kF.
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of the spin-up and -down channels would be the same,17

e2 /h, and the spin currents of the spin-up and -down elec-
trons would be opposite. In the presence of a potential bar-
rier, such a cancellation does not occur.18 In a system with
strong electron interaction, the spatial asymmetry of the wire
leads to an asymmetric I-V curve,4 I�V�� I�−V�. Thus, an ac
voltage bias generates spin and charge dc currents, Is

r and Ic
r.

As we will see, the problem is most interesting in the case
of strong electron interaction. Before addressing that more
difficult case, let us discuss what happens in the absence of
electron interaction. By noninteracting system, we mean a
wire in which electron-electron interaction is completely
screened by the gates. In such situation, the charge density in
the wire is not fixed but depends on the gate potential and the
electrochemical potentials of the leads. The leads define the
chemical potentials �L and �R of the left- and right-moving
electrons, which are injected from the right and left reser-
voirs, respectively. In what follows, we will assume that the
chemical potential �L=0 and �R oscillates between +eV and
−eV. Thus, in the presence of the magnetic field H, the Fermi
energies counted from the band bottom equal EF

L�Sz�=EF

+2Sz�H for the left-moving electrons and EF
R�Sz�=EF+�R

+2Sz�H for the right-moving electron, where Sz= ±1/2 is
the electron spin projection, EF the Fermi level in the ab-
sence of the magnetic field and voltage bias, and � the elec-
tron magnetic moment.

As we will see, in a strongly interacting system, the form
of the potential barrier U�x� plays little role. However, it is
crucial in the noninteracting case. Let us choose U�x� in the
form of the double potential barrier so that quasistationary
levels En, n=0,1 , . . ., are present �Fig. 2�. Thus, in the non-
interacting case, we consider a resonant tunneling diode.11

The spin and charge currents as functions of the chemical
potential �R are

Ic��R� = I��R,1/2� + I��R,− 1/2� , �1�

Is��R� =
�

2e
�I��R,1/2� − I��R,− 1/2�� , �2�

where e is the electron charge,

I��R,Sz� =
e

h
�

EF
L�Sz�

EF
R�Sz�

dET�E� , �3�

and T�E� is the transmission coefficient. The transmission
coefficient is small far from the energies of the quasistation-
ary levels E=En and increases as E approaches En. Obvi-
ously, if one applies a dc voltage eV=�R, then the charge
current, expressed in units of e per second, exceeds the spin
current in units of � /2 per second. The situation changes in
the presence of an ac bias. The dc currents generated by
an ac voltage bias can be estimated as Ic/s

r = �Ic/s�V�
+ Ic/s�−V�� /2. Let us now assume that the magnetic field is
tuned such that the Fermi level of the spin-down electrons
EF−�H is close to the quasistationary level E0 and exceeds
E0, while the Fermi level of the spin-up electrons EF+�H is
close to E1 and lies below E1. Also, let eV be smaller than
the distances �E0−EF+�H� and �E1−EF−�H� between the
Fermi levels and quasistationary levels in the absence of the
voltage bias. In addition, we assume that T�EF+�H�=T�EF

−�H�. From the energy dependence of the transmission co-
efficient T�E� near the resonant levels, one finds that
I�eV ,1 /2�� I�eV ,−1/2� and �I�−eV ,1 /2��� �I�−eV ,−1/2��.
Hence, Is

r�
�

2e Ic
r. By an appropriate choice of parameters, one

can produce any ratio of the spin and charge rectification
currents.

Note that the rectification effect for noninteracting elec-
trons is possible even if the potential U�x� is symmetric. The
asymmetry of the system, necessary for rectification, is in-
troduced by the applied voltage bias. The charge density in-
jected into the wire from the leads is proportional to �L
+�R and hence is different for the opposite signs of the volt-
age. If the injected charge density were independent of the
voltage sign, i.e., �R oscillated between eV /2 and −eV /2 and
�L=−�R oscillated between −eV /2 and eV /2, then the rec-
tification effect would be impossible for noninteracting elec-
trons. This follows from Eqs. �1�–�3� and the fact that the
transmission coefficient T�E� is independent of the direction
of the incoming wave for noninteracting particles.12 In the
presence of electron repulsion, both the asymmetry of the
potential and the voltage dependence of the injected charge
contribute to the rectification current. It turns out that in the
case of strong electron interaction, the rectification effect due
to the asymmetry of the potential barrier dominates.

The above example is based on a special form of the
potential barrier in the wire and assumes that the magnetic
field and chemical potentials are tuned in order to obtain the
desired effect. As shown below, in the presence of strong
repulsive electron interaction, no tuning is necessary and no
quasistationary states are needed to obtain the spin current
which is greater than the charge current. In fact, the spin
rectification effect is possible even for weak asymmetric po-
tentials U�x�. This can be understood from the following toy
model �a related model for rectification in a two-dimensional
electron gas was studied in Ref. 13�: Let there be no uniform
magnetic field H and no asymmetric potential U�x�. Instead,
both right↔ left and spin-up↔spin-down symmetries are
broken by a weak coordinate-dependent magnetic field
Bz�x��Bz�−x�, which is localized in a small region of size

FIG. 2. Double-well potential with quasistationary levels. The
transmission coefficient is maximal in the shaded regions. The nar-
row potentials u1�x� and u2�x� are centered at the positions x=0 and
x=a �a�kF

−1�, respectively, and are modeled by � functions in Eq.
�A1�.
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�1/kF �we do not include the components Bx,y in the toy
model�. Let us also assume that the spin-up and -down elec-
trons do not interact with the electrons of the opposite spin.
Then, the system can be described as the combination of two
spin-polarized one-channel wires with opposite spin-
dependent potentials ±�Bz�x�, where � is the electron mag-
netic moment. According to Ref. 4, an ac bias generates a
rectification current in each of those two systems and the
currents are proportional to the cubes of the potentials
�±�Bz�3. Thus, I↑

r =−I↓
r . Hence, no net charge current Ir= I↑

r

+ I↓
r is generated in the leading order. At the same time, there

is a nonzero spin current in the third order in Bz. A similar
effect is present in a more realistic Luttinger liquid model
considered below.

The main focus of this paper is on the case of weak asym-
metric potentials. A simple model with strong impurities is
studied in Appendix A. In Figs. 3 and 4, we have represented
the results from a numerical evaluation for the spin and
charge currents Is,c

r for the potential shown in Fig. 2. Figure 3
shows the noninteracting case. In Fig. 4, we represent the
case of strong electron interaction. We have chosen param-
eters �explained in the figure captions� such that Ic

r is smaller
than Is

r for a range of the applied voltage. Further information
on the numerical approach is given in Appendix A.

Transport in a strongly interacting system in the presence
of a strong asymmetric potential U�x� is a difficult problem
which cannot be solved analytically and is sensitive to a
particular choice of the potential. As we have mentioned,
Appendix A contains the numerical analysis of a simple
model of interacting electrons with a strong potential barrier.
On the other hand, the interacting problem can be solved
analytically in the limit of a weak potential U�x� with the
help of the bosonization and Keldysh techniques �Sec. III�.
We will see that the rectification current exhibits a number of

universal features, independent of the form of the potential
U�x�. In particular, in a wide interval of interaction strength,
the spin rectification current can exceed the charge rectifica-
tion current for an arbitrary shape of the asymmetric poten-
tial barrier.

Rectification is a nonlinear transport phenomenon. Thus,
it cannot be observed at low voltages at which the I-V curve
is linear and hence symmetric. In Luttinger liquids, the I-V
curve is nonlinear at eV�kBT, where T is the temperature.14

We will concentrate on the limit of the zero temperature
which corresponds to the strongest rectification. We expect
qualitatively the same behavior at T�V. At higher tempera-
tures, the charge and spin rectification effects disappear.
Since the temperatures of the order of millikelvins can be
achieved with dilution refrigeration, the rectification effect is
possible even for the voltages as low as V�1�V.

In this paper, we focus on the low-frequency ac bias. We
define the rectification current as the dc response to a low-
frequency square voltage wave of amplitude V:

Is
r�V� = �Is�V� + Is�− V��/2, �4�

Ic
r�V� = �Ic�V� + Ic�− V��/2. �5�

The above dc currents are expressed via the currents of
spin-up and -down electrons: Ic

r = I↑
r + I↓

r , Is
r= �� /2e��I↑

r − I↓
r�.

The spin current exceeds the charge current if the signs of I↑
r

and I↓
r are opposite. Equations �4� and �5� for the dc do not

contain the frequency � of the ac bias. They are valid as long
as the frequency

� � eV/� . �6�

Indeed, as shown below, the rectification current is deter-
mined by electron backscattering off the asymmetric poten-

FIG. 3. Normalized charge rectification current Ic / Ic0 and spin
rectification current Is / Is0 versus applied voltage V /V0 for noninter-
acting electrons with EF=400�0, �H=75�0, u1=50�0a, and u2=
−50�0a, where �0=�2 /ma2 �see Fig. 2 and Appendix A�. Ic0

=50e�0 /�, Is0=25�0, and V0=50�0 /e are arbitrary reference cur-
rents and voltage.

FIG. 4. Normalized charge rectification current Ic / Ic0 and spin
rectification current Is / Is0 versus applied voltage V /V0 for interact-
ing electrons with EF=100�0, �H=25�0, 	=12.6�0a /e, u1=25�0a,
and u2=50�0a, where �0=�2 /ma2 �see Fig. 2 and Appendix A�.
Ic0=50e�0 /�, Is0=25�0, and V0=50�0 /e are arbitrary reference cur-
rents and voltage.
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tial. Hence, one can neglect the time dependence of the ac
voltage in Eqs. �4� and �5� if the period of the ac bias exceeds
the duration 
 of one backscattering event. The time 

�
travel+
uncertainty includes two contributions. 
travel is the
time of the electron travel across the potential barrier.

uncertainty comes from the uncertainty of the energy of the
backscattered particle. If the barrier amplitude U�x��EF and
the barrier occupies a region of size aU�1/kF, then 
travel
�1/kFv�� /EF, where v��kF /m is the electron velocity.
The energy uncertainty �eV translates into 
uncertainty
�� /eV. Thus, for eV�EF, one obtains condition �6�. The
same condition can be derived with the approach of Appen-
dix A of Ref. 15 and emerges in a related problem.16 Note
that for realistic voltages, the low-frequency condition �6�
allows rather high frequencies. Even for V�1 �V, the maxi-
mal ��1 GHz.

There remains the question of the asymmetric impurity:
We require a potential U�x� that is localized within �1/kF. A
possible realization is to generate two different �symmetric�
local potentials by two gates within a distance �1/kF or an
electric potential created by an asymmetric gate of size
�1/kF placed at the distance �1/kF from the wire. Electron
densities of ��1011 cm−2 are possible nowadays in two-
dimensional electron gases, yielding 1/kF up to several
10 nm. Confinement in a one-dimensional wire will reduce
the electron density further so that this number may increase
further. Modern techniques allow placing electric gates of
widths of �20 nm at distances of �20–50 nm. A realization
of an asymmetric potential in this way is, therefore, within
the reach. Alternatively, in the case of shorter electron wave-
length, it should be possible to place an asymmetrically
shaped scanning tunneling microscope tip close to the wire.
An applied bias would yield an asymmetric scattering poten-
tial. With such a tip, the asymmetry cannot be directly tuned,
but most of our predictions are not sensitive to the precise
shape of the potential. Certainly, an asymmetric potential
may simply emerge by chance due to the presence of two
point impurities of unequal strengths at the distance �1/kF.

III. BOSONIZATION AND KELDYSH TECHNIQUE

At ��V, the calculation of the rectification currents re-
duces to the calculation of the stationary contributions to the
dc I-V curves Is�V� and Ic�V� that are even in the voltage V.
We assume that the Coulomb interaction between distant
charges is screened by the gates. This will allow us to use the
standard Tomonaga-Luttinger model with short range
interactions.14 Electric fields of external charges are also as-
sumed to be screened. Thus, the applied voltage reveals itself
only as the difference of the electrochemical potentials E1
and E2 of the particles injected from the left and right reser-
voirs. We assume that one lead is connected to the ground so
that its electrochemical potential E2=EF is fixed. The elec-
trochemical potential of the second lead E1=EF+eV is con-
trolled by the voltage source �see Fig. 1�. Since the
Tomonaga-Luttinger model captures only low-energy phys-
ics, we assume that eV�EF, where EF is of the order of the
bandwidth. Rectification occurs due to backscattering off the
asymmetric potential U�x�. We will assume that the asym-

metric potential is weak, U�x��EF. This will enable us to
use perturbation theory.

We assume that the magnetic field H couples only to the
electron spin, and we neglect the correction −eA /c to the
momentum in the electron kinetic energy. Indeed, for a uni-
form field, one can choose A�y, where the y axis is or-
thogonal to the wire and y is small inside a narrow wire. As
shown in Ref. 18, such a system allows a formulation within
the bosonization language and, in the absence of the asym-
metric potential, can be described by a quadratic bosonic
Hamiltonian

H0 = �
�,��=L,R

�
,�=↑,↓

� dx��x���H�,�����x����� , �7�

where  is the spin projection and �=R ,L labels the left- and
right-moving electrons, which are related to the boson fields
�� as ��

† �x����
† e±i�kF�x+���x�� with � for �=R ,L. The

operators ��
† are the Klein factors adding a particle of type

�� ,� to the system, and kF� /� is the density of �� ,� par-
ticles in the system. The densities of the spin-up and -down
electrons are different since the system is polarized by the
external magnetic field. The 4�4 matrix H describes the
electron-electron interactions. In the absence of spin-orbit
interactions, L↔R parity is conserved and we can introduce
the quantities �=�L+�R and �=�L−�R such that the
Hamiltonian decouples into two terms depending on � and
� only. In the absence of the external field, this Hamil-
tonian would further be diagonalized by the combinations
�c,s��↑±�↓, and similarly for �c,s, expressing the spin and
charge separation. Here, this is no longer the case because of
the external magnetic field. If we focus on the � fields only
�as � will not appear in the operators describing backscatter-
ing off U�x��, the fields diagonalizing the Hamiltonian, �̃c,s,
have a more complicated linear relation to �↑,↓, which we
can write as

	�↑

�↓

 = 	�gc�1 + �� �gs�1 + ��

�gc�1 − �� − �gs�1 − ��

	�̃c

�̃s


 , �8�

and which corresponds to the matrix ÂT of Ref. 18. The
normalization has been chosen such that the propagator of
the �̃ fields with respect to the Hamiltonian �Eq. �7�� is
evaluated to ��̃c,s�t1��̃c,s�t2�=−2 ln(i�t1− t2� /
c+�), where
��0 is an infinitesimal quantity and 
c�� /EF the ultravio-
let cutoff time. For noninteracting electrons without a mag-
netic field, gc=gs=1/2. gc�1/2 ��1/2� for repulsive �at-
tractive� interactions. The interaction constants depend on
microscopic details and the magnetic field. The dimension-
less parameter which controls the interaction strength is the
ratio of the potential and kinetic energies of the electrons.
This ratio grows as the charge density decreases, and hence
lower electron densities correspond to stronger repulsive in-
teraction. In the absence of the magnetic field, terms in Eq.
�7� in the form of exp�±2i�gs�s� may become relevant and
open a spin gap for gs�1/2. In our model, they can be
neglected since they are suppressed by the rapidly oscillating
factors exp�±2i�kF↑−kF↓�x�. It is convenient to model the
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leads as the regions near the right and left ends of the wire
without electron interaction.17

Backscattering off the impurity potential U�x� is de-
scribed by the following contribution to the Hamiltonian14

H=H0+H�:

H� = �
n↑,n↓

U�n↑,n↓�ein↑�↑�0�+in↓�↓�0�, �9�

where the fields are evaluated at the impurity position x=0
and U�n↑ ,n↓�=U*�−n↑ ,−n↓�, since the Hamiltonian is Her-
mitian. The fields � do not enter the above equation due to
the conservation of the electric charge and the z projection of
the spin. The Klein factors are not written because they drop
out in the perturbative expansion. U�n↑ ,n↓� are the ampli-
tudes of backscattering of n↑ spin-up and n↓ spin-down par-
ticles with n�0 for L→R and n�0 for R→L
scattering. U�n↑ ,n↓� can be estimated as14 U�n↑ ,n↓�
�kF�dxU�x�ein↑2kF↑x+in↓2kF↓x�U, where U is the maximum
of U�x�. In the case of a symmetric potential, U�x�=U�−x�,
the coefficients U�n↑ ,n↓� are real.

The spin and charge currents can be expressed as

Is,c = Ls,c
1 + Rs,c

1 = Ls,c
2 + Rs,c

2 , �10�

where Ls,c
i and Rs,c

i denote the current of the left and right
movers near electrode i, respectively �see Fig. 2�. For a clean
system �U�x�=0�, the currents obey17 Rs,c

1 =Rs,c
2 , Ls,c

1 =Ls,c
2 and

Ic=2e2V /h, Is=0. With backscattering off U�x�, particles are
transferred between L and R in the wire, and hence Rs

2=Rs
1

+dSR /dt and Rc
2=Rc

1+dQR /dt, where QR and SR denote the
total charge and the z projection of the spin of the right-
moving electrons.16 The currents Ls,c

2 and Rs,c
1 are determined

by the leads �i.e., the regions without electron interaction in
our model17� and remain the same as in the absence of the
asymmetric potential. Thus, the spin and charge currents can
be represented as Ic=2e2V /h+ Ic

bs and Is= Is
bs, where the back-

scattering current operators are4,5,14

Îc
bs = dQ̂R/dt = i�H,Q̂R�/�

=
− ie

�
�

n↑,n↓

�n↑ + n↓�U�n↑,n↓�ein↑�↑�0�+in↓�↓�0�,

�11�

Îs
bs = dŜR/dt = −

i

2 �
n↑,n↓

�n↑ − n↓�U�n↑,n↓�ein↑�↑�0�+in↓�↓�0�.

�12�

The calculation of the rectification currents reduces to the
calculation of the currents �Eqs. �11� and �12�� at two oppo-
site values of the dc voltage.

To find the backscattered current, we use the Keldysh
technique.19 We assume that at t=−�, there is no backscatter-
ing in the Hamiltonian �U�x�=0�, and then the backscattering
is gradually turned on. Thus, at t=−�, the numbers NL and
NR of the left- and right-moving electrons are conserved
separately: The system can be described by a partition func-
tion with two chemical potentials E1=EF+eV and E2=EF
conjugated with the particle numbers NR and NL. This initial

state determines the bare Keldysh Green’s functions.
We will consider only the zero temperature limit. It is

convenient to switch16 to the interaction representation H0
→H0−E1NR−E2NL. This transformation induces a time de-
pendence in the electron creation and annihilation operators.
As a result, each exponent in Eq. �9� is multiplied by
exp�ieVt�n↑+n↓� /��.

In the Keldysh formulation,19 the backscattering currents
�Eqs. �11� and �12�� are evaluated as

Ic,s
bs = �0�S�− �,0�Îc,s

bs S�0,− ���0 , �13�

where �0 is the ground state for the Hamiltonian H0, Eq. �7�,
and S�t , t�� the evolution operator for H� from t� to t in the
interaction representation with respect to H0. The result of
this calculation depends on the elements of the matrix �Eq.
�8��, which describe the low-energy degrees of freedom and
depend on the microscopic details. Several regimes are
possible5 at different values of the parameters gs�0, gc�0,
�, and �. In this paper, we focus on one particular regime in
which the main contribution to the rectification current
comes from backscattering operators U�1,0�, U�0,−1�, and
U�−1,1�.

IV. RECTIFICATION CURRENTS

In order to calculate the current �Eq. �13��, we will expand
the evolution operator in powers of U�n ,m�. Such perturba-
tive approach is valid only if U�EF. The details of the per-
turbative calculation are discussed in Appendix C.

The currents �Eq. �13�� can be estimated using a renor-
malization group procedure.14 As we change the energy scale
E, the backscattering amplitudes U�n↑ ,n↓� scale as

U�n,m;E� � U�n,m��E/EF�z�n,m�, �14�

where the scaling dimensions are

z�n,m� = n2�gc�1 + ��2 + gs�1 + ��2� + m2�gc�1 − ��2

+ gs�1 − ��2� + 2nm�gc�1 − �2� − gs�1 − �2�� − 1

= n2A + m2B + 2nmC − 1. �15�

The renormalization group �RG� stops at the scale of the
order E�eV. At this scale, the backscattering current can be
represented as Ic,s

bs =Vrc,s�V�, where the effective reflection
coefficient rc,s�V� is given by the sum of contributions of the
form4,14

�const�U�n1,m1;E = eV�U�n2,m2;eV� ¯ U�np,mp;eV� .

�16�

Such a perturbative expansion can be used as long as

U�n,m;E = eV� � EF �17�

for every �n ,m�. This condition defines the RG cutoff voltage
V* such that

U�n0,m0;E = eV*� = EF �18�

for the most relevant operator U�n0 ,m0�. The RG procedure
cannot be continued to lower-energy scales E�V*.
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One expects that the leading contribution to the back-
scattering current emerges in the second order in U�n ,m� if
the above condition is satisfied. The leading contribution to
the rectification current may, however, emerge in the third
order. Indeed, the second order contributions to the charge
current were computed in Ref. 14. The spin current can be
found in exactly the same way. The result is

Ic,s
bs�2��V� � � �const��U�n,m��2�V�2z�n,m�+1 sgn�V� . �19�

If the �unrenormalized� U�n ,m� were independent of the
voltage, the above current would be an odd function of the
bias and hence would not contribute to the rectification cur-
rent. The backscattering amplitudes depend14 on the charge
densities kF� though, which, in turn, depend on the voltage
in our model.4 The voltage-dependent corrections to the am-
plitudes are linear in the voltage at low bias eV�EF. Hence,
the second order contributions to the rectification currents
scale as U2�V�2z�n,m�+2 �see Appendix B�. The additional fac-
tor of V makes the second order contribution smaller than the
leading third order contribution �Eq. �23�� at sufficiently high
impurity strength U�EF �as shown in Appendix B, U /EF
must exceed �V /EF�1+z�1,0�−z�0,1�−z�1,−1��. Note that the second
order contribution to the rectification current is nonzero even
for a symmetric potential U�x� and emerges solely due to the
voltage dependence of the injected charge density �cf. Sec.
II�. The leading third order contribution emerges solely due
to the asymmetry of the scatterer.

The main third order contribution comes from the three
backscattering operators most relevant in the renormalization
group sense �small z�n ,m�, Eq. �15��. They are identified in
Appendix B. Under conditions �B6�–�B8�, �B12�, �B14�, and
�B15�, the most relevant operator is U�1,0�, the second most
relevant U�0,−1�, and the third most relevant U�−1,1�. The
cutoff voltage V* is determined by the scaling dimension
z�1,0�, eV*�EF�U /EF�1/�1−A�. The leading nonzero third or-
der contributions to the spin and charge currents come from
the product of the above three operators in the Keldysh per-
turbation theory �see Appendix B�. This leads to

Ic,s
bs � U3V2�A+B−C−1�. �20�

This contribution dominates the spin rectification current at

EF�U/EF�1/�2+2C−2B� � eV** � eV � eV*, �21�

as is clear from the comparison with the leading second order
contribution Is,2

bs �U2V2A, Eq. �B10�. Interestingly, the cur-
rent �Eq. �20�� grows as the voltage decreases in the regime
�B6�–�B8�, �B12�, �B14�, and �B15�.

However, does the current �Eq. �20�� actually contribute
to the rectification effect? In general, Eq. �20� is the sum of
odd and even functions of the voltage and only the even part
is important for us. One might naively expect that such a
contribution has the same order of magnitude for the spin
and charge currents. A direct calculation shows, however,
that this is not the case and the spin rectification current is
much greater than the charge rectification current.

In order to calculate the prefactors in the right hand side
of Eq. �20�, one has to employ the Keldysh formalism.
The details are explained in Appendix C. Here, let

us shortly summarize the essential steps: The third order
Keldysh contribution reduces to the integral of
P�t1 , t2 , t3�= �Tc exp(i�↑�t1�+ ieVt1 /�)exp(−i�↓�t2�− ieVt2 /�)
�exp(i�−�↑�t3�+�↓�t3��) over �t1− t3� and �t2− t3�, where Tc

denotes time ordering along the Keldysh contour −�→0→
−� and the angular brackets denote the average with respect
to the ground state of the noninteracting Hamiltonian �Eq.
�7��. The integration can be performed analytically as dis-
cussed in Appendix C. One finds

Ic
bs =

16e
c
2

��3 sgn�eV�� eV
c

�
�a+b+c−2

��1 − a���1 − b�

���2 − a − b − c���a + b − 1�sin
�a

2
sin

�b

2

�sin
��a + b�

2
sin ��a + b + c�

�Re�U�1,0�U�− 1,1�U�0,− 1�� , �22�

Is
bs =

16
c
2

��2 sin
�a

2
sin

�b

2
� eV
c

�
�a+b+c−2

��a + b − 1�

���2 − a − b − c���1 − a���1 − b�

��Im�U�1,0�U�− 1,1�U�0,− 1��cos
��a + b + c�

2

��sin
�c

2
+ cos

��a − b�
2

sin
��a + b + c�

2

+ sin
��a + b�

2
cos

��a + b + c�
2

�
+

1

2
Re�U�1,0�U�− 1,1�U�0,− 1��sin

��a − b�
2

�sin ��a + b + c�sgn�eV�� , �23�

where a=2A−2C, b=2B−2C, c=2C, and 
c�� /EF is the
ultraviolet cutoff time. The charge current �Eq. �22�� is an
odd function of the voltage and hence does not contribute to
the rectification effect. The spin current �Eq. �23�� is a sum of
an even and odd functions and hence determines the spin
rectification current

Is
r =

16
c
2

��2 sin
�a

2
sin

�b

2
cos

��a + b + c�
2

� eV
c

�
�a+b+c−2

���a + b − 1���2 − a − b − c���1 − a���1 − b�

�Im�U�1,0�U�− 1,1�U�0,− 1��

��cos
��a − b�

2
sin

��a + b + c�
2

+ sin
�c

2
+ sin

��a + b�
2

cos
��a + b + c�

2
� . �24�

It is nonzero if Im�U�1,0�U�−1,1�U�0,−1���0, which is
satisfied for asymmetric potentials. The leading contribution
to the charge rectification currents comes from other terms in
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the perturbation expansion. Thus, we expect that in the re-
gion �B6�–�B8�, �B12�, �B14�, and �B15�, the spin rectifica-
tion current exceeds the charge rectification current in an
appropriate interval of voltages �Eq. �21��. The difference
between the spin and charge rectification currents can be
easily understood from the limit A=B. In that case, the
charge current changes its sign under the transformation
U�1,0�↔U�0,−1�, V→−V. Since U�1,0� and U�0,−1� en-
ter the current only in the combination U�1,0�U�0,−1�, this
means that the charge current must be an odd function of the
voltage bias. A similar argument shows that at A=B, the spin
rectification current is an even function of the voltage in
agreement with Eq. �23�.

The voltage dependence of the spin rectification current is
illustrated in Fig. 5. Expression �20� describes the current in
the voltage interval V**�V�V*. In this interval, the current
increases as the voltage decreases in the regime �B6�–�B8�,
�B12�, �B14�, and �B15�. At lower voltages, the perturbation
theory breaks down. The current must decrease as the volt-
age decreases below V* and eventually reach 0 at V=0. At
higher voltages, EF�eV�eV**, the second order rectifica-
tion current �Eq. �19�� dominates. The leading second order
contribution Is

r��U�1,0��2V2z�1,0�+2 grows as the voltage in-
creases. The charge rectification current has the same order
of magnitude as the spin current.

The Tomonaga-Luttinger model cannot be used for the
highest voltage region EF�eV. It is easier to detect charge
currents than spin currents. However, the measurement of the
spin current can be reduced to the measurement of charge
currents: Let us split the right end of the wire into two
branches and place them in opposite strong magnetic fields
so that only electrons with one spin orientation can propagate
in each branch. If both branches are grounded, they still in-
ject exactly the same charge and spin currents into the wire
as one unpolarized lead. However, the current generated in
the wire will split between two branches into the currents of
spin-up and spin-down electrons. If they are opposite, then
pure spin current is generated.

V. CONCLUSIONS

In this paper, we have shown that rectification in quantum
wires in a uniform magnetic field can lead to a spin current
that largely exceeds the charge current. The paper focuses on
the regime of low voltages and weak asymmetric potentials

in which the perturbation theory provides quantitatively ex-
act predictions. Qualitatively, the same behavior is expected
up to eV ,U�EF. The spin rectification effect is solely due to
the properties of the wire and does not require time-
dependent magnetic fields or spin-polarized injection as from
magnetic electrodes. The currents are driven by the voltage
source only. In an interval of low voltages, the spin current
grows as the voltage decreases. In contrast to some other
situations, the z component of the total spin is conserved and
hence the dc spin current is constant throughout the system.
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APPENDIX A: HIGH POTENTIAL BARRIER

In this appendix, we first briefly consider the model of
noninteracting electrons, Sec. II, and then a simple Hartree-
type model for strongly interacting electrons.

1. Model without interaction

We consider noninteracting electrons in the presence of
the potential

U�x� = u1��x� + u2��x − a� . �A1�

The transmission coefficient can be found from elementary
quantum mechanics,

T�E� =
1

�1 − 2s1s2 sin2 ka�2 + �s1 + s2 + s1s2 sin 2ka�2 ,

�A2�

where E=�2k2 /2m and si=mui /k�2. The spin and charge
rectification currents can be computed from Eqs. �1� and �2�.
Figure 3 shows their voltage dependence for a certain choice
of u1, u2, the voltage bias V, and the magnetic field H.

2. Model with interaction

It is difficult to find a general analytic expression for the
current in the regime when both the electron interaction and
potential barrier are strong. If all characteristic energies, U,
eV, �2 / �ma2�, and the typical potential energy of an electron
EP, are of the order of EF, then one can estimate the spin and
charge rectification currents with dimensional analysis: Ic

r

�eEF /�, Is
r�EF.

To obtain a qualitative picture of the interaction effects in
the case of a high potential barrier �Eq. �A1��, we restrict our
discussion to a simple model in the spirit of the zero-mode
approximation.20 We assume that electrons move in a self-
consistent Hartree-type field. In our ansatz, the self-
consistent field takes three different constant values VL, VM,

VV ∗∗V ∗

Ir
s

FIG. 5. Qualitative representation of the spin rectification cur-
rent. The spin current exceeds the charge current and follows a
power-law dependence on the voltage with a negative exponent in
the interval of voltages V*�V�V**.
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and VR on the left of the potential barrier, between two
�-function scatterers, and on the right of the potential barrier.
In the spirit of the Luttinger liquid model, we assume that the
constants VL, VM, and VR are proportional to the average
charge density in the respective regions, e.g., VM

= 	
a �0

adx��x�, where 	 is the interaction constant.
A result is shown in Fig. 4. We see that the voltage de-

pendence of the spin and charge rectification currents exhib-
its a behavior similar to that of the noninteracting case.

APPENDIX B: ESTIMATION OF HIGHER PERTURBATIVE
ORDERS

In this appendix, we compare contributions to the rectifi-
cation currents from different orders of perturbation theory.
We focus on the regime when the third order contribution
dominates. This appendix contains five sections and has the
following structure: �1� We introduce a parametrization for
the scaling dimensions �Eq. �15��. �2� We discuss the opera-
tors most relevant in the RG sense. �3� We determine at what
conditions the second order contribution to the rectification
current dominates. Appendix B 3 also contains a lemma
which is important in Appendix B 4. �4� We determine at
what conditions the third order contribution to the current
dominates. �5� We estimate the voltages and currents at
which the spin rectification current can exceed the charge
rectification current in realistic systems.

As shown in Refs. 4 and 5, there are two effects leading to
rectification in Luttinger liquids, which are here very shortly
summarized: the density-driven and the asymmetry-driven
rectification effects. The former appears at second order in
U. It appears because the backscattering potential depends on
the particle densities in the system, which, in turn, are modi-
fied by the external voltage bias. The leading order back-
scattering currents are of the form14 Ibs�V��sgn�V�U2�V��,
so that the rectification currents Ir= �Ibs�V�+ Ibs�−V�� vanish.
Due to the density dependence, however, an expansion of U
to linear order in V cancels the sgn�V�, and we obtain a
rectification current Ir�U2�V��+1.

The asymmetry-driven rectification effect appears at third
order in U. It is due solely to the spatial asymmetry of the
potential U�x�: Due to backscattering off U, screening
charges accumulate close to the impurity. These create an
electrostatic nonequilibrium backscattering potential W�x�
for incident particles, leading to an effective potential Ū�x�
=U�x�+W�x�. The spatial distribution of charges follows
from the shape of U�x� and the applied voltage bias. An
asymmetric U�x� leads to different electrostatic potentials for
positive or negative bias and hence to rectification. If we

expand the current, Ibs� Ū2�U2+UW+¯, the asymmetry
appears first at order UW. Since the charge density in the
vicinity of the impurity is modified by the modification of
the particle current through backscattering, W itself is �self-
consistently� related to the backscattering current as W� Ibs.
Hence, W�U2, so that the asymmetric rectification effect
appears first at third order in U, Ir�UW�U3.

The main result of this paper are expressions for the cur-
rents that result from the perturbation theory at third order in

the impurity potential U. In this appendix, we show that the
considered contribution indeed dominates the second and
other third order expressions in the region defined by Eqs.
�B6�–�B8�, �B12�, �B14�, and �B15�. In addition, we give the
proof that higher perturbative orders N�4 cannot exceed
these values in the considered range of the system param-
eters gc, gs, �, and �. Unless we want to emphasize the
correct dimensions, we set EF=1, e=1, and �=1 in this ap-
pendix. We assume that U�EF and eV�EF.

An important observation is the following: In Eq. �16�,
�ini=�imi=0. This follows from the fact that in the absence
of backscattering, the numbers of right and left movers with
different spin orientations are conserved.

1. Parametrization of scaling dimensions

According to Eq. �15�,

z�n,m� = n2A + m2B + 2nmC − 1, �B1�

where

A = �gc�1 + ��2 + gs�1 + ��2� , �B2�

B = �gc�1 − ��2 + gs�1 − ��2� , �B3�

C = �gc�1 − �2� − gs�1 − �2�� . �B4�

Since gc and gs are positive, A and B are also positive. C can
have any sign. It satisfies the inequality

�C� � �AB . �B5�

Indeed, AB−C2=4gcgs�1−���2�0. Any values of A ,B�0
and −�AB�C��AB are possible. For example, one can set
�=�= ��A−�B� / ��A+�B�, gc= ��A+�B�2�1+C /�AB� /8,
and gs= ��A+�B�2�1−C /�AB� /8.

2. Most relevant operators

Depending on the values of A, B, and C, many different
possibilities for relative importance of different backscatter-
ing operators U�m ,n� exist. In this paper, we focus on the
situation when the most relevant operator is U�1,0�, the sec-
ond most relevant operator is U�0,−1�, and the third most
relevant operator is U�−1,1� �certainly, the scaling dimen-
sions of the operators U�n ,m� and U�−n ,−m� are always the
same�. We will also assume that the operator U�1,0� is rel-
evant in the RG sense, i.e., z�1,0��0. The analysis of the
situation in which U�0,−1� is the most relevant operator,
U�1,0� is the second most relevant, and U�−1,1� is the third
most relevant follows exactly the same lines. Similarly, little
changes if U�1,1� is the third most relevant operator.

The scaling dimensions of the three aforementioned op-
erators are A−1, B−1, and A+B−2C−1. The following in-
equality must be satisfied in order for these operators to be
most relevant backscattering operators: A−1�B−1�A+B
−2C−1� �all other scaling dimensions�. Hence,

B � A � 2C . �B6�

Since z�1,0��0,
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A � 1. �B7�

When are all other operators less relevant? We must consider
three classes of operators: �1� U�1,1�, �2� U�n ,0� and
U�0,n� with �n��1, and �3� all other operators.

�1� Since z�1,1�=A+B+2C−1, one finds

C � 0. �B8�

�2� z�0,n�=Bn2−1�z�n ,0�=An2−1�4A−1�A+B
−2C−1. Thus,

3A + 2C � B . �B9�

�3� z�n ,m�− �A+B−2C−1�=An2+Bm2+2Cnm− �A+B
−2C� � An2 +Bm2−C�n2+m2�−A−B+2C = �A−C��n2−1�
+ �B−C��m2−1��0, since B−C�A−C�0 in accordance
with Eq. �B6�, �n� , �m��1, and either �n� or �m� exceeds 1.
Thus, case �3� gives no new restriction on A, B, and C.

3. Second order contribution to the current

When is the second order contribution to the rectification
current dominant? Any operator U�n ,m� can be represented

as Ũ�n ,m�+VU1�n ,m�+¯, where U1� Ũ /EF. Any second

order contribution to the current which contains Ũ only is an
odd function of the voltage bias. Indeed, any such contribu-

tion is proportional to Ũ�n ,m�Ũ*�n ,m�= Ũ�n ,m�Ũ�−n ,−m�.
The transformation Ũ↔ Ũ*, V→−V changes the sign of the

current. At the same time, the transformation Ũ↔ Ũ* cannot
change the second order current at all. Hence, it is odd in the
voltage. The same argument applies to any perturbative con-

tribution which contains only Ũ, if every operator Ũ�n ,m�
enters in the same power as Ũ*�n ,m�. In particular, if only

two operators Ũ�n ,0� and Ũ�0,m� and their conjugate enter
then the resulting current, the contribution is odd.

Thus, all second order contributions to the rectification
current must contain U1. As is clear from Eq. �19�, the lead-
ing second order contribution is proportional to the square of
the most relevant operator, �U�1,0��2. It scales as

I2 � VU2V2z�1,0�+1 � U2V2A. �B10�

In this section, we discuss at what conditions this contri-
bution dominates for all V�V* �see Eq. �18��. Since U�1,0�
is the most relevant operator, its renormalized amplitude
U�1,0 ;E=V� exceeds the renormalized amplitude of all
other operators on every energy scale. At the same time, it
remains lower than 1 �i.e., EF� for V�V*. This certainly
means that the renormalized amplitudes are smaller than 1
for all other operators too. Hence, the product of any opera-
tors is smaller than the product of any two of them and that
product cannot exceed U2�1,0 ;E�. This guarantees that the
second order current �Eq. �B10�� exceeds any second or
higher order contribution which contains any operator
VU1�n ,m�. Thus, we have to compare I2 with higher order

contributions to the rectification current which contain Ũ
only. Every such contribution is at least third order and con-
tains at least one operator less relevant than U�0,−1� �if it

contains U�±1,0� and U�0, ±1� only, then it must contain
VU1 as discussed above�. Thus, any rectification current con-

tribution with Ũ only cannot exceed U3V2z�1,0�+z�1,−1�+1. Com-
parison with Eq. �B10� at V�V* leads to the condition

B � 2C + 1. �B11�

4. Third order contribution to the current

The most interesting question is different. When does the
third order contribution dominate the rectification current?
We will focus on the third order contribution I3 proportional
to U�1,0�U�0,−1�U�−1,1� at V�V*. Note that this contri-
bution is proportional to �V2�A+B−C−1� and hence scales as a
negative power of the voltage if

A + B � C + 1. �B12�

At V�V*, U�V1−A. Thus,

I3�V = V*� � V2B−A−2C+1. �B13�

We need to compare I3, Eq. �B13�, with the following types
of contributions: �1� those containing at least three different
operators �we treat a pair of U�n ,m� and U�−n ,−m�
=U*�n ,m� as one operator�, �2� those containing only one
type of operators, and �3� those containing two types of op-
erators.

Cases �1� and �2� are easy.
�1� I3 contains the product of the three most relevant op-

erators and hence always exceeds the product of any other
three different operators at any energy scale EF�V�V*.
Any contribution with three different operators is the product
of three different operators times perhaps some other combi-
nation of operators which cannot exceed 1 at EF�V�V*.
Hence, it is smaller than I3.

�2� Any contribution to the rectification current with only
one type of operators must contain VU1. As discussed in the
previous section, the leading contribution of such type
emerges in the second order. It is I2, Eq. �B10�. At V�V*,
I2�V=V*��V2. The condition I2�V*�� I3�V*� means that

2B � A + 2C + 1. �B14�

�3� We have to consider three possibilities: �3.1� one op-
erator has the form U�n ,0� and the second operator has the
form U�k ,m�, m�0 or one operator has the form U�0,m�
and the other one has the form U�n ,k�, n�0; �3.2� both
operators have the form U�ni ,0� or both operators have the
form U�0,mi�; and �3.3� both operators have the form
U�ni ,mi� with ni, mi�0.

�3.1�. Let us assume that one operator has the form
U�n ,0� and the second one is U�k ,m�. The case of the op-
erators U�0,m� and U�n ,k� can be considered in exactly the
same way. We must have the same number of operators
U�k ,m� and U�−k ,−m� in the perturbative contribution since
the sum of the second indices ±m must be 0. �The other cases
are covered in �3.3�.� From the analysis of the sum of the first
indices, one concludes that the operators U�n ,0� and
U�−n ,0� also enter in the same power. It follows from the
previous section that the perturbative contribution must con-
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tain at least one U1 operator and hence is smaller than I2.
Hence, it is also smaller than I3.

�3.2� We will focus on the case when both operators have
the form U�ni ,0�. The case when both operators have the
form U�0,mi� is very similar and does not lead to a new
restriction on A, B, and C. The scaling dimensions of the
operators U�n ,0� are An2−1. Operators with greater n are
less relevant. Since the contribution contains two different
operators, it must be at least third order �we treat U�n ,0� and
U�−n ,0� as the same operator�. At least one of the two op-
erators must have �ni��1 �otherwise, all operators are
U�±1,0��. Thus, the contribution cannot exceed U2�1,0 ;E
=V�U�2,0 ;E=V��U3V6A−2. The comparison with I3

�U3V2A+2B−2C−2 at EF�V�V* yields

B � 2A + C . �B15�

Note that the above condition is stronger than Eq. �B9�.
�3.3� This case is easy: the contribution must be at least

third order again. Both operators U�ni ,mi� are less relevant
than U�1,0� and U�0,−1� and no more relevant than U�1,
−1�. Thus, the contribution is automatically smaller than I3 at
any energy scale EF�V�V*.

We now have a full set of conditions at which the third
order contribution dominates at V�V* and the spin rectifi-
cation current scales as a negative power of the voltage.
These are Eqs. �B6�–�B8�, �B12�, �B14�, and �B15�.

The above analysis shows that I3 exceeds any contribution
to the spin rectification current which does not contain VU1
in the whole region EF�V�V*. I2 dominates the remaining
contributions for any V�V*. The contributions become
equal, I2= I3, at V=V**=U1/�2+2C−2B�. In the interval of volt-
ages V**�V�V*, the spin rectification current is dominated
by I3. At V�V**, the spin and charge rectification currents
are dominated by I2.

5. Numerical estimates

In order to get a feeling about the magnitude of the effect,
let us consider a particular choice of parameters A=B
=7/12, C=7/24, eV�0.01EF, and eV*�10−4EF. For such
A, B, and C, the scaling dimensions of the three most rel-
evant operators are the same. The inequalities �B7�, �B12�,
�B14�, and �B15� are satisfied. The equality A=B=2C corre-
sponds to a limiting case of Eq. �B6�. One finds that U
�0.01EF and eV**�0.1EF. Repeating the arguments of the
previous section, one can estimate the leading correction to
I3 as �I��eV /EF�7/12I3� I3. The spin rectification current is
the difference of two opposite electric currents of the spin-up
and -down electrons times � / �2e�. Even if EF is as low as
�0.1 meV, this still corresponds to the voltage V of the or-
der of microvolts and the currents21 �Eq. �24�� of spin-up and
-down electrons of the order of picoamperes, i.e., within the
ranges probed in experiments with semiconductor hetero-
structures. Certainly, the current increases if EF or V* is in-
creased.

APPENDIX C: EXPLICIT EVALUATION OF THE THIRD
ORDER CURRENTS

The charge or spin currents in the third order in the po-
tentials U are evaluated from the following perturbative ex-
pression:

Ic,s
bs�3��V� =

�− i�3

2! � �n↑ ± n↓��
CK

dt1dt2

�2 �TcÛ�n↑,n↓;0�

�Û�m↑,m↓;t1�Û�l↑,l↓;t2� , �C1�

where the sum runs over indices satisfying n+m+ l=0 for
= ↑ ,↓, CK is the Keldysh contour −�→0→�, Tc is the
time order on CK, and we omitted a constant prefactor. The

operators Û are given by

Û�n↑,n↓;t� = U�n↑,n↓�ei�n↑+n↓�teV/�ein↑�↑�t�+in↓�↓�t�. �C2�

The most relevant expressions are those arising
from the combinations U�1,0�U�0,−1�U�−1,1� and
U�−1,0�U�0,1�U�1,−1� �see Appendix B�. The third order
contributions to the current contain correlation functions of
the form

P�t1,t2,t3� = �Tce
±i��↑�t1�−�↓�t2�−�↑�t3�+�↓�t3�� . �C3�

We evaluate the correlation functions within the quadratic
model described by Eq. �7� and use relations �8� and
��̃c,s�t1��̃c,s�t1�=−2 ln(i�t1− t2� /
c+�), with an infinitesimal
��0 and 
c�� /EF the ultraviolet cutoff time. This leads to

P�t1,t2,t3� = �iTc�t1 − t3�/
c + ��2C−2A�iTc�t2 − t3�/
c + ��2C−2B

��iTc�t1 − t2�/
c + ��−2C, �C4�

where Tc�ti− tj�= �ti− tj�, if time ti stays later than tj on the
Keldysh contour, and otherwise, Tc�ti− tj�= �tj − ti�. Expres-
sion �C4� is independent of the � signs in Eq. �C3�.

The spin and charge current contributions, proportional to
U�1,0�U�0,−1�U�−1,1�, are complex conjugate to those
proportional to U�−1,0�U�0,1�U�1,−1�=U*�1,0�U*�0,
−1�U*�−1,1�. Thus, it is sufficient to calculate only the con-
tributions of the first type. In the case of the charge current,
their calculation reduces to the calculation of the following
two integrals over the Keldysh contour:

� dt1dt3P�t1,0,t3�exp�ieVt1/�� �C5�

and

� dt2dt3P�0,t2,t3�exp�− ieVt2/�� . �C6�

One of the times t1 and t2 is zero since the current operator is
taken at t=0 in Eq. �13�. The two integrals can be evaluated
in exactly the same way. We will consider only the first
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integral. We find eight integration regions. They correspond
to 2�2=4 possibilities for the branches of the Keldysh con-
tour on which t1 and t3 are located and two possible relations
�t1�� �t3� or �t3�� �t1�. In all eight cases, we first integrate over
t3. The integral reduces to the Euler B function. Then, we
integrate over t1. This yields a � function. Finally, we obtain
Eq. �22�.

The spin current contains three contributions proportional
to U�1,0�U�0,−1�U�−1,1�. Two of them reduce to the inte-
grals �C5� and �C6�. The third contribution is proportional to

� dt1dt2P�t1,t2,0�exp�ieV�t1 − t2�/�� . �C7�

Again, we have eight integration regions determined by the
choice of the branches of the Keldysh contour and the rela-
tions �t1�� �t2� and �t2�� �t1�. In each region, it is convenient
to introduce new integration variables: 
= �t1− t2� and t
=min�t1 , t2�. The integration over t reduces to a B function.
The integration over 
 produces an additional �-function fac-
tor. Finally, one obtains Eq. �23�.
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