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Asymmetric current-voltage �I�V�� curves, known as the diode or rectification effect, in one-dimensional
electronic conductors can have their origin from scattering off a single asymmetric impurity in the system. We
investigate this effect in the framework of the Tomonaga-Luttinger model for electrons with spin. We show that
electron interactions strongly enhance the diode effect and lead to a pronounced current rectification even if the
impurity potential is weak. For strongly interacting electrons and not too small voltages, the rectification
current Ir= �I�V�+ I�−V�� /2, measuring the asymmetry in the current-voltage curve, has a power-law depen-
dence on the voltage with a negative exponent, Ir�V−�z�, leading to a bump in the current-voltage curve.
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I. INTRODUCTION

Current rectification, also known as the diode effect, oc-
curs whenever the transport characteristics in electronic con-
ductors are asymmetric under the application of the driving
voltage. This asymmetry can have various origins. Best
known perhaps is the mismatch of band structures in macro-
scopic diodes, which leads to a potential wall that blocks the
motion of the particles in one direction, while it is not seen
by the particles moving in the opposite direction.

In the last years, rectification in mesoscopic and single-
molecule systems has attracted much attention. Even though
rectification by single asymmetric molecules had been sug-
gested 30 years ago,1 it was realized experimentally in the
1990s only.2–4 Asymmetric waveguides were constructed in
the inversion layer of semiconductor heterostructures.5,6

Transport asymmetries have been observed in carbon
nanotubes7,8 and in tunneling in quantum Hall edge states.9

Experimental progress has been accompanied by much the-
oretical activity10–17 with the main focus on Fermi-liquid sys-
tems.

An interesting source for rectification arises when the par-
ticle interaction is strong enough that a single-particle de-
scription becomes invalid. This naturally occurs in one-
dimensional systems, for which a Luttinger-liquid behavior
is expected. It has been known for some time now18 that in
such systems the current is strongly affected by the presence
of impurities, even when they are weak, due to their renor-
malization by electron-electron interactions. One can thus
expect that asymmetries in the impurity distribution lead to
strongly asymmetric current-voltage curves. This issue was
addressed very recently in the framework of the Luttinger
liquids of spinless particles.17 The rectification current
Ir�V�= �I�V�+ I�−V�� /2 can be measured as the dc response
to a low-frequency square voltage wave of amplitude V and
expresses the asymmetry of the I-V curve for forward and
reverse bias. It was shown that a single weak asymmetric
impurity is sufficient for a pronounced rectification effect
�see Fig. 1 for a sketch of the system�, leading to a large
rectification current Ir�V� at low voltages V. Moreover, an
unusual behavior of the current was revealed for systems
with strong repulsive interactions: A power-law dependence

of Ir on the voltage with a negative exponent, Ir�V−�z�,
within a range V*�V�V** �with V* and V** being expressed
by some powers of the impurity potential U; see also
below�—i.e., the rectification current increases as the voltage
is lowered. At V�V* the increase crosses over into a regular
decrease such that the equilibrium condition I=0 at V=0 is
met. The qualitative behavior is shown in Fig. 2.

In this paper we pursue this work for real electrons car-
rying a spin. We show that we can provide lower and upper
limits for the voltage V, within which perturbation theory can
be applied, and determine the leading power-law behavior of
the rectification current, Ir�Vz, as a function of the charge
and spin interaction strengths gc and gs. This leads to a phase
diagram for the leading power-law dependence of Ir with a
much richer structure than in the spinless case �Fig. 3�. We
show that, similar to the spinless case, a negative exponent z,
Ir�V−�z�, appears for strong repulsive electron-electron inter-
actions within a voltage range that is determined by the bare
impurity scattering strength. Figure 3 shows our main result,
the leading power-law behavior of the rectification current Ir.
The hatched region in the figure marks the range of �gc ,gs�,
in which the exponent z becomes negative and in which the
rectification current shows the behavior sketched in Fig. 2.

The paper is organized as follows: In the next section, we
introduce the model of electrons in a one-dimensional sys-
tem and argue how scattering on a single impurity can lead

FIG. 1. Sketch of system of length L with a simple asymmetric
potential U�x�, consisting in two point scatterers of different mag-
nitude in a region aU�L. The horizontal lines qualitatively repre-
sent the density profile �averaged over Friedel oscillations� expected
in the system. The reservoirs determine the densities of the injected
particles at the far left and right sides, and are controlled by the
voltage source. The shaded area represents a more general asym-
metric impurity potential, which would have a similar asymmetric
density profile.
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to rectification. We then quantitatively address this problem
within the bosonization approach and show that the most
relevant power-law behavior of the rectification current can
be obtained within second- and third-order perturbation
theory. The results are listed in Table I and in Fig. 3. In the
Appendix we show that higher-order perturbative contribu-
tions cannot exceed the leading second- and third-order ex-
pressions.

II. MODEL AND ORIGIN OF RECTIFICATION

Let us consider a one-dimensional conductor of length L
with electron-electron interactions that are effectively short
ranged due to screening by gates. Such a system allows a
description by the Tomonaga-Luttinger model, given by the
Hamiltonian

H =� dx�
�

	− �vF��R�
† �x�i�x�R��x� − �L�

† �x�i�x�L��x��

+ U�x���
†�x����x�
 +� dx dy�

���

K����x − y���
†�x�

����
† �y�����y����x� , �1�

where �R� and �L� are the operators for right- and left-
moving electrons with spin �= ↑ ,↓, and ��=�R�+�L� is the
conventional electron operator. U�x� is the asymmetric po-
tential �i.e., U�x��U�−x�� localized in a small region about
x=0. K�x−y� describes the electron-electron interaction. For
the following discussion it is important to assume that the
long-ranged Coulomb interaction is screened by the gates, so
that K�x−y� becomes a short-ranged, rapidly decreasing
function of �x−y�.

On its two ends, at x= ±L /2, the system is adiabatically
coupled to electrodes that serve as reservoirs of particles and
whose chemical potentials �1,2 are controlled experimen-
tally: We assume that one electrode is fixed at the ground,
�2=�, while the other one is connected to the voltage
source, �1=�+eV. For such situations, it is possible to dis-
tinguish between two effects, addressed more quantitatively
below, that lead to rectification.17

�1� The “injected-density-driven” rectification as the re-
sult of the dependence of the charge density on the voltage:
For simplicity, let us consider noninteracting particles. For
the voltages ±V, only electrons in the energy ranges between
�� ,�+eV� and ��−eV ,�� �at zero temperature� can contrib-
ute to the transport. The presence of a scatterer U with an
energy-dependent transmission coefficient R�E� in the sys-
tem leads to different transmission coefficients for ±V and
thus to different currents. This is seen as follows: For non-
interacting particles, the reflection coefficient R�E� is inde-
pendent of the propagation direction19 and the current is
I�V����2

�1�1−R�E��dE. If the bandwidth EF is the only rel-
evant scale for the energy dependence of R�E�, then, for
small U and V, we have R�E��U2 /EF

2 and the rectification
current Ir��0

eV�R�EF−E�−R�EF+E��dE�2R��EF��0
eVE dE

�R�EF��eV�2 /EF�U2�eV�2 /EF
3 . The rectification current is

TABLE I. Most relevant exponents z for the rectification current
�see Eqs. �18� and �21��. Permutations and sign changes of n ,m , l
leading to the same exponents are not shown.

Second order

Phase Exponent z nc ns mc ms

�A� 2gc+2gs 1 1 −1 −1

�B� 8gc 2 0 −2 0

Third order

Phase Exponent z nc ns mc ms lc ls

�C� 6gc+2gs−2 1 1 1 −1 −2 0

�D� 24gc−2 2 0 2 0 −4 0

FIG. 2. Qualitative behavior of the rectification current, Ir�V�
= �I�V�+ I�−V�� /2, in the region where the leading �third-order� ex-
ponent is negative, z�0. For voltages larger than V*, the rectifica-
tion current decreases until, at V**, the leading second-order term
exceeds the third-order amplitude and leads to a further increase of
the current.

FIG. 3. Diagram for the leading power-law contributions to the
rectification current, Ir�Vz, for voltages V�V*. The exponents z
for the four different phases are given by the formulas in the figure
�see also Table I�. The zone boundaries indicate crossover regions.
On the left of the dashed line V*	0, and on the right V*=0 �see Eq.
�11��. In the hatched area, z�0, and the rectification current shows
the behavior sketched in Fig. 2.
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nonzero. For noninteracting particles it is proportional to V2.
As shown below, a modified power-law dependence on V is
obtained in the presence of electron-electron interactions.

We remark that this argument does not require a spatially
asymmetric impurity potential since the asymmetry is intro-
duced through the injected charge densities.

�2� The “asymmetric-impurity-driven” rectification effect
is independent of injected densities. It results from the renor-
malization of the asymmetric potential U�x� by the electron-
electron interactions, which leads to the asymmetric current-
voltage curves. For the Luttinger liquid, this naturally
involves multiparticle processes, so that all such possible
terms have to be taken into account in the modeling. As
shown in Ref. 17, this effect is absent in the first two orders
in the scattering potential U, and we must address it pertur-
batively at the order �U3.

The “asymmetry-driven” rectification effect can be quali-
tatively visualized �in a mean-field picture� as follows: In an
interacting system, electrons are backscattered by a com-
bined potential Ũ�x�=U�x�+W�x�, where W�x� is the self-
consistent electrostatic potential created by the average local
�nonuniform� charge density. Depending on the voltage sign,
the density decreases or increases as a function of the posi-
tion x and the magnitude of U�x� �see Fig. 1�. Asymmetric
impurities create different density profiles for opposite volt-
ages and lead to different combined backscattering potentials
Ũ�x�. The rectification effect is a consequence of the modi-
fication of the current by the backscattering potential.

III. BOSONIZATION

For the quantitative treatment of the rectification effect we
use the bosonization technique, which has become a standard
tool for one-dimensional problems.20 In the bosonization lan-
guage, the creation of a right- or left-moving electron at the
coordinate x is expressed by �
�

† �x���
�
† exp	±i�kF
 x

+�
��x��
, for 
=R ,L, where kF
 / are the densities of
right- and left-moving particles, where �
�

† , the Klein factors,
raise the total number of right- or left-moving electrons with
spin � by one and where �
��x� is a boson field that de-
scribes the dressing of this particle by a chain of particle-hole
excitations. In correlation functions, the Klein factors keep
track of particle conservation and can contribute with signs
to the expressions, as they anticommute for different �
 ,��.
These signs are all equal in the present calculations since we
assume conservation of the Sz component of the spin by the
scattering process. This allows us to drop the Klein factors in
the following expressions.

In one dimension, the charge and spin degrees of freedom
of the Hamiltonian �1� decouple, and it is convenient to set
�c=�
=L,R��
↑+�
↓� /2 and �s=�
=L,R��
↑−�
↓� /2, which
are bosonic fields related to the charge and spin densities as
�c=e��x�c+2kF� / and �s= �� /2��x�s /, where kF= �kFR
+kFL� /2.

For U=0 the bosonization leads to a quadratic action for
the fields �c,s, which can be written in the form

S0 =� dx dt �
a=c,s

1

8ga
���t�a�2 − ��x�a�2� . �2�

The quantities gc and gs are the charge and spin interaction
strengths resulting from the screened electron-electron inter-

action K�x−y�. A noninteracting system is characterized by
gc=gs=1/2. Repulsive �attractive� interactions are expressed
by gc�1/2 �gc	1/2�. Interactions with conserved SU�2�
spin symmetry have gs=1/2. For gs�1/2, a neglected sine-
Gordon term of �s in S0, describing spin-flip backscattering,
would become relevant. The physics of such systems is con-
siderably different from that of the conductors described here
�see, e.g., Ref. 20�, since the fields �s would order and be-
come massive. We exclude such situations explicitly by as-
suming gs�1/2, such that all backscattering terms in S0 are
scaled to zero.

If we assume that U�x� is concentrated in a small region
aU�L about x=0, the backscattering can be described by the
values of the fields at x=0 only, �c,s�t��c,s�x=0, t�. This
“single-point” description of U�x� restricts the model to
wavelengths longer than aU—i.e., to energy scales smaller
than EU��vF /aU �with vF the Fermi velocity�. Since the
characteristic energy scale is set by the voltage, EU provides
an upper limit for the applied voltage, eV�EU, and the va-
lidity of the model. Under this assumption, the impurity term
has the form18

Simp = −� dt �
nc,ns�Z

�U�nc,ns�ei��nc,ns�einc�c+ins�s. �3�

The integers nc,s physically express the transfer of nc charges
and ns spins between the right- and left-moving electrons
�where, for instance, nc=ns=1 corresponds to the back-
scattering of an up-spin electron and nc=0, ns=2 to the back-
scattering of an up-spin electron and a down-spin electron
with opposite incident directions�. U�nc ,ns� and ��nc ,ns� are
the modulus and phase of the effective multiparticle back-
scattering potential �for symmetric potentials U�x�=U�−x�,
the ��nc ,ns� would vanish�. Forward scattering can be ab-
sorbed in S0 by a shift of �c. Since charges and spins are
bound to physical electrons, the sum �indicated by the prime
next to it� runs over nc,s such that nc+ns is even. �nc�= �ns�
=1 corresponds to the usual 2kF backscattering of electrons.
The most relevant contribution to the currents arises from the
backscattering processes with nc+ns=0, ±2. These terms
dominate in the “density-driven” rectification effect, but
higher orders in nc+ns are required for the “asymmetry-
driven” rectification effect, and the full sum over nc,s, there-
fore, must be kept.

Throughout the following analysis, U�x� is assumed to be
weak, �U��EF �with EF�bandwidth�. Due to the strong
renormalization of the impurity strength through the
electron-electron interactions, the precise nature of U is of no
major importance; U�nc ,ns� is an effective many-particle po-
tential, dressed by short-time electron processes with fre-
quencies well above EU. Its magnitude can be roughly esti-
mated as18

U�nc,ns� � kF� dx e2ikFncxU�x� , �4�

which means that U�nc ,ns��U. Its further renormalization
by low-energy processes, leading to a power-law correction
in V, is considered below. The coefficients U�nc ,ns� depend
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further on the applied voltage through the densities kFL and
kFR.

Since the Hamiltonian is Hermitian, U�nc ,ns�=U�−nc ,
−ns� and ��nc ,ns�=−��−nc ,−ns�. Because of the spin sym-
metry, U�nc ,ns�=U�nc ,−ns� and ��nc ,ns�=��nc ,−ns�. For
spatially asymmetric potentials, as considered here,
��nc ,ns����−nc ,ns�.

If U=0, the system is characterized by right-moving par-
ticles injected from the left reservoir with the chemical po-
tential �1 and left-moving particles injected from the right
reservoir with chemical potential �2. Due to the absence of
backscattering in Eq. �2�, the right and left movers are in
equilibrium with the corresponding reservoirs. In the pres-
ence of an impurity U, the equilibrium notion of chemical
potentials becomes meaningless in the system; the quantities
�1,2 enter only through the voltage dependence of the in-
jected carrier densities in the description and appear in the
backscattering term that couples right- and left-moving par-
ticles. Explicitly, this can be seen by switching to the inter-

action representation H→ Ĥ=H−�1NR−�2NL for U=0. This
shifts the single-particle energies of the injected particles,

and the electron operators become �R�x , t�→ �̂R�x , t�
=ei�1t/��R�x , t� and �L�x , t�→ �̂L�x , t�=ei�2t/��L�x , t�. Hence,
for U�0, the backscattering of every charge described by
Simp acquires a time dependence on the difference of chemi-
cal potentials, �1−�2=eV, as e±ieVt/�. For the nc backscat-
tered charges, this becomes

Simp = −� dt �
nc,ns�Z

�U�nc,ns�ei��nc,ns�einc�c+ins�seinceVt/�.

�5�

The time dependence of the backscattering operator reflects
the nonequilibrium constraints. In order to calculate expec-
tation values, we have to consider an appropriate nonequilib-
rium technique, such as provided by the Keldysh
method:21,22 We assume that in the remote past, t→−�, the
system is fully described by S0 and the ground state �0� of the
shifted Hamiltonian H−�1NR−�2NL. Averages are taken
over this well-defined ground state �0� only, while the impu-
rity term Simp is taken into account through the time evolu-
tion operator S�−� , t�, given by

S�t�,t�� = T exp�−
i

�
�

t�

t�
dt Himp�t�� , �6�

with Himp the impurity Hamiltonian in the interaction repre-
sentation and T the time order operator. The expectation
value of an operator O�t� is expressed by

�O�t�� = �0�S�− �,t�O�t�S�t,− ���0� , �7�

with S�t ,−��=S�−� , t�†.

IV. CURRENTS

In a clean system, the current flow is proportional to the
voltage and is given by the Landauer formula23–25 I0�V�
=2Ve2 /h �the factor of 2 accounts for the two spin channels�.

In the presence of the impurity scatterer U, the backscatter-
ing corrects the current as I�V�= I0�V�+ Ibs�V�. This shows
that the rectification current depends only on the backscatter-
ing currents, Ir�V�= �Ibs�V�+ Ibs�−V�� /2. The backscattering
current operator can be obtained, for instance, by the time
variation of the number NR of right-moving particles, Ibs
= �d/dt�NR= i�H ,NR� /�. If we set e=�=vF=1 for ease of
notation, this yields, in the interaction representation,

Ibs�V,t� = i �
nc,ns

�ncU�nc,ns�ei��nc,ns�einc�c+ins�seincVt, �8�

and we need to calculate

�Ibs�V�� = �0�S�− �,0�Ibs�V,0�S�0,− ���0� , �9�

where S�t , t�� is the time evolution operator and �0� the
ground state of the system described by S0.

V. RESULTS FROM WEAK-COUPLING THEORY

For a weak impurity potential, the currents can be calcu-
lated within perturbation theory.

As shown by Kane and Fisher,18 the backscattering poten-
tial is renormalized by the electron-electron interactions and
scales as a power law with the characteristic energy �here set

by V� as Ueff�nc ,ns��U�nc ,ns��V /EF�gcnc
2+gsns

2−1. Perturbation
theory is applicable when Ueff�EF.

For nc
2gc+ns

2gs	1, this condition is always met for V ,U
�EF, while for nc

2gc+ns
2gs�1, we must have

V � Vnc,ns

*  �U/EF�1/�1−nc
2gc−ns

2gs�EF, �10�

for any admissible values of nc ,ns. We set Vnc,ns

* =0 whenever
nc

2gc+ns
2gs	1. Since gs�1/2, only ns=0,1 have to be con-

sidered. We always have V2n+2,0
* �V2n,0

* and V2n+1,1
* �V2n−1,1

* ,
so that the only important quantities are V1,1

* and V2,0
* . For

gc+gs�1 and gc�1/4 both V1,1
* and V2,0

* are nonzero, and
we have V1,1

* 	V2,0
* for gs�3gc. The lower cutoff energy is

given by

V* = max�V1,1
* ,V2,0

* � . �11�

Interestingly, if V*	0, perturbation theory requires a voltage
V that is not too small, V	V*, which is much in contrast to
the usual perturbation theory, in which V would be required
to be a small parameter close to V=0.

The upper energy limit is set by the energy EU, at which
the corrections to the model become important. The pertur-
bation theory is valid in the range eV*�eV�EU.

In this case, the rectification current is dominated by the
second- and third-order perturbative expressions from an ex-
pansion in powers of U. Due to the renormalization of the
potentials and due to the constraints on particle conservation
and even sums of nc+ns, third-order expressions can become
larger than the second-order ones and have to be taken into
account. In the Appendix we further show that, for V	V*,
higher orders cannot exceed the second- and third-order ex-
pressions and can be safely neglected.
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A. Second order

As mentioned, the rectification effect arises from the
asymmetry of the charge-spin density profiles. The “injected-
density-driven” rectification effect is due to the dependence
of the density on the voltage and, hence, depends on how the
coefficients U�nc ,ns� change upon the variation of the den-
sity �see Eqs. �3� and �4��. The dominant contribution ap-
pears at second order in U, which reads after expanding Eq.
�9�

�Ibs
�2��V�� = �

CK

dt�
n,m

�incU�n�U�m�

� ei��n�+i��m�eimcVt�Tce
in��0�eim��t��0, �12�

where we have used the notations n= �nc ,ns� and n��t�
=nc�c�t�+ns�s�t�. �¯�0 is the average over the ground state
of S0, CK is the Keldysh contour −�→0→−�, and Tc is the
chronological order operator on CK. Particle conservation
imposes m=−n. Since ��−n�=−��n�, the phases � cancel
each other. Ignoring the voltage dependence of U, this ex-
pression, therefore, changes sign upon V→−V and would
naively not contribute to the rectification effect �which is a
consequence of the invariance of the action S0 under the
change �c,s→−�c,s�. However, since U depends on the volt-
age through the density kF �see Eq. �4��, we can expand it in
powers of V as U=U0+VU1+¯. At small voltages V�EF,
the correction is linear, and if the bandwidth EF is the only
relevant scale for the energy dependence of U, we have U1
�dU0 /dE�U0 /EF. The rectification current can be written
as �choosing V	0�

Ir
�2��V� = 2V�

CK

dt�
n

�incU0�n�U1�n�e−incVt

� �Tce
in��0�e−in��t��0. �13�

The propagators in the latter equation have the usual form
known from the Luttinger-liquid theory:20

�Tce
inc�c�0�+ins�s�0�e−inc�c�t�−ins�s�t��0

= enc
2�Tc�c�0��c�t��0+ns

2�Tc�s�0��s�t��0, �14�

where the free propagators are given by

��c,s�t1��c,s�t2��0 = − 2gc,s ln�i�t1 − t2� + �� , �15�

with �	0 an infinitesimal constant. We can now extract the
voltage dependence of the current by changing to the time
variable s=Vt. The propagators become

�Tce
inc�c�0�+ins�s�0�e−inc�c�t�−ins�s�t��0 � V2nc

2gc+2ns
2gs. �16�

From the integration measure, we obtain another factor V−1,
which cancels the V from the expansion of the potential.
Hence the rectification current has the form

Ir
�2��V� = �

nc,ns

�ncC�n�Vz�2��n�, �17�

with C constants of the order of C�U0U1�1 and

z�2��n� = z�2��nc,ns� = 2nc
2gc + 2ns

2gs. �18�

The leading order is obtained by minimizing the exponent,
which is achieved by one of the processes �nc ,ns�
= �2,0� , �0,2� , �1,1� �and the combinations obtained by
changing signs� only, as backscattering of more particles
leads to larger z�2�. Terms with nc=0 do not couple to the
voltage �eincVt1� and coincide with the equilibrium value at
V=0. Therefore, their amplitude vanishes. The comparison
of the remaining two processes shows the dominance of
�nc ,ns�= �1,1� �labeled as �A� in Fig. 3� for gs�3gc and
�nc ,ns�= �2,0� for gs	3gc ��B� in Fig. 3�. The noninteracting
system is characterized by gc=gs=1/2, leading to z=2. This
result certainly agrees with the result from the application of
the Landauer formalism to a noninteracting problem.

B. Third order

The “asymmetry-driven” rectification effect appears at
third order. The contribution to the backscattering currents
becomes

�Ibs
�3��V�� =

1

2!
�

CK

dt1 dt2 �
n,m,l

�ince
imcVt1+ilcVt2

� U�n�U�m�U�l�ei��n�+i��m�+i��l�

� �Tce
in��0�eim��t1�eil��t2��0, �19�

which has to be evaluated with the constraints nc+mc+ lc
=ns+ms+ ls=0, together with nc+ns, mc+ms, and lc+ ls being
even. Again, diagrams in which nc=mc= lc=0 do not couple
to the voltage and vanish. The third-order term is no longer
invariant under the transformation �V ,�c�→ �−V ,−�c� be-
cause, generally, ��n�+��m�+��l��0 �i.e., ��nc ,ns�
+��mc ,ms����nc+mc ,ns+ms��; the invariance would re-
quire the additional transformation �→−�, corresponding to
a mirror reflection x→−x of U. Since the sum of the expo-
nents � does not vanish, Ir�0, and the same analysis as
before leads to

Ir
�3��V� = �

n,m,l

�C�n,m,l�Vz�3��n,m,l�, �20�

with

z�3��n,m,l� = gc�nc
2 + mc

2 + lc
2� + gs�ns

2 + ms
2 + ls

2� − 2 �21�

and the amplitudes C�U3. Table I lists the smallest expo-
nents z at this order, characterized by the letters �C� and �D�,
for which the rectification current is nonzero. The exponent
zD is smaller than zC for gs	9gc.

To obtain the leading power-law behavior for given
�gc ,gs�, we compare the amplitudes from second order,

�U2Vz�2�
, and third order, �U3Vz�3�

, for voltages V�V* us-
ing Eq. �10�. If V*=0, the mere comparison of exponents is
sufficient. The result of the comparison is represented in Fig.
3. The diagram is not a phase diagram in the proper sense
because the crossover lines shift with the voltage. Close to
the crossover lines, all contributions of the neighboring
phases are large, whereas far from the boundaries, a single
power-law dominates. Finally, as shown in the Appendix,
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higher-order perturbative corrections lead to less relevant
power laws and can be neglected.

VI. CONCLUSIONS

The above results show that the inclusion of spin degrees
of freedom leads to a more diverse behavior of the rectifica-
tion current for different interaction strengths than in the
spinless case of Ref. 17. The leading power laws for the
rectification current as a function of the interaction strengths
gc and gs are represented in Fig. 3.

The most interesting region is characterized by a negative
exponent, z�0. It leads to the unusual behavior of a decreas-
ing rectification current as the voltage V	V* is raised. Since
negative exponents appear only from the third-order contri-
butions, they are a realization of the “asymmetry-driven”
rectification effect and due to the presence of an asymmetric
impurity in the system. The decrease stops at the upper volt-
age V**�U1/��z�3��+z�2��, where the amplitude of the second-
order contribution exceeds that of the third order. The quali-
tative behavior is sketched in Fig. 2.

The rectification effect is strong if the magnitude of Ir
becomes comparable to that of the total current I�V��V and
to that of the most relevant contribution to the backscattering

current,18 Ibs�V��V2nc
2gc+2ns

2gs−1 with �nc ,ns�= �1,1� or
�nc ,ns�= �2,0�. For interaction strengths gc,s such that V*=0,
the corrections are weak and generally Ir�V�� Ibs�V�� I�V�.
For V*	0, however, Ibs�V� becomes comparable to I�V� at
V�V*—i.e., close to the limit of validity of perturbation
theory. For such voltages, in regions �C� and �D� the ratio of
rectification current to total current can roughly be estimated
as Ir�V� / I�V��U3�V*�z�3�−1. In phase �C�, when V*=V1,1

*

�i.e., 3gc−gs	0�, this leads to the ratio Ir�V� / I�V�
��V*�3gc−gs =U�3gc−gs�/�1−gc−gs�. The rectification current,
therefore, can become comparable to I�V� �as well as to
Ibs�V�� when 3gc−gs is small. The comparison in the region
where V*=V2,0

* �i.e., 3gc−gs�0� yields a similar condition
for 2gs−6gc being small. In phase �D�, we find Ir�V� / I�V�
��V2,0

* �12gc, which may lead to an enhancement of the recti-
fication effect for weak impurities as gc becomes small.

To conclude, we have shown that one-dimensional elec-
tronic conductors with screened electron-electron interac-
tions can exhibit a strong rectification effect in the presence
of spatially asymmetric impurity scatterers. The rectification
current shows a power-law behavior, Ir�Vz, with an expo-
nent z that depends on the electron interaction strengths gc
and gs only and which can be determined from second- and
third-order perturbation theory. For small values of gc the
exponent becomes negative, leading to the upturn of Ir about
the voltage V* �Fig. 2�. We note that this effect was obtained
in the framework of weak-coupling theory. For voltages V
�V*, the effective impurity scattering strength exceeds EF,
marking a crossover into the strong backscattering
regime.17,18 All currents eventually vanish at V=0.
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APPENDIX: ESTIMATE OF HIGHER PERTURBATIVE
ORDERS

In the preceding study we have shown that third-order
contributions can exceed the second-order ones for small val-
ues of gc ,gs. To complete this, we have to give an additional
proof that higher perturbative orders K�4 cannot exceed
these values in the physical range of gc	0 and gs�1/2.

Since the calculation of the rectification current involves
contributions that are lesser relevant than the leading power
laws for the backscattering current, we have also to show
that the neglected backscattering term in S0, proportional to
�dx cos�2�s�, cannot generate additional important correc-
tions to the rectification current. Under renormalization, this
term has to be completed by allowing the general interaction
��dx cos�2n̂s�s� with a summation over integer n̂s�0 �the
notation n̂s is used to distinguish these indices from those ns
appearing in U�nc ,ns��. Under the renormalization group,
when integrating over high energies down to the characteris-
tic energy V, such terms are renormalized as20

�V /EF��2n̂s�
2gs−2.

We choose the following strategy: Let us assume to be in
the perturbative region with voltages V	V*, such that U ,V

�EF and U�V /EF�gcnc
2+gsns

2−1�EF. A general higher-order
correction to the current has the form

I�N,M� = V �
	nc,ns


N factors

�UVgcnc
2+gsns

2−1� �
	n̂s


M factors

V�2n̂s�
2gs−2, �A1�

where for simplicity we set EF=1 and neglect prefactors of
order 1. Charge and spin conservation here requires that
�nc=0 and �ns+��2n̂s�=0. Since gs�1/2, the product over

the V�2n̂s�
2gs−2 is always �1, and if we denote by I�N� the

expression obtained from Eq. �A1� by suppressing these M
factors, we always have I�N,M�� I�N�. Therefore, the correc-
tions arising from �dx cos�2�s� are always small.

Let us choose a subset of factors of I�N� and denote this
quantity by J,

J = V �
selection of 	nc,ns


�UVgcnc
2+gsns

2−1� . �A2�

Since all factors are smaller than 1, we have

I�N,M� � I�N� � J . �A3�

We will now show that, for K�4, it is always possible to
choose a J that is smaller or equal to the dominating second-
or third-order contribution. The larger the nc,s, the smaller
become the factors in I�N� and J. Much in the analysis, there-
fore, depends on the maximal value of �nc�, which we denote
by n̄c.

This method of comparison does not hold for the com-
parison between the second- and third-order expressions
themselves. Since these expressions are products of two or
three factors only, we cannot choose a suitable subset for J
but have to deal with the full expressions. The exponents
are therefore largely determined by the constraints of par-
ticle conservation plus having even sums of charge and spin
numbers. The result of comparison was discussed above. For
K�4, however, the larger freedom of choice of J allows us
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to show that these higher-order expressions are small com-
pared to the second- and third-order ones. The following
estimates contain the proof of this statement.

For any choice of maximal n̄c we choose a suitable J

consisting of two or three factors UVnc
2gc+ns

2gs−1 and the
prefactor V or, if required, the prefactor V2 with the addi-
tional V arising from the expansion of a U �similarly to the
second-order calculation�. We then show that this J is smaller
or equal to one of the expressions

IA = U2V2gc+2gs, �A4�

IB = U2V8gc, �A5�

IC = U3V6gc+2gs−2, �A6�

ID = U3V24gc−2, �A7�

for any gc�0 and gs�1/2. This will prove that I�N��J can-
not exceed the dominant second- or third-order expression,
given by the maximum of IA,B,C,D.

Since n̄c�1, the particle conservation imposes that an-
other or several numbers nc are different from zero. These
are denoted by ñc and m̃c below. If not further specified, we
only assume that �ñc� , �m̃c��1. If n̄c is odd, there is at least
another odd �ñc��1 and, due to the requirement of even nc
+ns, there exist at least two odd �ns��1, denoted by ñs and
m̃s.

We distinguish between the following five cases.
�i� n̄c�2 is even; all nonzero �nc�= n̄c: If in the couples

�nc ,ns� all nc�0 have ns=0, I�N� �and I�N,M�� is symmetric
under the change of sign V→−V, and the rectification cur-
rent vanishes �note that the ns for which nc=0 and the n̂s can
be nonzero though�. This situation is similar to the second-
order case discussed above. A rectification current exists
since the potential U depends on the voltage through the
density kF. An expansion of a U to linear order in V allows
us to choose a J of the form

J = V2�UVn̄c
2gc−1��UVn̄c

2gc−1� � U2V�22+22�gc = IB. �A8�

On the other hand, if not all ns are zero, there must be an
even ns= ñs with �ñs��2, and we can choose for J

J = V�UVn̄c
2gc+ñs

2gs−1��UVn̄c
2gc−1�

� U2V�22+22�gc+22gs−1 � U2V8gc+2gs � IA,B, �A9�

where we have used gs�1/2.
�ii� n̄c�2 is even; all nonzero �nc� are even but are not all

equal: This condition excludes n̄c=2 as it coincides with the
previous case. For n̄c�4 there exist two other nonzero and
even �ñc� , �m̃c��2 or another �ñc��4 and an arbitrary �m̃c�
�0. We then choose

J = U3V�n̄2+ñc
2+m̃c

2�gc−2 � U3V�42+8�gc−2 = ID. �A10�

�iii� n̄c�2 is even; there is an odd �nc�: Since �nc=0,
there exist at least two odd �ñc� , �m̃c��1, and since nc+ns
must be even, there must be two odd �ñs� , �m̃s��1. This leads
to the bound

J = U3V�n̄c
2+ñc

2+m̃c
2�gc+�ñs

2+m̃s
2�gs−2 � U3V�22+1+1�gc+�1+1�gs−2 = IC.

�A11�

�iv� n̄c=1: In this case all nc are �nc�=1 or zero. If all
nonzero nc have ns= ±1, I�N,M� is symmetric under V→−V,
and we have to expand a U to linear order in V. If we choose
a �ñc�=1 and two �ñs� , �m̃s�=1, we can set

J = VU2V�n̄c
2+ñc

2�gc+�ñs
2+m̃s

2�gs−1 � U2V�1+1�gc+�1+1�gs = IA.

�A12�

On the other hand, if there is a couple �ñc , ñs� with ñc�0 and
�ñs��3, we have the estimate

J = U2V�n̄c
2+ñc

2�gc+ñs
2gs−1 � U2V�1+1�gc+32gs−1 � U2V2gc+7gs � IA.

�A13�

�v� n̄c�3 is odd: Since n̄c is odd, there must be at least
another odd �ñc��1, and, to fulfill that nc+ns is even, there
must be two odd �ñs� , �m̃s��1, such that

J = U2V�n̄c
2+ñc

2�gc+�ñs
2+m̃s

2�gs−1

� U2V�32+1�gc+�1+1�gs−1 � U2V10gc � IB. �A14�

We conclude that higher-order terms cannot exceed the
second- and third-order expressions for V�V*.

1 A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 �1974�.
2 N. J. Geddes, J. R. Sambles, D. J. Jarvis, W. G. Parker, and D. J.

Sandman, Appl. Phys. Lett. 56, 1916 �1990�.
3 A. S. Martin, J. R. Sambles, and G. J. Ashwell, Phys. Rev. Lett.

70, 218 �1993�.
4 C. Joachim, J. K. Gimzewski, and A. Aviram, Nature �London�

408, 541 �2000�.
5 H. Linke, T. E. Humphrey, A. Löfgren, A. O. Sushkov, R. New-

bury, R. P. Taylor, and P. Omling, Science 286, 2314 �1999�.
6 A. Löfgren, I. Shorubalko, P. Omling, and A. M. Song, Phys. Rev.

B 67, 195309 �2003�.
7 H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker,

Science 293, 76 �2001�.
8 C. Papadopoulos, A. J. Yin, and J. M. Xu, Appl. Phys. Lett. 85,

1769 �2004�.
9 S. Roddaro, V. Pellegrini, F. Beltram, G. Biasiol, L. Sorba, R.

Raimondi, and G. Vignale, Phys. Rev. Lett. 90, 046805 �2003�.
10 T. Christen and M. Büttiker, Europhys. Lett. 35, 523 �1996�.
11 P. Reimann, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 79, 10

�1997�.
12 J. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan, Phys. Rev. Lett.

88, 228305 �2002�.
13 S. Scheidl and V. M. Vinokur, Phys. Rev. B 65, 195305 �2002�.
14 A. Komnik and A. O. Gogolin, Phys. Rev. B 68, 235323 �2003�.

RECTIFICATION IN ONE-DIMENSIONAL ELECTRONIC… PHYSICAL REVIEW B 72, 125311 �2005�

125311-7



15 D. Sánchez and M. Büttiker, Phys. Rev. Lett. 93, 106802 �2004�.
16 B. Spivak and A. Zyuzin, Phys. Rev. Lett. 93, 226801 �2004�.
17 D. E. Feldman, S. Scheidl, and V. M. Vinokur, Phys. Rev. Lett.

94, 186809 �2005�.
18 C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 �1992�.
19 L. D. Landau and E. M. Lifshitz, Quantum Mechanics �Addison-

Wesley, Reading, MA, 1964�.

20 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-
versity Press, Oxford, 2004�.

21 L. V. Keldysh, Sov. Phys. JETP 20, 1018 �1965�.
22 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 �1986�.
23 D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 �1995�.
24 V. V. Ponomarenko, Phys. Rev. B 52, R8666 �1995�.
25 I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 �1995�.

BRAUNECKER, FELDMAN, AND MARSTON PHYSICAL REVIEW B 72, 125311 �2005�

125311-8


