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On Solutions of the nonequilibrium x-ray edge problem

Bernd Braunecker
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EPFL, CH-1015 Lausanne, Switzerland
~Received 15 November 2002; published 22 October 2003!

We rediscuss a nonequilibrium x-ray edge problem which in recent publications led to discrepancies be-
tween the results of the perturbative and of an extended Nozie`res-De Dominicis approach. We show that this
problem results from an uncritical separation of momenta of the scattering potential, and we propose a cor-
rected Nozie`res-De Dominicis solution.
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I. INTRODUCTION

We address a question raised recently by Combescot
Roulet1 ~CR! in the context of the nonequilibrium x-ray edg
problem. The latter was studied some years ago by Ng2 who
developed an extension of the well-known Nozie`res and De
Dominicis3 ~ND! technique. In the late 1960s, ND devise
this method for the computation of the x-ray absorption sp
trum. They provided with it an elegant description of t
shape of the edge singularity in terms of the scattering ph
shift at the Fermi surface. The approach is based on s
subtle approximations, though, and thorough check of
condition of validity is required. Such a check is provide
for instance, by comparison with the perturbative parq
diagram result of Roulet, Gavoret, and Nozie`res,4,5 and the
validity of ND’s solution for the original x-ray problem ca
in this sense be proven. For the nonequilibrium case, h
ever, CR revealed an inconsistency by comparing a sim
parquet diagram summation to Ng’s result, yet they did
provide an explanation of its origin. In the present paper,
show that the discrepancies arise from an uncritical use
the decoupling of the momenta of the scattering poten
Further, we show how ND’s method can be modified to yie
a result coinciding with the perturbative one. This is illu
trated on CR’s academic problem for which it turns out th
Ng’s multichannel extensions are not required.

II. NONEQUILIBRIUM X-RAY PROBLEM

The nonequilibrium system to be discussed consists
two Fermi seasn51,2, referred to assubbandswhich are
characterized by the fixed chemical potentialsm1,m2 and
the energies«1 ,«2 at the bottom of the subbands. We assu
that m1.«2, so there is a nonzero overlap between the b
tom of the subband 2 and the Fermi surfacem1. A core state
with energy«d and an infinite mass is assumed to exist b
low the subbands. The qualitative situation is shown in F
1.

If both subbands were isolated, the x-ray absorption sp
trum would be the result of a simple superposition of tw
independent x-ray problems, and two edge singularities
responding tom1 and m2 could be observed. The mixtur
between the two subbands, however, allows for a new ph
cal process: Particle–hole excitations with the particle in o
subband and the hole in the other one become possible
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energies that may be positive or negative~see Fig. 1!. The
form of the absorption spectrum is changed considera
The edge singularities are broadened, the core–hole acq
a finite lifetime, and absorption below the threshold becom
possible, where the missing energy is compensated by s
particle–hole excitations of negative energy.

The Hamiltonian of the system is assumed to be given

H5(
kn

«knckn
† ckn1«db†b1 (

kk8nn8
Vkk8

nn8ckn
† ck8n8bb†,

~1!

wheren51,2 labels the subbands. Conduction electrons w
momentak in the subbandsn are created and annihilated b
ckn

† and ckn , while b† and b operate on the core state. Th
interaction with the photon field is described by the opera

Hx5(
kn

lk
ncknb

†1h.c. ~2!

For simplicity, spin indices have been dropped.

FIG. 1. Two nonequilibrium Fermi seas extending between
energies («1 ,m1) and («2 ,m2), respectively. A zero energy
particle–hole pair between the subbands is indicated. Pairs
positive or negative energies are possible.
©2003 The American Physical Society04-1
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III. PERTURBATIVE APPROACH OF COMBESCOT
AND ROULET

The problem, as it is defined by the Hamiltonians~1! and
~2! above, depends on the parameterslk

1 ,lk
2 ,Vkk8

11 ,Vkk8
22 , and

Vkk8
12 . With respect to the original x-ray problem the ne

physics must enter with the subband couplingsVkk8
12 . To fo-

cus on the new effects we consider with CR the acade
problem of Vkk8

11
5Vkk8

22
5lk

250. This means that a photo
can excite the core electron only into the subbandn51, and
particle–hole excitations are due only to particles tunnel
between both subbands, as indicated in Fig. 1.

The perturbative approach of CR consists in assum
Vkk8

12 [2V12 and in expanding the response functionS(V),
which is the Fourier transform of

S~ t22t1!5^T$Hx~ t2!Hx~ t1!%&, ~3!

in powers of

Ṽ5V12V215uV12u2. ~4!

The imaginary part ofS(V) yields the absorption rate
A(V). CR performed the sum over the most singular p
quet diagrams and found an absorption rate of the x-
problem which is, close to the threshold energyv05m1
2«d , of the form

A~V!'Im
n11

2g S j0

uV2v0u D
2g

eip2gu~V2v0! ~5!

for j0 a cutoff of the order of the bandwidth,u the usual step
function, andg the effective coupling constant,

g5n11Ṽ~ n̄212 ipn21!. ~6!

Here we have used the notationnnn85nn(mn8) for the density

of states in the subbandn at the energymn8 , andn̄nn8 for the
integral

n̄nn85E
«n

`

d«nn~«!P
1

mn82«
, ~7!

with P denoting the principal value. The approximation~5!
holds for small values of the coupling constantg.

CR compared this result with Ng’s extended ND a
proach. Their criticism refers to the appearance of the den
of statesn225n2(m2), and not, as in the perturbative resu
above, of the density of states atm1 , n215n2(m1). The pres-
ence ofn22 implies a coupling of particles at the respecti
energiesm1 and m2, whereas the zero energy intersubba
fluctuations atm1 are entirely absent. This is definitely un
physical as soon asm22m1 becomes large. The origin of thi
discrepancy remained unresolved in CR’s paper and is
cussed in the next section.

IV. ORIGIN OF THE UNPHYSICAL BEHAVIOR

The problems with ND’s approach arise from an uncritic
use of the momentum decoupling,
15310
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Vkk8
nn8→Vnn8uk

nuk8
n8 . ~8!

As CR have noticed with the perturbative results above,
important particle–hole excitations occur in the low ener
sector with the particle and hole energies close to the Fe
surfacem1. In the single-band equilibrium x-ray problem
the restriction to this energy sector can be assured by
decoupling~8!. As it turns out, the explicit form of theuk is
of little importance because the form of the free propagato
controlled by the discontinuity at the Fermi surface@see Ref.
3, Eq. ~33!, and below# which naturally imposes the low
energy restrictions. There is consequently no risk in ass
ing the potentialVkk8 to be constant in the whole band a
long as one introduces the adequate cutoffj0 imposed by the
bandwidth.

In the nonequilibrium case a similar ‘‘naive’’ splitting o
the form~8! leads to the unphysical results mentioned abo
If one assumes the potential to be constant over the wh
bandwidths, the free propagators which are integrated o
the uk

n are controlled by the discontinuities at the Fermi s
faces of their respective subbands analogously to the orig
x-ray problem. The coupling of the subbands then leads
the mixture of the energy sectors close to the different Fe
surfaces, and therefore to large energy particle–hole exc
tions of the order ofm22m1, whereas the intersubband fluc
tuations close tom1 and m2, respectively are absent. From
CR’s perturbative approach, however, we know that the la
are the relevant processes and cannot be neglected.

In the sequel we propose a projection onto these lo
energy sectors which is artificial in a similar way as ND
splitting ~8! in the one-band case but allows us to capture
important particle–hole excitations found within the pertu
bative approach.

V. MODIFICATION OF THE NOZIE ` RES–DE DOMINICIS
APPROACH

A. Splitting of the potential: Asymptotic forms of propagators

Let us reconsider the academic problem above in wh
only the potentialsVkk8

12
5@Vk8k

21
#* are nonzero. To restrict to

energies close tom1 we assume these potentials to be se
rable as

Vkk8
12

52V12uk
11uk8

21, ~9!

where theuk
nn8 are functions which refer to values ofk in the

subbandn and which are maximum at the Fermi surfacemn8
and fall off sufficiently fast away from it. To maintain th
Hermiticity of the potentialsV12 we assume these function
to be real and equal,uk

115uk
21[uk

1 .
In ND’s approach, the constant partV12 acts as an ‘‘ex-

ternal’’ potential on particles described by the operatorscn
†

5(kuk
1ckn

† during times betweent1 and t2. The relevant
physical quantities can be obtained from the so-called tr
sient propagator,w(t,t8), which describes the time evolutio
of these particles, witht1,t,t8,t2. The potentialV12 enters
as the self-energy part into the Dyson equation for the tr
4-2
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sient propagator@see Eq.~22! below#. The free part of this
Dyson equation is described by the Green’s functions,

Gn~ t !5(
k

~uk
1!2Gkn~ t !52 i(

k
~uk

1!2e2 i«knt

3@u~ t !u~«kn2mn!2u~2t !u~mn2«kn!#.

~10!

Following ND we must examine the asymptotic behavior
these functions ast→`. We first consider the casen51.
Here the cutoff functionuk

1 is centered at the Fermi surfac
m1 which corresponds to the situation of the original x-r
problem. Let us recall ND’s arguments to obtain an appro
mate expression forG1(t): For large timest the behavior of
G1(t) is dominated by the discontinuity at the Fermi surfa
Let %11(«)5n1(«)(u1(«))2 with n1(«) the density of states
in the subband 1, andu1(«k1)5uk

1 . Then, fort.0,

G1~ t !52 i E
m1

`

d«%11~«!e2 i«t, ~11!

which becomes for large timest@j0
21 @wherej0 is the char-

acteristic energy describing the decay ofu1(«)],

G1~ t !'
n1~m1!

t
e2 im1t. ~12!

The same expression holds fort,0. We observe that the
exact shape ofu1(«) is of no importance as long asutu
@j0

21. To include the short-time behavior,t&j0
21, ND im-

posed that integrals over the product ofG1(t) and some
slowly varying function~the transient propagator! must yield
the correct result. Hence, ifa is a time cutoff such thata
@j0

21 but still much smaller than the characteristic tim
scale of the transient propagator, the short-time behavio
G1(t) enters only through the integral

A15E
2a

a

dtG1~ t !5E
2`

`

d«%11~«!P
1

«2m1
[2 n̄11,

~13!

where we have used Eq.~11! for the second equality. This
quantity can be added to the asymptotic expression~12! in
the form ofA1d(t), and we obtain the central approximatio
of ND’s approach,

G1~ t !52n11P
1

t
e2 im1t2 n̄11d~ t !. ~14!

The casen52 is more subtle because there is no Fer
edge discontinuity atm1 for electrons in the subband 2. Le
us set %21(«)5n2(«)(u1(«))2 with n2(«) the density of
states in the subband 2. We have, from Eq.~10!,

G2~ t !52 iu~ t !E
m2

`

d«%21~«!e2 i«t

1 iu~2t !E
2`

m2
d«%21~«!e2 i«t. ~15!
15310
f

i-

.
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If m22m1 is large with respect to the cutoffj0 of the func-
tion u1(«) the first integral can be neglected. This means t
the present treatment is valid for times which are much lar
than (m22m1)21 or for frequencies much smaller than (m2
2m1). Using the same argument, we can push the up
boundary of the remaining integral to infinity. Hence,

G2~ t !51 iu~2t !E
2`

`

d«n2~«!~u1~«!!2e2 i«t. ~16!

For large times,utu@j0
21, the period of oscillation of the

exponential is much shorter than the time of variation of
u1(t) so that the integral averages to zero. Following t
above argumentation, the short-time behavior ofG2(t) can
be resumed into a termA2d(t) with @using Eq.~16!#

A25E
2a

0

dtG2~ t !5 i E
2a

0

dtE
2`

`

d«%21~«!e2 i t («2m1).

~17!

The exchange of the two integrals demands some care
cause the integrand becomes singular. For nonzero value
« the time integration can be performed first and yields
integrand proportional to 1/«. In order to handle«→0, we
notice that only the advanced part of the function surviv
because of the constraintt,0. This implies that the energie
entering in the exponential of Eq.~17! must be shifted by an
infinitesimal imaginary amount,«→«1 ih, with h.0. The
time integration can then be performed first, and we obta

A252E
2`

`

d«%21~«!
1

«2m11 ih
, ~18!

where we have suppressed the term at the lower bounda
the time integral since it is due to the sharp artificial tim
cutoff a. With the formula 1/(x2 ih)5P(1/x)1 ipd(x) we
finally find

A252 n̄211 ipn21 ~19!

with

n̄215E
2`

`

d«%21~«!P
1

«2m1
, ~20!

which coincides withn̄21, given by Eq.~7! with a slightly
modified definition because of the weight function%21(«).

The approximate form resulting from ND’s argumentati
is therefore given by

G2~ t !5@ ipn212 n̄21#d~ t !. ~21!

There is no algebraic decay in 1/t because the Fermi surfac
discontinuity for the subbandn52 is of no relevance for
processes of energies close to«5m1.
4-3
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B. Transient propagators and absorption rates

With the approximate forms of the initial Green’s fun
tions, Eqs.~14! and ~21!, we can follow ND’s analysis step
by step, and we focus here only on the new features in
derivation.

The computation of physical quantities is based on
transient propagatorswnn8 which can be defined by th
Dyson equations,

wnn8~ t,t8!5Gn~ t2t8!dnn8

2(
n9

E
t1

t2
dt9Gn~ t2t9!Vnn9wn9n8~ t9,t8!. ~22!

For the academic problem under discussion, the functi
w11 andw21 are found to form a closed set of equations,

w11~ t,t8!5G1~ t2t8!2E
t1

t2
dt9G1~ t2t9!V12w21~ t9,t8!,

w21~ t,t8!52E
t1

t2
dt9G2~ t2t9!V21w11~ t9,t8!. ~23!

Since G2(t) is proportional to ad-function, we obtain a
single integral equation forw11,

w11~ t,t8!5G1~ t2t8!2E
t1

t2
dt9G1~ t2t9!Ṽ11w

11~ t9,t8!,

~24!

in which the effective interaction

2Ṽ115~2V12!@ ipn212 n̄21#~2V21! ~25!

leads to the same coupling constantg as in the perturbative
approach, given by Eq.~6!. The remaining problem coin
cides exactly with ND’s original x-ray problem with the in
teraction potentialV replaced by the effective potentialṼ11.
Therefore, the absorption rate becomes, from Eq.~66! of
Ref. 3,

A~V!;ImF S j0

uV2v0u D
e

eipeu(V2v0)G , ~26!

with

e52
d

p
2

d2

p2
, ~27!

and d the complex ‘‘phase shift’’ at«5m1 induced by the
effective potentialṼ11,
15310
e

e

s

tand

p
5

n11Ṽ11

11 n̄11Ṽ11

. ~28!

For smallV12, one hasd/p'n11Ṽ11, and the absorption rate
merges with the parquet graph result of CR. Furthermore,
imaginary part ofd leads to a broadening of the sharp Fer
edge singularities which would exist in the case of disco
nected subbands.

VI. CONCLUSION

With the preceding discussion of the nonequilibrium x-r
problem we have seen that ND’s technique provides an
egant calculation tool for which, however, the conditions
validity must be checked carefully at the beginning.

The key approximation is the restriction to low-ener
fluctuations close to the Fermi surface~s!. The separation of
momenta in the interaction potentials must occur in th
energy sectors. In the single-band case of the original x-
problem, this low-energy restriction enters naturally by t
discontinuity of the Green’s functions at the Fermi surfa
which controls the large time behavior of these functio
The particular form of the weight functionsun(«) which
project onto the low-energy sector has only little importan
so that it even might be taken as constant over the wh
band, as often assumed in the literature.

We have noticed with CR that the latter assumption le
to unphysical results within ND’s approach in the case
nonequilibrium systems. Here the form of the weight fun
tions becomes important, and we have shown how the
proximations of the initial Green’s functions must be chos
to obtain physical results. In particular, the decay int
which is characteristic for ND’s asymptotic approximatio
appears only if a Fermi surface lies within the energy ran
in which the cutoff functionsun(«) are nonzero.

With this taken into account, ND’s method remains va
and provides us with quantitative results for the exponent
the power-law divergences at the Fermi edges. Moreover,
absence of the 1/t-decay in the subbandn52 reduces the
complexity of the discussed multichannel problem. Inste
of systems of singular integral equations, we deal with
scalar~single-channel! problem in which the presence of th
other channels is reflected by a mere renormalization of
interaction strength which, however, becomes a comp
quantity.
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