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(1) Hubbard sectors (4 Points)
As discussed in the lecture, the analysis of the Hubbard model becomes easier to carry
out if we organize the electronic Hilbert space in Hubbard sectors, where each sector
contains configurations with the same number of doubly-occupied sites (e.g., those
within the lowest Hubbard sector do not contain any doubly-occupied site).

(a) Assume that we have Ne electrons and N sites. Express the total number of elec-
tronic configurations (the total size of the Hilbert space), as well as the dimension
of the lowest Hubbard sector, in terms of Ne and N . Then find these numbers
explicitly for Ne = 10 and N = 20.

(b) Now consider Ne = 2 electrons on a “Hubbard triangle” (three sites). Group
all possible electronic configurations into Hubbard sectors. By making use of the
conservation of the z component of the total electron spin, solve the problem (i.e.,
find the eigenstates and eigenvalues of the Hubbard Hamiltonian) in the limit
U/t → ∞.

(2) Derivation of an effective antiferromagnetic Heisenberg model from the
Hubbard model at half-filling (3 Points)
As shown in the lecture, in the lowest Hubbard sector (no doubly-occupied sites) the
Hubbard Hamiltonian reduces to that of the extended t− J model, and in the special
case of half-filling (one particle per site) the latter simplifies to

H
(2)
eff = −J

2

∑
i,δ,σ,σ′

c†i+δ,σ′ci,σ′ni,σ̄′ni,σ̄c
†
i,σci+δ,σ . (1)

Here ni,σ ≡ c†i,σci,σ, σ̄ is the opposite spin projection from σ (i.e., if σ =↑, then σ̄ =↓
and vice versa), i+ δ denotes the nearest neighbors of the site i, while J ≡ 2t2/U is the
energy scale characterizing the virtual hopping fluctuations between Hubbard sectors
– the “superexchange interaction.”
By making use of the su(2) algebra for spin 1/2 , expressed in terms of fermion op-
erators [ Sz

i = (c†i↑ci↑ − c†i↓ci↓)/2 , S+
i = c†i↑ci↓ , S−

i = c†i↓ci↑ ] , demonstrate that the
Hamiltonian in Eq. (1) can be rewritten as an (spin-only) antiferromagnetic Heisenberg
Hamiltonian

H
(2)
eff = J

∑
i,δ

(
Si · Si+δ −

1

4

)
, (2)

where Si ≡ (Sx
i , S

y
i , S

z
i ) and S±

i = Sx
i ± iSy

i .

Hint: Beware that at half-filling ni,↑ + ni,↓ yields 1 when acting on an arbitrary state
in the lowest Hubbard sector; similarly, ni,↑ni,↓ yields 0.



(3) Holstein-Primakoff transformation (3 Points)
As we have seen in the lecture, the Holstein-Primakoff transformation for spin-S par-
ticles is introduced as

Sz
i = S − b†ibi , (3)

S+
i = (2S)1/2

√
1− b†ibi

2S
bi , (4)

S−
i = (2S)1/2b†i

√
1− b†ibi

2S
. (5)

(a) Demonstrate explicitly that the operators Sz
i , S

+
i , and S−

i defined above form an
su(2) algebra for an arbitrary value of S. In other words, show that they satisfy
the commutation relations

[Sz
i , S

±
i ] = ± S±

i , [S+
i , S

−
i ] = 2 Sz

i .

(b) The square root in the above transformation can be expanded as√
1− b†ibi

2S
= α+ β b†ibi + γ (b†ibi)

2 + . . . . (6)

Determine the coefficients in this expansion for both S = 1/2 and S = 1.

(c) For S = 1/2, express the Heisenberg Hamiltonian in terms of Holstein-Primakoff
bosons, up to and including the (quartic) boson interaction terms.


