Theoretical Solid-State Physics, Herbstsemester 2012

Blatt 1

Abgabe: 27. September, 12:00H (Treppenhaus 4. Stock) <u>Tutor:</u> Patrick Hofer Zi.: 4.13

Die <u>6 Kreditpunkte</u> für Vorlesung und Übung erhält, wer 50% der Punkte aus den Hausaufgaben erreicht.

(1) Some useful operator identities

(5 Punkte)

(a) Show that the commutation relation

$$[a_m^{\dagger}a_n, a_k^{\dagger}a_l] = \delta_{nk}a_m^{\dagger}a_l - \delta_{ml}a_k^{\dagger}a_n$$

holds for both bosonic and fermionic operators a^{\dagger} , a, with m, n, k, l being arbitrary single-particle quantum numbers, and δ_{nk} is the Kronecker delta.

(b) Show that for an arbitrary analytic operator function f(A) it holds that

$$e^{S}f(A)e^{-S} = f(e^{S}A e^{-S}),$$

a result that is easily generalized to the case where instead of A we have several operators.

Hint: As a first step, consider the case where $f(A) = A^n$ with integer number n.

(c) As an application of the general result in part b), show that for the Glauber displacement operator $D(\beta) \equiv \exp(\beta a^{\dagger} - \beta^* a)$ ($\beta \in C$), generating coherent states when acting on the vacuum $|0\rangle$ of the bosonic mode a [reminder: $a|\beta\rangle = \beta|\beta\rangle$, $|\beta\rangle \equiv D(\beta)|0\rangle$], it holds that

$$D^{\dagger}(\beta)f(a,a^{\dagger})D(\beta) = f(a+\beta,a^{\dagger}+\beta^{*}),$$

where $f(a, a^{\dagger})$ is again an arbitrary analytic function.

(2) Bogoliubov transformation

The effective Hamiltonian

$$H = \epsilon_c c^{\dagger} c + \epsilon_d d^{\dagger} d - \Delta dc - \Delta^* c^{\dagger} d^{\dagger} ,$$

contains fermions in two kinds of states c und d (i.e., $\{c, c^{\dagger}\} = 1$, $\{c, d\} = 0$ etc., here, $\{,\}$ is the anticommutator). We would like to diagonalize this Hamiltonian, i.e., express it in the form

$$H = E_{\gamma}\gamma^{\dagger}\gamma + E_{\delta}\delta^{\dagger}\delta + E_{0}$$

(5 Punkte)

by introducing the so-called quasiparticle operators α,β through the following unitary transformation:

$$c^{\dagger} = u^* \gamma^{\dagger} + v \delta$$
, $d = -v^* \gamma^{\dagger} + u \delta$.

(u, v are complex numbers, γ , δ are fermionic operators, i.e., obey $\{\gamma, \gamma^{\dagger}\} = 1$ etc. !)

- (a) Show that the coefficients have to fulfill $|u|^2 + |v|^2 = 1$.
- (b) Express H through γ and δ , and determine u and v such that H is diagonalized. Hint: introduce new variables ϕ , η by setting $u = \cos \eta$, $v = e^{i\phi} \sin \eta$. Determine ϕ , η such that the "unwanted" terms like $\gamma^{\dagger}\delta^{\dagger}$ vanish. Find the energy spectrum of the new quasiparticles, that is, find the expressions for E_{γ} and E_{δ} in the special case $\epsilon_c = \epsilon_d = \epsilon$, and u, v, Δ are real.
- (c) Discuss the meaning of E_{γ} , E_{δ} , and E_0 .