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0.1 Electron-phonon coupling ( V. M. Stojanovié)

0.1.1 Derivation of the electron-phonon coupling Hamil-
tonian

Abandoning the adiabatic approximation, in the framework of which the band
structure of solids is determined, we now discuss the non-adiabatic corrections
to the electron motion — electron-phonon coupling (henceforth e-ph coupling).
In what follows, we derive a general e-ph coupling Hamiltonian in second-
quantization notation. For the sake of notational convenience, our derivation
will assume intraband e-ph scattering (i.e., the initial and final electron states
belong to the same Bloch band); the most general case, which also involves
interband scattering, is completely analogous and only requires an additional,
Bloch-band, index in all the expressions.

We start by noting that the total electron-lattice interaction potential can
be written as a sum over all electron-ion pairs:
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where r; are the electronic and R,, the ionic positions. Upon expanding the
right-hand side (hereafter RHS) of the last equation in terms of the atomic
(ionic) displacements u,, from the equilibrium positions R? (recall R,, = R? +
u,), we obtain
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where the ellipses stand for the terms of higher order in u,,. The first term on
the RHS is the static lattice-periodic potential, giving rise to the Bloch bands;
the second term will yield the lowest-order (linear) e-ph interaction.

By making use of the standard procedure for switching between first and
second quantizations (recall part I of the course !), we get the (linear) e-ph
coupling Hamiltonian
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where the operator aJ{{ » (ax o) creates (destroys) an electron with the quasimo-

mentum k and spin o. While the spin part of the last matrix element is easily
seen to be equal to §,,, the coordinate part is given by
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with Ui (r) = (r|k) being the electron Bloch wave functions. By virtue of the
Bloch theorem WUy (r + a) = e’*2¥) (r) and we further obtain
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where
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depends on k and k’, but not on n. By combining Egs. (3) and (5) we arrive at
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The displacement operators u,, can be expressed through the phonon creation
and annihilation operators as
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where q are the phonon quasimomenta and the index A runs over different
phonon branches. We further notice that e!(<—%"+a)- R, — 1 whenever k/ — k — q
is equal to a reciprocal lattice vector K, i.e.,
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Consequently, Eq. (7) can be recast as

T T
Hom == 3 i) ran * Fadl¥a Suiksicra thinciqotio
k,q, K\ o
(10)
Upon introducing the abbreviation
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we can rewrite the Hamiltonian of Eq. (10) in a more succinct form:
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The last equation should be interpreted as follows: an electron, originaly in
the state (k, o), can be scattered into the final state (k + q + K, o) [note that
such scattering processes — taking place in the periodic, static lattice potential —
conserve momentum only up to an arbitrary reciprocal lattice vector] either by
absorbing the phonon (g, A) or by emitting the phonon (—q,A). The normal-
scattering processes (K = 0) usually dominate over the Umklapp-scattering
(K # 0) ones; by completely neglecting the Umklapp scattering in the last
equation and introducing v (k,q) = G (k,q, K = 0), we finally obtain
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The functions vy, (k, q) are usually referred to as the e-ph vertex functions.
The total Hamiltonian of a coupled e-ph system is given by
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where H, is the bare-electron and Hpy, the phonon part. Regardless of the form
of the vertex functions 7y (k, q), the last Hamiltonian commutes with the total
crystal-momentum operator
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The joint eigenstates of H and K are the Bloch states of the coupled e-ph
system.

0.1.2 Derivation of the electron-phonon (inelastic) scat-
tering rates

The momentum-space form of the most general (multi-band) e-ph-coupling
Hamiltonian reads
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where @,k destroys an electron with quasimomentum k in the n-th Bloch
band, lA)q, » a phonon of branch A with quasimomentum q (frequency wy q),
and 72, (k,q) stand for the (bare) e-ph interaction vertex functions.

We now derive inelastic scattering rates (inverse scattering time) using the
Fermi Golden rule expression
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where M ; in our case will be the matrix element of the Hamiltonian in Eq. (16)
between the final and initial states:
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The total inelastic scattering rate for an electron out of the state with quasi-
momentum k in n-th Bloch band is given by
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where W;’,;} is the scattering rate corresponding to the case where the phonon
mode (g, \) is involved in the scattering process and the final electron belongs
to the n’-th Bloch band.
For the scattering process involving an emission of the phonon (—q, \) and
an electron scattered from (n, k) to (n’, k' = k+ q) this matrix element is given
by
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that is,
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while the argument of the delta function in Eq. (17) is
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In like manner, for the process involving an absorption of the phonon (g, A) and
an electron scattered from (n,k) to (n',k’ = k + q) we have
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In deriving Egs. (21) and (24) we have just made use of the standard bosonic
relations b|n) = /njn — 1) and bf|n) = v/n + I|n + 1).
Now using the Fermi Golden rule expression we obtain
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i.e., the total scattering rate is given by
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Note that the last expression can be recast more succinctly as
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and we made use of the fact that wy _q = wy q. Here A:‘L}I(k,q) [A:‘L;;(k, q)]
corresponds to the emission (absorption) of a phonon (q, A) and

g = [exp(Bliwyq) — 1] (30)

are the phonon occupation numbers at temperature T [3 = (kgT)™1].



