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0.1 Electron-phonon coupling ( V. M. Stojanović)

0.1.1 Derivation of the electron-phonon coupling Hamil-
tonian

Abandoning the adiabatic approximation, in the framework of which the band
structure of solids is determined, we now discuss the non-adiabatic corrections
to the electron motion – electron-phonon coupling (henceforth e-ph coupling).
In what follows, we derive a general e-ph coupling Hamiltonian in second-
quantization notation. For the sake of notational convenience, our derivation
will assume intraband e-ph scattering (i.e., the initial and final electron states
belong to the same Bloch band); the most general case, which also involves
interband scattering, is completely analogous and only requires an additional,
Bloch-band, index in all the expressions.

We start by noting that the total electron-lattice interaction potential can
be written as a sum over all electron-ion pairs:

Ve-latt =
∑
i,n

Ve-i(ri −Rn) , (1)

where ri are the electronic and Rn the ionic positions. Upon expanding the
right-hand side (hereafter RHS) of the last equation in terms of the atomic
(ionic) displacements un from the equilibrium positions R0

n (recall Rn = R0
n +

un), we obtain

Ve-latt =
∑
i,n

Ve-i(ri −R0
n)−

∑
i,n

un · ∇RnVe-i(ri −Rn)
∣∣
Rn=R0

n
+ . . . , (2)

where the ellipses stand for the terms of higher order in un. The first term on
the RHS is the static lattice-periodic potential, giving rise to the Bloch bands;
the second term will yield the lowest-order (linear) e-ph interaction.

By making use of the standard procedure for switching between first and
second quantizations (recall part I of the course !), we get the (linear) e-ph
coupling Hamiltonian

He-ph = −
∑
n

un ·
∑

kσ,k′σ′

〈k′σ′|∇RnVe-i(r−Rn)
∣∣
Rn=R0

n
|kσ〉 a†k′,σ′ak,σ , (3)

where the operator a†k,σ (ak,σ) creates (destroys) an electron with the quasimo-
mentum k and spin σ. While the spin part of the last matrix element is easily
seen to be equal to δσσ′ , the coordinate part is given by

〈k′|∇Rn
Ve-i(r−Rn)

∣∣
Rn=R0

n
|k〉 =

∫
drΨ∗

k′(r)∇Rn
Ve-i(r−Rn)

∣∣
Rn=R0

n
Ψk(r) ,

(4)
with Ψk(r) ≡ 〈r|k〉 being the electron Bloch wave functions. By virtue of the
Bloch theorem Ψk(r+ a) = eik·aΨk(r) and we further obtain

〈k′|∇RnVe-i(r−Rn)
∣∣
Rn=R0

n
|k〉 = ei(k−k′)·R0

nSk,k′ , (5)

where

Sk,k′ ≡
∫

d(r−R0
n)Ψ

∗
k′(r−R0

n)∇RnVe-i(r−Rn)
∣∣
Rn=R0

n
Ψk(r−R0

n) (6)
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depends on k and k′, but not on n. By combining Eqs. (3) and (5) we arrive at

He-ph = −
∑

k,k′,σ

[Sk,k′ ·
∑
n

ei(k−k′)·R0
nun]a

†
k′,σ′ak,σ . (7)

The displacement operators un can be expressed through the phonon creation
and annihilation operators as

un =
1√
N

∑
q,λ

√
~

2Mωλ(q)
eiq·R

0
n(b†−q,λ + bq,λ)vλ , (8)

where q are the phonon quasimomenta and the index λ runs over different
phonon branches. We further notice that ei(k−k′+q)·R0

n = 1 whenever k′ − k− q
is equal to a reciprocal lattice vector K, i.e.,∑

n

ei(k−k′+q)·R0
n =

∑
K

δk′−k−q,K . (9)

Consequently, Eq. (7) can be recast as

He-ph = −
∑

k,q,K,λ,σ

√
~

2MNωλ(q)
(b†−q,λ + bq,λ)vλ · Sk,k+K+q a†k+K+q,σak,σ .

(10)
Upon introducing the abbreviation

Gλ(k,q,K) ≡ −

√
~

2Mωλ(q)
vλ · Sk,k+K+q (11)

we can rewrite the Hamiltonian of Eq. (10) in a more succinct form:

He-ph =
1√
N

∑
k,q,K,λ,σ

Gλ(k,q,K)a†k+K+q,σak,σ(b
†
−q,λ + bq,λ) . (12)

The last equation should be interpreted as follows: an electron, originaly in
the state (k, σ), can be scattered into the final state (k+ q+K, σ) [note that
such scattering processes – taking place in the periodic, static lattice potential –
conserve momentum only up to an arbitrary reciprocal lattice vector] either by
absorbing the phonon (q, λ) or by emitting the phonon (−q, λ). The normal-
scattering processes (K = 0) usually dominate over the Umklapp-scattering
(K 6= 0) ones; by completely neglecting the Umklapp scattering in the last
equation and introducing γλ(k,q) ≡ Gλ(k,q,K = 0), we finally obtain

He-ph =
1√
N

∑
k,q,λ,σ

γλ(k,q)a
†
k+q,σak,σ(b

†
−q,λ + bq,λ) . (13)

The functions γλ(k,q) are usually referred to as the e-ph vertex functions.
The total Hamiltonian of a coupled e-ph system is given by

H = He +He-ph +Hph , (14)
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where He is the bare-electron and Hph the phonon part. Regardless of the form
of the vertex functions γλ(k,q), the last Hamiltonian commutes with the total
crystal-momentum operator

K ≡
∑
k,σ

k a†k,σak,σ +
∑
λ,q

q b†q,λbq,λ . (15)

The joint eigenstates of H and K are the Bloch states of the coupled e-ph
system.

0.1.2 Derivation of the electron-phonon (inelastic) scat-
tering rates

The momentum-space form of the most general (multi-band) e-ph-coupling
Hamiltonian reads

Ĥe-ph =
1√
N

∑
nn′,k,q,λ

γλ
n′n(k,q) â

†
n′,k+qân,k(b̂

†
−q,λ + b̂q,λ) , (16)

where ân,k destroys an electron with quasimomentum k in the n-th Bloch

band, b̂q,λ a phonon of branch λ with quasimomentum q (frequency ωλ,q),
and γλ

n′n(k,q) stand for the (bare) e-ph interaction vertex functions.
We now derive inelastic scattering rates (inverse scattering time) using the

Fermi Golden rule expression

Wf,i =
2π

~
|Mf,i|2δ(εf − εi) , (17)

where Mf,i in our case will be the matrix element of the Hamiltonian in Eq. (16)
between the final and initial states:

Mf,i ≡ 〈f |Ĥe-ph|i〉 . (18)

The total inelastic scattering rate for an electron out of the state with quasi-
momentum k in n-th Bloch band is given by(

1

τ

)
n,k

=
∑

n′,q,λ

Wq,λ
n′n , (19)

where Wq,λ
n′n is the scattering rate corresponding to the case where the phonon

mode (q, λ) is involved in the scattering process and the final electron belongs
to the n′-th Bloch band.

For the scattering process involving an emission of the phonon (−q, λ) and
an electron scattered from (n,k) to (n′,k′ = k+q) this matrix element is given
by

Mf,i = 〈nλ,q+1; (n′,k+q)| 1√
N

γλ
n′n(k,q)â

†
n′,k+qân,kb̂

†
−q,λ|(n,k); nλ,q〉 , (20)

that is,

Mf,i =
γλ
n′n(k,q)√

N

√
nλ,q + 1 , (21)
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while the argument of the delta function in Eq. (17) is

εf − εi = εn′,k+q + ~ωλ,−q − εn,k . (22)

In like manner, for the process involving an absorption of the phonon (q, λ) and
an electron scattered from (n,k) to (n′,k′ = k+ q) we have

Mf,i = 〈nλ,q − 1; (n′,k+ q)| 1√
N

γλ
n′n(k,q)â

†
n′,k+qân,kb̂q,λ|(n,k); nλ,q〉 , (23)

that is,

Mf,i =
γλ
n′n(k,q)√

N

√
nλ,q , (24)

and
εf − εi = εn′,k+q − ~ωλ,q − εn,k . (25)

In deriving Eqs. (21) and (24) we have just made use of the standard bosonic
relations b|n〉 =

√
n|n− 1〉 and b†|n〉 =

√
n+ 1|n+ 1〉.

Now using the Fermi Golden rule expression we obtain

Wq,λ
n′n =

2π

~

{ 1

N
|γλ

n′n(k,q)|2nλ,q δ(εn′,k+q − ~ωλ,q − εn,k)

+
1

N
|γλ

n′n(k,q)|2(nλ,q + 1) δ(εn′,k+q + ~ωλ,−q − εn,k)
}
, (26)

i.e., the total scattering rate is given by(
1

τ

)
n,k

=
1

N

∑
n′,q,λ

2π

~
|γλ

n′n(k,q)|2
{
nλ,q δ(εn′,k+q − ~ωλ,q − εn,k)

+ (nλ,q + 1) δ(εn′,k+q + ~ωλ,−q − εn,k)
}
. (27)

Note that the last expression can be recast more succinctly as(
1

τ

)
n,k

=
2π

N~
∑

n′,q,λ

|γλ
n′n(k,q)|2[∆

λ,−
n′n (k,q) + ∆λ,+

n′n (k,q)] , (28)

where
∆λ,±

n′n (k,q) ≡ (nλ,q + 1/2 ± 1/2)δ(εn′,k+q − εn,k ± ~ωλ,q) (29)

and we made use of the fact that ωλ,−q = ωλ,q. Here ∆λ,+
n′n (k,q) [∆λ,−

n′n (k,q)]
corresponds to the emission (absorption) of a phonon (q, λ) and

nλ,q ≡ [exp(β~ωλ,q)− 1]−1 (30)

are the phonon occupation numbers at temperature T [β ≡ (kBT )
−1].


