Electronic properties of graphene antidot lattices

Vladimir M. Stojanović University of Basel

> Würzburg June 1, 2010

Outline of the talk

Introduction to graphene antidot lattices

- Introduction to graphene antidot lattices
- Tight-binding band structure, appearance of midgap states, comparison with other approaches
 [M. Vanević, VMS, and M. Kindermann, PRB 80, 045410 (2009)]

- Introduction to graphene antidot lattices
- Tight-binding band structure, appearance of midgap states, comparison with other approaches
 [M. Vanević, VMS, and M. Kindermann, PRB 80, 045410 (2009)]
- Electron-phonon coupling, mass renormalization as a signature of polaronic behavior
 [N. Vukmirović, VMS, and M. Vanević, PRB 81, 041408(R) (2010)]
 [VMS, N. Vukmirović, and C. Bruder, PRB 82, 165410 (2010)]

- Introduction to graphene antidot lattices
- Tight-binding band structure, appearance of midgap states, comparison with other approaches
 [M. Vanević, VMS, and M. Kindermann, PRB 80, 045410 (2009)]
- Electron-phonon coupling, mass renormalization as a signature of polaronic behavior
 [N. Vukmirović, VMS, and M. Vanević, PRB 81, 041408(R) (2010)]
 [VMS, N. Vukmirović, and C. Bruder, PRB 82, 165410 (2010)]
- Conclusions and Outlook

Graphene antidot lattices

T. G. Pedersen et al., PRL 100, 136804 (2008)

triangular superlattices with circular antidots $\{L, R\}$, or triangular antidots $\{L, D\}$

Research on graphene antidot lattices: an overview

Theory:

- T. G. Pedersen et al., PRL 100, 136804 (2008);
- T. G. Pedersen et al., PRB 77, 245431 (2008);
- M. Vanević, VMS, and M. Kindermann, PRB 80, 045410 (2009);
- J. A. Fürst et al., PRB 80, 115117 (2009);
- J. A. Fürst et al., New J. Phys. 11, 095020 (2009);
- L. Rosales et al., PRB 80, 073402 (2009);
- X. H. Zheng et al., PRB 80, 075413 (2009);
- W. Liu et al., PRB 80, 233405 (2009);
- R. Petersen and T. G. Pedersen, PRB 80, 113404 (2009);
- N. Vukmirović, VMS, and M. Vanević, PRB 81, 041408 (R) (2010);
- VMS, N. Vukmirović, and C. Bruder, PRB 82, 165410 (2010).

Experiment:

- T. Shen et al., APL 93, 122102 (2008);
- J. Eroms and D. Weiss, New J. Phys. 11, 095021 (2009);
- J. Bai et al., Nature Nanotech. 5, 190 (2010);
- M. Kim et al., Nano Lett. 10, 1125 (2010).

Realization of graphene antidot lattice (March 2010)

M. Kim *et al.*, Nano Lett. **10**, 1125 (2010)

J. Bai *et al.*, Nature Nanotech. 5, 190 (2010)

V. M. Stojanović (University of Basel)

Würzburg

01/06/2010 5 / 31

triangular antidot lattice period: $La\sqrt{3}$ (approx 2.46 Å)

UCLA lattices: period 27 - 39 nm

Wisconsin lattices: period 36.4 nm

our lattices:
$$\{L, R = 5\}$$
 family ($9 \le L \le 19$)
 $\{L, R = 7\}$ family ($12 \le L \le 20$)
 \Rightarrow period ≤ 8.2 nm
 $N_{\mathrm{at}} \sim 300 - 1600$ C atoms per unit cell

Electronic structure of antidot lattices (I)

DFT band-structure calculation not conceivable!

Tight-binding model (n.n. hopping integral $t \approx 2.8 \text{ eV}$):

$$\hat{H}_{ ext{e}}=-rac{t}{2}\sum_{ ext{R},m,\delta}\left(\hat{a}^{\dagger}_{ ext{R+d}_{m}+\delta}\hat{a}_{ ext{R+d}_{m}}+ ext{h.c.}
ight)$$

Good comparison with DFT results for lattices with small unit cells! [J. A. Fürst *et al.*, NJP **11**, 095020 (2009)]

Artifact of the n.n. tight-binding model on a **bipartite lattice**: exact **particle-hole symmetry**

Electronic structure of antidot lattices (II)

$$\hat{H}_{\mathrm{e}}\psi_{n\mathrm{k}}(\mathrm{r})=arepsilon_{n\mathrm{k}}\psi_{n\mathrm{k}}(\mathrm{r}) \quad, \quad \psi_{n\mathrm{k}}(\mathrm{r})=\sum_{m}C_{m}^{n,\mathrm{k}}\phi_{n\mathrm{k}}(\mathrm{r})$$

$$\phi_{n\mathbf{k}}(\mathbf{r}) \equiv N^{-1/2} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \varphi(\mathbf{r}-\mathbf{R}-\mathbf{d}_m)$$

 $2p_z$ orbital of the C atom at ${f R}+{f d}_m$: $egin{array}{c} arphi({f r}-{f R}-{f d}_m) \end{array}$

$$ig\langle arphi(\mathbf{r}-\mathbf{R'}-\mathbf{d}_{m'})igarphi(\mathbf{r}-\mathbf{R}-\mathbf{d}_m)ig
angle=\delta_{\mathbf{R},\mathbf{R'}}\delta_{m,m'}$$

(Overlap of $2p_z$ orbitals on different atoms is negligible)

Band structure: circular-antidot case

Band structure: triangular-antidot case

Origin of completely flat bands at $\varepsilon = 0$

Bipartite topology ⇒ the degeneracy of zero-energy states equals the site imbalance between the two sublattices ! [M. Inui, S. A. Trugman, and E. Abrahams, PRB 49, 3190 (1994)]

Periodic systems: $\varepsilon = 0$ flat bands \iff site imbalance per unit cell

Graphene antidot lattices:

circular case $N_A - N_B = 0 \implies$ no flat bands triangular case $N_A - N_B = D \implies D$ flat bands Further implications of bipartite structure

The theorem of Inui et al. holds even when the hopping integral is random and/or not real!

Implication for the case with an **external magnetic field**
$$t \rightarrow t_{ij} = t \, \exp\left(-rac{ie}{\hbar c} \int_{\mathbf{r}_i}^{\mathbf{r}_j} \mathbf{A} \cdot \mathbf{dr}
ight)$$

 $\varepsilon = 0$ flat bands remain flat!

Lieb's theorem: ground state of the Hubbard model on an imbalanced bipartite lattice has total spin

$$S_{
m tot} = rac{1}{2} \, \left| N_{\scriptscriptstyle A} - N_{\scriptscriptstyle B}
ight|$$

Zero-energy midgap states in real space

tunnelling current

$${\cal I}({
m r}) \propto \int_{arepsilon_F}^{arepsilon_F + eV} darepsilon \;
ho({
m r},arepsilon)$$

 $ho({f r},arepsilon)$ – local electronic DOS

the $\varepsilon = 0$ midgap states are **pseudospin polarized** and **exponentially localized**!

Influence of an on-site potential along the edges

On-site potential mimics hydrogen passivation within a TB model !

Attractive on-site potential: V = -0.15 t

partially lifts the flat-band degeneracy and "flatness"

$$\{L=9, D=6\}$$

V. M. Stojanović (University of Basel)

Beyond tight-binding model: D = 3 example

Calculations by J. A. Fürst *et al.*, PRB **80**, 115117 (2009)

Conclusions:

- one completely flat
 + two low-dispersion bands!
- spin-splitting in the sDFT!
- Lieb's theorem still works!

Electron-phonon coupling in graphene antidot lattices

QUESTION: Worth of studying at all?

Phonons in graphene are comparatively unimportant:

ARPES data on inelastic carrier lifetime explained without even invoking phonon-related effects!

[A. Bostwick et al., Nature Phys. 3, 36 (2007)]

However, graphene antidot lattice is a totally different system: narrow-band semiconductor

Bandgaps & bandwidths

Graphene antidot lattices are narrow-band systems!

 $\{L,5\}$ family: $W_c = 0.11 - 0.14 \, {
m eV}$ (increases with L)

 $E_g = 0.18 - 0.74 \, \mathrm{eV}$ (decreases with L)

Scaling law:

$$E_g \propto rac{R}{L^2} = rac{(R/L)}{L}$$

Phonons in graphene antidot lattices

$$D_{
m ph}(\omega)\equiv N^{-1}\sum_{{
m q},\lambda}\delta[\omega-\omega_{\lambda}({
m q})]$$

Two methods:

- valence force field (VFF)
 V. Perebeinos & J. Tersoff,
 PRB 79, 241409(R) (2009)
- **4**th **nn force constant (4NNFC)** J. Zimmermann *et al.*, PRB **78**, 045410 (2008)

Model parameters extracted from graphene data!

Peierls-type electron-phonon coupling

 π -electron hopping integral is dynamically bondlength-dependent!

$$t
ightarrow t(\Delta u_{
m cc}) = t + lpha \Delta u_{
m cc}$$

also known as:

- SSH coupling
- BLF coupling

Peierls-type electron-phonon coupling

phonon modulation of π -electron hopping integrals

$$t \longrightarrow t + lpha \sum_{\lambda} \ ig[\hat{\mathrm{u}}_{\scriptscriptstyle\lambda,\mathrm{R+d}_m+\delta} - \hat{\mathrm{u}}_{\scriptscriptstyle\lambda,\mathrm{R+d}_m} ig] \cdot ar{\delta}$$

$$lpha=5.27~{
m eV}/{
m \AA}$$
 ; $ar{\delta}\equiv\delta/\|\delta\|$

electron-phonon coupling Hamiltonian in real space:

$$\hat{H}_{ ext{ep}} = rac{lpha}{2} \sum_{ ext{R},m,\delta,\lambda} ig(\hat{a}^{\dagger}_{ ext{R}+ ext{d}_{m}+\delta} \hat{a}_{ ext{R}+ ext{d}_{m}} + ext{h.c.} ig) ig[\hat{ ext{u}}_{\lambda, ext{R}+ ext{d}_{m}+\delta} - \hat{ ext{u}}_{\lambda, ext{R}+ ext{d}_{m}} ig] \cdot ar{\delta}$$

$$\hat{\mathrm{u}}_{\lambda,\mathrm{R+d}_{m}}\equivrac{1}{\sqrt{N}}\sum_{\mathrm{q}}rac{e^{i\mathrm{q}\cdot\mathrm{R}}(\hat{b}_{-\mathrm{q},\lambda}^{\dagger}+\hat{b}_{\mathrm{q},\lambda})}{\sqrt{2M\omega_{\lambda}(\mathrm{q})}}\,\mathrm{v}_{m}^{\lambda}(\mathrm{q})$$

Electron-phonon coupling in momentum space

$$\hat{H}_{ ext{ep}} = rac{1}{\sqrt{N}} \sum_{ ext{k}, ext{q},\lambda,n} \gamma^{\lambda}_{nn}(ext{k}, ext{q}) \ \hat{a}^{\dagger}_{n, ext{k}+ ext{q}} \hat{a}_{n, ext{k}}(\hat{b}^{\dagger}_{- ext{q},\lambda} + \hat{b}_{ ext{q},\lambda})$$

vertex function:
$$\gamma^{\lambda}_{nn}({
m k},{
m q})=V^{\lambda}_{nn}({
m k},{
m q})+W^{\lambda}_{nn}({
m k},{
m q})$$

$$egin{aligned} V_{nn}^{\lambda}(ext{k}, ext{q}) &= rac{lpha}{\sqrt{8M\omega_{\lambda}(ext{q})}} \sum_{m,\delta} ar{\delta} \cdot [ext{v}_{m+\delta}^{\lambda}(ext{q}) - ext{v}_{m}^{\lambda}(ext{q})] \ & imes ig[(C_{m+\delta}^{n, ext{k+q}})^{*}C_{m}^{n, ext{k}} + (C_{m}^{n, ext{k+q}})^{*}C_{m+\delta}^{n, ext{k}}ig] \end{aligned}$$

$$\hat{H}_{ ext{ep}}^{(ext{c})} = rac{1}{\sqrt{N}}\sum_{ ext{k}, ext{q},\lambda}\gamma_{ ext{cc}}^{\lambda}(ext{k}, ext{q}) \ \hat{a}_{ ext{c}, ext{k}+ ext{q}}^{\dagger}\hat{a}_{ ext{c}, ext{k}}(\hat{b}_{- ext{q},\lambda}^{\dagger}+\hat{b}_{ ext{q},\lambda})$$

Strongly momentum-dependent electron-phonon coupling

important quantity:

$$|\gamma^\lambda_{
m cc}({
m k}=0,{
m q})|$$

strongest coupling to the highest-energy optical phonon!

For this branch $|\gamma^{\lambda}_{\rm cc}({f k}=0,{f q})|$ largest at ${f q}=0!$

► RB

\implies expect large mass enhancement!

V. M. Stojanović (University of Basel)

Comparison with other electron-phonon couplings

- momentum-independent couplings Holstein-type (local) coupling: $\gamma(\mathbf{k}, \mathbf{q}) = g = \text{const.}$
- Implementation in the second secon
 - SSH coupling on a square lattice: $\gamma_{\scriptscriptstyle \mathrm{SSH}}(\mathbf{k},\mathbf{q}) \propto \sin(\mathbf{k}\cdot\mathbf{a}) - \sin\left[(\mathbf{k}+\mathbf{q})\cdot\mathbf{a}\right]$

 $\gamma_{_{
m SSH}}({
m k}=0,{
m q})\propto |{
m q}|~
ightarrow~0~~({
m q}
ightarrow 0)$

coupling to the "breathing" modes in cuprates:

$$\gamma({
m k},{
m q})=\gamma({
m q})\propto \sqrt{\sin^2(q_x/2)+\sin^2(q_y/2)}$$

$$\gamma({
m q}) \propto |{
m q}| \,
ightarrow \, 0 \ \ ({
m q} \,
ightarrow \, 0)$$

Quasiparticle weight and effective mass

<code>GENERAL</code>: ratio of the effective $(m_{
m eff})$ and bare band $(m_{
m e}^*)$ masses

$$rac{m_{ ext{eff}}}{m_{ ext{e}}^{*}} = \lim_{ ext{k}
ightarrow 0} rac{arepsilon(ext{k})-arepsilon(0)}{E(ext{k})-E(0)}$$

renormalized dispersion: $E(\mathbf{k}) = \varepsilon(\mathbf{k}) + \operatorname{Re}\Sigma[\mathbf{k},E(\mathbf{k})]$

$$Z^{-1}(0) = 1 - \left. rac{\partial}{\partial \omega} \Big[\operatorname{Re} \Sigma(\mathbf{k}, \omega) \Big]
ight|_{\mathbf{k}=0, \ \omega=E_0}$$

Rayleigh-Schrödinger perturbation theory:

$$Z_{ ext{c}}^{-1}(0) = 1 + rac{1}{N}\sum_{ ext{q},\lambda}rac{|\gamma_{ ext{cc}}^{\lambda}(ext{k}=0, ext{q})|^2}{ig[arepsilon_{ ext{c}}(0)-arepsilon_{ ext{c}}(ext{q})-oldsymbol{\omega}_{\lambda}ig]^2}$$

V. M. Stojanović (University of Basel)

Strong phonon-induced renormalization (I)

Strong phonon-induced renormalization (II)

Large electron-phonon mass enhancement

$$\left(rac{m_{ ext{eff}}}{m_{ ext{e}}^{*}}
ight)_{lpha} = rac{1 - rac{\partial}{\partial \omega} \operatorname{Re} \Sigma_{ ext{c}}(ext{k}, \omega) ig|_{ ext{k}=0, \omega=E_{ ext{c}}(0)}}{1 + rac{\partial}{\partial arepsilon_{ ext{c}}(ext{k}_{lpha})} \operatorname{Re} \Sigma_{ ext{c}}(ext{k}_{lpha}, \omega) ig|_{ ext{k}_{lpha}=0, \omega=E_{ ext{c}}(0)}}$$

$$\lambda_{ ext{me}}^{(lpha)} = rac{Z_{ ext{c}}^{-1}(0)}{1 + rac{\partial}{\partial arepsilon_{ ext{c}}(ext{k}_{lpha})} \operatorname{Re} \Sigma_{ ext{c}}(ext{k}_{lpha}, \omega) ig|_{ ext{k}_{lpha} = 0, \omega = E_{ ext{c}}(0)}} - 1$$

example: $\{9,5\}$ lattice – $\lambda_{
m me}^{(x)}=2.411$, $\lambda_{
m me}^{(y)}=2.448$

V. M. Stojanović (University of Basel)

Are there polarons in this system?

- Standard criteria for polaron formation not amenable to testing;
- short-range, nonpolar e-ph coupling (covalently-bonded systems)
 ⇒ carriers are quasifree electrons or small polarons!
- interface with polar substrates (SiC, SiO₂): interplay of Peierls-type and Fröhlich-type coupling
 G. De Filippis, V. Cataudella, S. Fratini, and S. Ciuchi, arXiv:1005.2476 (2010)

Conclusions and Outlook

- Graphene antidot lattices have completely/nearly flat bands as a result of bipartite structure and sublattice site imbalance
- Phonon-induced mass renormalization in graphene antidot lattices is very strong – onset of polaronic behavior
- Study more realistic graphene antidot lattices using simplified (continuum) approaches

Basel, Switzerland

Thank you for your attention

Funding:

Swiss NSF, NCCR Nanoscience

