Nonsymmetrized Correlations in Quantum Noninvasive Measurements

Adam Bednorz,1 Christoph Bruder,2 Bertrand Reulet,3 and Wolfgang Belzig4

1Faculty of Physics, University of Warsaw ul. Hoża 69, PL00-681 Warsaw, Poland
2Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
3Département de Physique, Université de Sherbrooke, Sherbrooke, QC, J1K2R1, Canada
4Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

(Dated: June 10, 2013)

A long-standing problem in quantum mesoscopic physics is which operator order corresponds to
noise expressions like $\langle I(-\omega)I(\omega) \rangle$, where $I(\omega)$ is the measured current at frequency $\omega$. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum
detector, e.g., one sensitive to either emission or absorption of photons. We show that both ordering
schemes can be embedded in quantum weak-measurement theory taking into account measurements
with memory, characterized by a memory function which is independent of a particular experimental
detection scheme. We discuss the resulting quasiprobabilities for different detector temperatures
and how their negativity can be tested on the level of second-order correlation functions already.
Experimentally, this negativity can be related to the squeezing of the many-body state of the
transported electrons in an ac-driven tunnel junction.

Although quantum measurement theory has been
based on the projection postulate [1], nowadays it
includes generalized schemes based on auxiliary detectors, described mathematically by positive operator-valued
measures (POVM) [2]. To specify a POVM requires
arguments based on physical considerations such as detector efficiency, or the assumption of thermal equilibrium.
A real physical interaction generally leads to backaction
on the system to be measured, which makes the interpre-
tation of measurements difficult. Hence, all detection
schemes are in general invasive as the measured system is perturbed. The disturbance is strongest for projective
measurements, as the information in the measurement
basis is completely erased. In contrast, other POVM
schemes can be much less disturbing, as is often the case in experiments [3–5].

To avoid invasiveness, Aharonov, Albert and Vaidman
[6] studied the limit of a weak measurement, in which
the system is coupled so weakly to the detector that it
remains almost untouched. The price to pay is a large
detection noise, which is however completely independent of the system. The gain is that other measurements on a non-compatible observable can be performed. After
the subtraction of the detector noise, the statistics of the measurements has a well-defined limit for vanishing coupling, which for incompatible observables turns out to be described by a quasiprobability and not a real probability distribution [7, 8].

The most common weak-measurement theories assume that the system-detector interaction is instantaneous [9–14]. Such a Markovian measurement scheme is relevant for many experiments [3] and corresponds to the symmetrized ordering of operators: $\langle I(-\omega)I(\omega) \rangle \rightarrow \langle I(-\omega)I(\omega) + I(\omega)I(-\omega) \rangle/2$, where quantum expectation values are defined as $\langle X \rangle = \operatorname{Tr} \hat{X} \hat{\rho}$ for an initial state $\hat{\rho}$. Here, $I(\omega) = \int dt \hat{I}(t)e^{i\omega t}$ is the Fourier transform of the time-dependent current $\hat{I}(t)$ in the Heisenberg pic-
ture. However, certain experiments are well described by nonsymmetrized correlators like $\langle I(-\omega)I(\omega) \rangle$. For $\omega \geq 0$
[4, 15–20] this corresponds to noise emitted by the system (emission noise) which is measured e.g. by an absorptive
photo detector. These experiments clearly lie beyond the scope of Markovian weak-measurement theory.

In this Letter, we formulate a general theory of weak
detection which allows for the description of nonsym-
metrized correlators. We show that emission noise ($\omega \geq 0$) and absorption noise ($\omega < 0$) appear naturally if one takes into account measurements with memory. In fact, non-Markovian weak measurements follow just from a few natural assumptions imposed on the POVM in the limit of weak coupling. The results are independent of a particular experimental realization and depend only on a single memory function. By further requiring that no information transfer occurs in thermal equilibrium the scheme is fixed uniquely and contains only the detector temperature as a parameter. Varying the detector tem-
perature interpolates between emission and absorption
measurements. As our scheme is independent of other properties of the detector, it applies to circuit QED,
mesoscopic current measurements and quantum optical systems equally well. Interestingly, applied to a simple
harmonic oscillator, the correlation functions in this scheme are consistent with the Glauber-Sudarshan $P$-
function [21] known from quantum optics for absorption
detectors. Contrary to the instantaneous measurements, the non-Markovian scheme can violate weak positivity
[19]. To test it, we propose a measurement of photon-
assisted current-fluctuations, which are shown to violate a Cauchy-Schwarz type inequality, proving the negative
quasiprobability of the statistics after deconvolution of the detection noise. Identifying the finite-frequency cur-
rent operators with quadratures in analogy to quantum
optics, we show that the thus created non-equilibrium state of the current is squeezed and therefore has essen-

tially non-classical correlations.

We start by developing a general framework of weak quantum measurement based upon the POVM formalism including non-Markovian features. We consider a set of \( n \) independent detectors continuously recording \( n \) time-dependent signals \( a_j(t) \) for \( j = 1, \ldots, n \). Each detector is related to an observable \( \hat{A}_j \). For example, \( n \) ammeters are inserted in a complex circuit: \( a_j(t) \) is the recorded current in the branch \( j \) and \( \hat{I}_j(t) \) the current operator in that branch. Note that in general \( \hat{A}_j(t) \) and \( \hat{A}_k(t') \) do not commute even if \( j \neq k \) since \( \hat{A}_j \) and \( \hat{A}_k \) may not commute with the Hamiltonian. We want to relate classical correlators of measured quantities like \( \langle a_1(t_1) \cdots a_n(t_n) \rangle \) to their equivalent for weak quantum measurements \( \langle \cdots \rangle_w \). These should involve linear correlators of the \( \hat{A}_j \), which can be taken at different times to allow for memory effects of the detectors, while preserving causality. The requirements of linearity and causality are fulfilled by replacing \( a_j(t) \) in the correlator by a superoperator \( \int dt' \hat{A}^{-t'}_j(t') \) and perform time ordering, i.e.: 

\[
\langle a_1(t_1) \cdots a_n(t_n) \rangle_w = \text{Tr} \int dt' t' \mathcal{T} \left[ \hat{A}^{-t_n}_{n-1} \cdots \hat{A}^{-t_1}_1(t_1') \right] \hat{\rho} .
\]  

(1)

Here \( \mathcal{T} \) denotes time ordering with respect to the arguments in brackets, \( \hat{\rho} \) is the density matrix, and \( \hat{A} \) are superoperators defined as:

\[
\hat{A}^{-t'}_j(t') = g_j(t - t') \hat{A}_j(t') + f_j(t - t') \hat{A}^\dagger_j(t')/2 .
\]

(2)

The superoperators \( \hat{A}^{\pm t/\hbar} \) [22] act on any operator \( \hat{X} \) like an anticommutator/commutator: \( \hat{A}^{\pm t}_j \hat{X} = \{ \hat{A}_j, \hat{X} \}/\hbar \) and \( \hat{A}^\dagger_j \hat{X} = [\hat{A}_j, \hat{X}]/\hbar \). In the above expressions we assumed for simplicity that the detectors are in a stationary state so that only time differences \( t_j - t_j' \) matter.

We will also assume that the average of single measurements coincides with the usual average for projective measurements, i.e. \( \langle a_j(t) \rangle_w = \langle \hat{A}_j(t) \rangle \). This implies \( g_j(t - t') = \delta(t - t') \). Other choices of \( g \) simply mimic the effect of classical frequency filters. Thus the only freedom left is the choice of the real function \( f_j \) that multiplies \( \hat{A}^\dagger_j \). Note that \( f_j(t) \) can be non-zero for \( t > 0 \) without violating causality, since it is accompanied by \( \hat{A}^\dagger_j \) and only future measurements are affected. For the last measurement, future effects disappear because the leftmost \( \hat{A}^\dagger_q \) vanishes under the trace in Eq. (1). For simplicity, we will assume a single \( f = f_j \) independent of \( j \). The limit \( f = 0 \) corresponds to the Markovian case.

Now we want to show that correlations obeying these requirements can be obtained from the general quantum measurement formalism. Based on Kraus operators \( \hat{K} \) [23], the probability distribution of the measurement results is \( \rho = \langle \hat{K} \rangle \) for \( \hat{K} = \hat{K} \hat{X} \hat{K}^\dagger \), where the only condition on \( \hat{K} \) is that the outcome probability is normalized regardless of the input state \( \hat{\rho} \). Here we need \( \hat{K} \) to be time-dependent. In general, we assume that \( \hat{K}[\hat{A}, a] \) is a functional of the whole time history of observables \( \hat{A}(t) \) and outcomes \( a(t) \). We shall assume that the functional \( \hat{K} \) is stationary so it depends only on relative time arguments.

The essential step to satisfy Eq. (1) is to take the limit \( \hat{K} \rightarrow \hat{1} \) which corresponds to a noninvasive measurement. This can be obtained from an arbitrary initial POVM by rescaling \( \hat{K}[\hat{A}, a] \rightarrow \hat{K}_\eta = C(\eta) \hat{K} [\eta \hat{A}, \eta a] \) with \( \eta \rightarrow 0 \), which defines \( \rho_\eta = \langle \hat{K}_\eta \rangle \). Here \( C(\eta) \) is a normalization factor.

The desired correlation function (1) can be derived by the following limiting procedure for an almost general POVM:

\[
\langle a_1(t_1) \cdots a_n(t_n) \rangle_w = \lim_{\eta \rightarrow 0} \langle a_1(t_1) \cdots a_n(t_n) \rangle_\eta ,
\]

(3)

where the average on the right-hand side is with respect to \( \rho_\eta \). We assume the absence of internal correlations between different detectors, namely \( \hat{K}[\hat{A}, a] = \mathcal{T} \prod_j \hat{K}[\hat{A}_j, a_j] \), where \( \mathcal{T} \) applies to the time arguments of \( \hat{A} \).

Expanding \( \hat{K}[\hat{A}, a]/[k[a]] = 1 + \int dt' F[a, t'] \hat{A}(t') + \mathcal{O}(\hat{A}^2) \), we find, up to \( \mathcal{O}(\hat{A}^2) \),

\[
\hat{K}/[k[a]]^2 \simeq 1 + \int dt' \left( 2 \text{Re} \hat{F} \hat{A}^\dagger(t') - \hbar \text{Im} \hat{F} \hat{A}^\dagger(t') \right) .
\]

(4)

Here, \( |k[a]|^2 \) is a functional probability of time-resolved outcomes independent of the properties of the system which represents the detection noise. As we want the measurement to be noninvasive to lowest order, we impose the condition that \( \int dt' \beta |k[a]|^2 \text{D}a \) vanishes; \( \text{D}a \) is the functional measure. Our conditions imply that \( \int dt' \beta |k[a]|^2 \) \( \text{D}a = 0 \) and we get \( f(t - t') = - \int dt' \beta \text{Im} \hat{F}[a, t'] |k[a]|^2 \) \( \text{D}a \). Thus, the most general weak Kraus operator takes the form given in Eq. (4), which is our main result. A particular Gaussian example of a POVM realizing this scheme is presented in the Supplemental Material A. We emphasize that our measurement scheme is not limited to any particular model of a detector, rather it captures generic properties of a general weakly invasive detector, whose property is encoded in the choice of the real function \( f(t) \).

To discuss the consequences of different forms of \( f \), we now calculate the noise spectral density,

\[
S_{\omega \omega}(\omega) = \int dt e^{i\omega t} \langle a(t)b(0) \rangle_w .
\]

(5)

An important special case is a system in a thermal equilibrium state, \( \hat{\rho} \sim \exp(-\hat{H}/k_B T) \). We further assume that the averages of \( \hat{A} \) and \( \hat{B} \) vanish. If the detector temperature \( T_d \) is equal to \( T \) and in the absence of other nonequilibrium effects (like a bias voltage, or
special initial conditions), we expect that no information transfer from the system to the detector occurs, i.e.,
that $S_{ab}(\omega) = 0$. This requirement leads to a necessary condition on the form of $f$ (see Supplemental Material B): $f(\omega) = i\hbar(2n_B(\omega) - 1) = i\hbar \coth(\hbar\omega/2kB_T)$, where $n_B(\omega)$ is the Bose distribution at temperature $T_d$. Equivalently, $f(t) = [k_B T_d] \coth(\pi t k_B T_d/\hbar)$ (at zero temperature $f(t) = \hbar/\pi t$). We use the name equilibrium ordering for this special choice of $f$. The zero temperature case has been also called time-normal [24]. It is relevant for experimental situations like in [4] and consistent with the quantum tape [19] or photodetection model [20] if the temperature of the tape (or the photons) is $T_d$.

The necessary form of $f$ is also sufficient. Indeed, the property $S_{ab}(\omega) = 0$ follows from the fluctuation-dissipation theorem [25] $(\langle \cdots \rangle_T$ denotes the equilibrium average

$$\int dt \, e^{i\omega t} \langle \hat{A}(t) \hat{B}(0) \rangle_T = \int dt \, e^{i\omega t + \Delta\omega/2k_B T} \langle \hat{B}(0) \hat{A}(t) \rangle_T,$$

because for an arbitrary stationary state we get

$$S_{ab}(\omega) = \int dt \, e^{i\omega t} \langle e^{i\Delta\omega/2k_B T} \hat{B}(0) \hat{A}(t) \rangle_T - e^{-i\Delta\omega/2k_B T} \langle \hat{A}(t) \hat{B}(0) \rangle_T / \sinh(\hbar\omega/2kB_T).$$

For zero detector temperature, this reduces to

$$\int e^{i\omega t} dt \langle \theta(-\omega) \hat{A}(t) \hat{B}(0) + \theta(\omega) \hat{B}(0) \hat{A}(t) \rangle_T,$$

which corresponds to emission noise for $\hat{A} = \hat{B}$ and $\omega > 0$.[18]. Note that in that case (7) and (8) are even functions of $\omega$ but the operators do not appear in symmetrized form. Thus, for $T_d \neq T$, $S_{ab}(\omega)$ is in general not equal to zero and contains information about the system. It is interesting to note that reversing the sign of $f$ transforms $S_{ab}(\omega)$ into absorption noise for $\omega \leq 0$. Hence, measuring absorption noise requires a detector formally described by a negative temperature $T_d$ in $f$ and Eq. (7).

It is interesting to note that for this special choice of $f$ the higher-order fluctuations also vanish if $\hat{\rho} \propto \exp(-\hat{H}/k_BT)$ and $T = T_d$. We can write the Fourier transform of (1) as

$$\int d^n t \, e^{i\sum \omega_k t_k} \text{Tr} \prod_k \sum_{\pm} \frac{\pm e^{\pm i\omega_k/2k_B T} \hat{A}^{\pm}_k(t_k)}{2\sinh(\hbar\omega_k/2kB_T)} \hat{\rho},$$

with $\hat{A}^+ \hat{X} = \hat{X} \hat{A}$ and $\hat{A}^+ \hat{X} - \hat{X} \hat{A} = X \hat{A}$. Now, we can split $\hat{\rho} = \hat{\rho}^{1/2} \hat{\rho}^{1/2}$, expand the above expression as a sum of operator products and move one factor $\hat{\rho}^{1/2}$ leftwards and the other rightwards so that they meet again at the trace sign, which gives (1) in the form

$$\int d^n t \, e^{i\sum \omega_k t_k} \text{Tr} \hat{\rho} \prod_k \sum_{\pm} \frac{\pm e^{\pm i\omega_k/2kB_T} \hat{A}^{\pm}_k(t_k + i\hbar/2kB_T)}{2\sinh(\hbar\omega_k/2kB_T)}.$$

Shifting $t \to t \pm i\hbar/2kB_T$ and using $\text{Tr} \hat{A}^q \ldots = 0$ leads to

$$\int d^n t \, e^{i\sum \omega_k t_k} \text{Tr} \hat{\rho} \prod_k \hat{A}^{\pm}_k(t_k)/2i \sinh(\hbar\omega_k/2kB_T) = 0.$$
through $\hat{a}^\dagger = (\hat{x} + i\hat{p})/\sqrt{2}$ with $[\hat{a}, \hat{a}^\dagger] = \hat{1}$. This leads to $\hat{a} = e^{c - f(\Omega)\hat{a}^q}/2$ and $\hat{a}^\dagger = \hat{a}^c + f(\Omega)\hat{a}^t/2$. In the zero-temperature case, $f(\Omega) = i\hbar$ (a perfect photodetector), and defining $\alpha = (x + ip)/\sqrt{2}$ we get the single-time quasiprobabilistic average $\langle \alpha^a\alpha^b \rangle = Tr\hat{a}^\dagger\hat{a}^{\dagger b}$. On the other hand, this is a property of the Glauber-Sudarshan function $P(\alpha)$, defined by $\hat{\rho} = f d^2\alpha P(\alpha)\alpha^\dagger\alpha$ for normalized coherent states $\hat{a}\alpha = \alpha\alpha^\dagger$, $\langle \alpha^\dagger\alpha \rangle = 1$ [21]. Since $\langle \alpha^a\alpha^b \rangle = f d^2\alpha\alpha^a\alpha^b P(\alpha) = \hat{\alpha}^\dagger\hat{\alpha}^{\dagger b}$, we find that the quasiprobability for a zero-temperature detector is identical to $P(\alpha)$. It is interesting to note that reversing the sign of $f$ leads to the Husimi-Kano $Q$ function instead of $P$ [2], while $f = 0$ gives the Wigner function [7, 27].

The fact that we obtain the $P$-function shows the deep connection between the non-Markovian weak measurement formalism and the quantum-optical detector theory. One of the interesting consequences is that zero-temperature equilibrium ordering is consistent with photoabsorptive detection schemes, in which the $P$-function appears naturally [2]. It is also interesting to draw a link between the violation of weak positivity in equilibrium ordering and the properties of squeezed states. The ground state of a harmonic oscillator fulfills $\langle \hat{x}^2 \rangle = 1/2$, which corresponds to $\langle \hat{x}^2 \rangle_\rho = 0$. A squeezed state can be such that $\langle \hat{x}^2 \rangle < 1/2$, still minimizing the Heisenberg uncertainty principle. This translates into a negative variance of the position described by the (quasiprobability) $P$-function, i.e. $\langle \hat{x}^2 \rangle_\rho < 0$ [28] and is therefore equivalent to a violation of weak positivity.

Let us now consider how our results apply to the case of current fluctuations in mesoscopic conductors. The quantum description of the noise in the junction, $S_I(\omega) = \int dt e^{i\omega t} \langle \delta I(t)\delta I(0) \rangle$, where $\delta I(t) = I(t) - \langle I(t) \rangle$, will depend on the choice of $f$ in (1). For $f = 0$, we get symmetrized noise $S_I^\ast = \hat{G}h\sum_{\pm} w(\omega \pm eV/h,T)/2$, where $\hat{G}$ is the conductance, $V$ is the constant bias voltage and $w(\alpha,T) = \alpha/\coth(\alpha/2k_B T)$ [19]. For $f$ given by equilibrium ordering with an arbitrary $T_d$, we obtain $S_I = S_I^\ast - \hat{G}hw(\omega,T_d)$. Hence, the detection schemes differ by a term that is independent of the voltage and the temperature of the system, making it impossible to detect non-classicality in this scheme.

An experimentally feasible test of squeezing and violation of weak positivity is possible using a coherent conductor (e.g. a tunnel junction for the sake of simplicity) subject to an AC voltage bias $V(t) = V_{ac}\cos\Omega t$[29]. Consider the classical inequality

$$|\delta I(\omega) - \delta I(-\omega)|^2 \geq 0 \Rightarrow \langle |\delta I(\omega)|^2 \rangle \geq \text{Re}(|\delta I^2(\omega)|). \quad (13)$$

For symmetrized ordering one gets [30]

$$\langle \delta I(\omega), \delta I(\omega') \rangle/2 = 2\pi\hbar G \sum_m \delta(\omega + \omega' - 2m\Omega)$$

$$\sum_n J_n(eV_{ac}/\hbar\Omega)J_{n-2m}(eV_{ac}/\hbar\Omega)w(\omega - n\Omega), \quad (14)$$

where $J_n$ are the Bessel functions. In the case of equilibrium ordering at $T_d = 0$ one only has to subtract $2\pi\hbar G|\omega|\delta(\omega + \omega')$ from the above result. As shown in Fig. 1, the classical inequality is violated for $\omega = \Omega$ in a certain range of $eV_{ac}/\hbar\Omega$, but only in equilibrium ordering. This can be reinterpreted in terms of the existence of squeezing in the quantum shot noise: consider the two quadratures associated with the finite-frequency current operator: $\hat{A} = i\delta I(\omega) - \delta I(-\omega)/2$ and $\hat{B} = |\delta I(\omega) + \delta I(-\omega)/2/2$. Using $\langle [\hat{I}(\omega), \hat{I}(-\omega)] = 2t_0G\hbar\omega$, we find [31] $\langle [\hat{A},\hat{B}] = it_0G\hbar\omega$ (with the total detection time $t_0$). Thus the squeezing condition [2],

$$\langle \hat{A}^2 \rangle < \langle [\hat{A},\hat{B}] \rangle/2, \quad (15)$$

is related to the violation of weak positivity, $\langle \hat{A}^2 \rangle_w < 0$ in equilibrium ordering with $T_d = 0$ and allows to violate Eq. (13). Hence, according to Fig. 1, quantum shot noise with AC-driving creates current states, which resemble squeezed light for a certain range of the AC-voltage.

In conclusion, we have presented a theory of a generic weak-measurement scheme that includes emission noise. It requires a non-Markovian POVM with a specially chosen memory function $f$, which has no analog in the Markovian picture. The scheme is consistent with the absence of information flow between system and detector in equilibrium at a given temperature. Hence any detection requires a nonequilibrium situation. Another direct consequence is that even the simple Markovian detection process must involve a nonequilibrium detection scheme that includes emission noise. We acknowledge useful discussions with A. Klenner,
L. Plimak and J. Gabelli. This work was financially supported by the Swiss SNF and the NCCR Quantum Science and Technology (CB), the DFG through SFB 767 and SP 1285 (AB and WB), the Polish Ministry of Science grant IP2011 002371 (AB), and the Canada Excellence Research Chairs program (BR).

Supplemental Material

A. GAUSSIAN NON-MARKOVIAN POVM

An example of a POVM leading to a non-Markovian weak measurement is based on the Gaussian detector prepared in the initial state (wavefunction) $\psi(x) \propto \exp(-x^2)$, interacting with the system by the time-dependent Hamiltonian (in the interaction picture) $H(t) = (\delta(t - t')p + 2f(t - t')x)A(t')$. The momentum $p$ makes the shift $x \rightarrow x - \hat{A}(t)$. For the measurement of $a(t) = x$ we get the Gaussian Kraus operator

$$K[\hat{A}, a] \propto \mathcal{T} \exp \left[ - (\hat{A}(t) - a(t))^2 - \int dt' \ 2if(t-t')(a(t) - \hat{A}(t)\theta(t-t'))\hat{A}(t')/\hbar \right]. \quad (A.1)$$

Here, the first term in the exponent is the Markovian part, while the second term describes the non-Markovian measurement process including a fixed but arbitrary real function $f(t)$, characterizing the memory effect. The Heaviside function $\theta$ follows from the fact that $p$ shifts the phase for $t' < t$ and ensures the normalization of the Kraus operator. By comparing with (4), we get $|k[a]|^2 = \sqrt{2/\pi} e^{-2a^2}$ and $F[a, t'] = 2a(t)(\delta(t - t') - i f(t-t')/\hbar)$, which in this special case are just usual functions. Following the standard procedure we find the Kraus superoperator in the form

$$K[\hat{A}, a] \propto \mathcal{T} \exp \left[ - 2(\hat{A}^c(t) - a(t))^2 + \frac{(\hbar \hat{A}^q(t))^2}{2} + \int dt' \ 2f(t-t')(a(t)\hat{A}^q(t') - \theta(t-t')(\hat{A}^c(t)\hat{A}^q(t') + \hat{A}^q(t)\hat{A}^c(t'))) \right]. \quad (A.2)$$

To prove the normalization, $\int da \langle \hat{K} \rangle = 1$, we perform the Gaussian integral over $a$ (time ordering is no problem if kept up throughout the calculation) and get

$$\int da \hat{K} = \mathcal{T} \exp \left[ \frac{(\hbar \hat{A}^q(t))^2}{2} + \int dt' \theta(t-t')2f(t-t')\hat{A}^q(t')\hat{A}^c(t)dt' - \theta(t-t')2f(t-t')\hat{A}^q(t'')\hat{A}^c(t'')dt''dt'/2 \right], \quad (A.3)$$

where we have ordered properly $\hat{A}^q(t')$ and $\hat{A}^c(t)$. In the power expansion, omitting the identity term, the leftmost superoperator is always $\hat{A}^q$. Since $\text{Tr} \hat{A}^q \cdots = 0$ we obtain $\int da \{ K[\hat{A}, a] \} = 1$ or $\int da \hat{K}^\dagger \hat{K} = 1$. In general, we define $K[\hat{A}, a]$ for $n$ measurements as $K[\hat{A}, a] = \mathcal{T} \prod_j K[\hat{A}_j, a_j]$, taking $H_I = \sum_j H_{j,I}$. To get a weak measurement, we substitute $\hat{K}$ by $\hat{K}_\eta$ which is obtained by replacing $\hat{H}_I \rightarrow \eta \hat{H}_I$ and measuring $a(t) = \eta x$. Note that putting $\hat{A} = 0$ gives Gaussian white noise $\rho \propto e^{-2a^2}$, which leads to large detection noise in the weak limit, $\rho_0 \propto e^{-2\eta^2a^2}$, that has to be subtracted/deconvoluted from the experimental data.

B. FIXING THE MEMORY FUNCTION $f$

Since the detector function $f(\omega)$ should be system-independent in thermal equilibrium, any system can be used to determine it. We therefore consider a 2-level system with $\hat{A} = \hat{B} = \hat{s}_x$ and $\hat{H} = \hbar \Omega \hat{s}_z/2$. The requirement $S(\omega) = 0$ is equivalent to

$$\text{Re} \int_{-\infty}^{0} e^{i\omega t} dt \ (1 + if(\omega)/\hbar)\hat{s}_x(t)\hat{s}_x(0) + (1 - if(\omega)/\hbar)\hat{s}_x(0)\hat{s}_x(t) = 0. \quad (B.1)$$

The equilibrium state reads $\hat{\rho} = (\hat{1} - \hat{s}_z \tanh(\hbar \Omega/2k_B T))/2$ and

$$\langle \hat{s}_x(0)\hat{s}_x(t) \rangle = \langle \hat{s}_x(-t)\hat{s}_x(0) \rangle = \cos(\Omega t) + i \tanh(\hbar \Omega/2k_B T) \sin(\Omega t), \quad (B.2)$$

and (B.1) leads to the requirement that

$$\text{Re} \left[ \frac{1}{\epsilon + i\omega + i\Omega} + \frac{1}{\epsilon + i\omega - i\Omega} - if(\omega)/\hbar \left( \frac{1}{\epsilon + i\omega + i\Omega} - \frac{1}{\epsilon + i\omega - i\Omega} \right) \tanh \left( \frac{\hbar \Omega}{2k_B T} \right) \right]. \quad (B.3)$$
vanishes for \( \epsilon \to 0_+ \). Since \( \frac{1}{\pi \sqrt{\omega}} = \frac{1}{\sqrt{\pi}} + \pi \delta(x) \), we can ignore the delta function for \( \omega \neq \pm \Omega \), and the vanishing of (B.3) reduces to \( \text{Re} f(\omega) = 0 \). As \( f \) must be independent of the system, we are free to choose \( \Omega \), \( \text{Re} f(\omega) = 0 \) must hold for all \( \omega \), including \( \omega = \pm \Omega \). So \( f \) is purely imaginary, and (B.3) reads

\[
\delta(\omega + \Omega) + \delta(\omega - \Omega) + (\delta(\omega + \Omega) - \delta(\omega - \Omega)) \tanh\left( \frac{\hbar \Omega}{2k_B T} \right) \text{Im} f(\omega)/\hbar.
\]

Therefore, \( 1 + \text{Im} f(\omega) \tanh(h\Omega/2k_B T)/\hbar = 0 \) at \( \omega = \pm \Omega \), and \( f(\omega) = i\hbar \coth(h\omega/2k_B T) \).

C. VIOLATION OF WEAK POSITIVITY

From (1) we find for \( f(t) = \hbar/\pi t \)

\[
\langle a(t) b(s) \rangle_w = \left\langle \{ \hat{A}(t), \hat{B}(s) \} \right\rangle/2 + \int_{-\infty}^{\infty} \text{d}t' \hat{A}(t') \hat{B}(s)/2\pi(t - t') + \int_{-\infty}^{t} \text{d}s' \hat{B}(s') \hat{A}(t)/2\pi(s - s') \right\rangle .
\]

For \( \hat{H} = \hbar \Omega \sigma_z/2 \) and \( \hat{A} = \hat{B} = \hat{\sigma}_x + \hat{\sigma}_z \) we find \( \hat{A}(t) = \hat{\sigma}_x \cos \Omega t - \hat{\sigma}_y \sin \Omega t + \hat{\sigma}_z \) and \( i[\hat{A}, \hat{A}(t)]/2 = \hat{\sigma}_x \sin \Omega t - \hat{\sigma}_z \sin \Omega t + \hat{\sigma}_y (\cos \Omega t - 1) \). Therefore, for \( \hat{\rho}(0) = (1 + \hat{\sigma}_y)/2 \) we get

\[
\langle a^2 \rangle = 2 + \frac{2}{\pi} \int_{0}^{\infty} \text{d}t \cos \Omega t - 1/t .
\]

For small \( t \) the integral is convergent but for large \( t \) only \( \cos \Omega t/t \) converges. The remaining integral \( \int \text{d}t/t \) diverges logarithmically and one should put a cutoff at \( t_\infty \).

Certainly no experiment will record infinite correlations. The cutoff \( t_\infty \) is in practice bounded by the decoherence time of the system and the measurement noise (which also diverges). The infinity would occur only in the limit of zero measurement strength and a perfect two-level system, which is impossible.

D. HARMONIC OSCILLATOR

For the harmonic oscillator with \( \hat{H} = \hat{p}^2/2m + m\omega^2 \hat{x}^2 \) and \( [\hat{x}, \hat{p}] = i\hbar \), we have \( [\hat{x}(t), \hat{\rho}(t')] = i\hbar \hat{1} \cos(\Omega(t - t')) \), \( [\hat{x}(t), \hat{x}(t')] = -i\hbar \sin(\Omega(t - t'))/m\Omega \), \( [\hat{p}(t), \hat{p}(t')] = -i\hbar \sin(\Omega(t - t'))/m\Omega \) so the commutator depends only on the difference \( t - t' \), which applies also to superoperators. To see that the time ordering is irrelevant, let us take linear functions \( A, B \) of \( x \) and \( p \) and calculate

\[
\begin{align*}
\left( \hat{A}^c(t) + \int dt' f(t-t') \hat{A}^q(t')/2 \right) \left( \hat{B}^c(s) + \int ds' f(s-s') \hat{B}^q(s')/2 \right) \\
- \mathcal{T} \left( \hat{A}^c(t) + \int dt' f(t-t') \hat{A}^q(t')/2 \right) \left( \hat{B}^c(s) + \int ds' f(s-s') \hat{B}^q(s')/2 \right) \\
= \int dt' f(t-t') \theta(s-t') \hat{B}^c(s) \hat{A}^q(t')/2 + \int ds' f(s-s') \theta(t-s') \hat{B}^q(t) \hat{A}^c(s')/2 \\
= \int du \theta(u) (f(u + t - s) \hat{B}^c(s), \hat{A}^q(s-u) + f(u + t - s) \hat{B}^q(t + u), \hat{A}^c(t))/2 .
\end{align*}
\]

The last expression vanishes because of the antisymmetry of \( f \) and the fact that the commutators depend only on the difference in time arguments. The proof generalizes to multiple products because \( [\hat{B}^q(s), \hat{A}^c(u)] \) is proportional to identity superoperator for \( A, B = x, p \).